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Parallel processing of the Lindemann Index useing using MPI and numba



Introduction to the Lindemann Index
• The Lindemann Index is a measure of atomic 

displacement within a crystal structure.

• It helps in understanding the stability and phase 
transitions of materials.

• Calculated based on the relative displacements of 
atoms over a series of frames, e.g. a molecular 
dynamics simulation.

• I am the maintainer of a Python package that calculates 
the Lindemann Index 
(https://github.com/N720720/lindemann)
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Lindemann Index

and the system-averaged Lindemann index is given by
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where rij is the distance between the ith and jth atoms 
and < >T denotes the thermal average at temperature T.



Calculating the Lindemann Index
• Compute pairwise distances between atoms for each frame.

• The Welford algorithm is used to update the mean and 
variance. This online algorithm was chosen to be able to 
handle very long simulations without running out of memory. 

• Compute Lindemann index, by dividing the square root of the 
variance by the mean distance and averaging the results. 
(Ratio of the root mean square displacement to the mean distance).
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Planning 
• Open Development

• Creating a github project for the planned improvements

• Use semantic versioning for the new releases

• Try to document all changes and improvements in the github issues

• Use github actions to have a CI/CD pipeline

• Write unit tests for the new functions to ensure that the results 
remain the same.

• Publish the new releases to pypi
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Current Strategy
• Using numba to Just In Time compile (JIT) python 

code

• The complete Molecular Dynamic Simulation is 
loaded frame by frame

• For each frame, the pairwise distance is calculated

• Then the variance and the mean is updated with the 
Welford algorithm
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Optimizations 
• To calculate the pairwise distances between atoms for each image, 

we could use established libraries to accomplish this task

• Scipy’s scipy.spatial.distance.pdist was tested to calculate the 
pairwise distances 

• This would have the advantage that we could use the vectorization 
of the Scipy vector library
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Optimizations 
• Unfortunately pdist could not be used, it uses too much memory
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Optimizations 
• We can only take functions from numpy and scipy into the jit areas 

that are supported by numba

• As we are dependent on numba, we have to live with the restrictions 
here
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Numba JIT Compiler
• The code is compiled just in time (jit) with numba
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Memory Optimizations 
• The original implementation of the Lindemann index calculation 

used a square-form distance matrix.

• This optimization replaces the square-form distance matrix with a 
distance vector.

• The distance vector requires N*(N-1)/2 storage space, compared to 
the N2 space needed for a full distance matrix, where N is the 
number of atoms.
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Optimizations 
• After further work on the algorithm, I realized that I could merge the 

loop that calculates the pairwise distance and the the Welford 
algorithm loop that updates the variance and mean.
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Optimizations on loading the Trajectory
• Loading entire trajectories into memory is often unfeasible for large 

datasets.

• OVITO's on-demand frame loading reduces memory usage by loading 
frames as needed.

• Welford's online algorithm updates mean and variance 
incrementally, allowing frame-by-frame processing without storing 
all frames in memory.

• We can therefore omit the frames f in the equation f * N * (N-1)/2 
for memory usage
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Optimizations
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Parallel Algorithm
• The existing algorithm is executed serially, limiting performance and 

scalability.

• The goal is to optimize the existing algorithm by introducing 
parallelization using Numba's just-in-time (JIT) compilation and 
parallel processing capabilities (numba prange).

• Laying the foundations for the development of a further mpi4py 
version
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Parallel Algorithm
• Parallel Variance Calculation: Use Welford's algorithm with Numba

for numerical stability and performance.

• Chunk-wise Processing: Split frames into chunks for parallel 
processing (using prange). Compute mean and variance for each 
chunk independently.
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Parallel Algorithm
• Combining Results: Aggregate results from all chunks to compute 

the final Lindemann index efficiently.

• Chan et al.[1] notes that Welford's online algorithm is a special 
case of an algorithm that works for combining arbitrary sets A 
and B:
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[1] Chan et al. "Updating Formulae and a Pairwise Algorithm for Computing Sample Variances"

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf


Parallel Algorithm

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 19



Parallel Algorithm - CPU Scaling
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Parallel Algorithm – With mpy4py
• Ideal for distributed computing across multiple nodes.

• Better scalability and performance in cluster environments.

• Efficiently utilizes multiple nodes. Enhances scalability for large-scale 
computations. Potential for significant performance improvements.

• Groundwork laid with Numba prange
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Parallel Algorithm – With mpy4py
• Mpi4py shows very similar performance to the numba prange

version. This is not surprising as both use the omp threading layer.

• Since the scaling of the selected problemset already decreases at 16 
Cpu, no attempt has yet been made to distribute the work over 
several nodes.

• For this purpose, a synthetic problem set must be created that 
simulates such workloads.
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Serial and Parallel Algorithm in C
• Both versions have been developed. 

• The shared libraries can be integrated via the python package 
ctypes.CDLL.

• The serial C version shows better performance than the numba
version, approx. 100 seconds vs. 125 seconds
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Serial and Parallel Algorithm in C
• It still needs to be explored how the C code can be distributed

• One possibility would be to compile it on a manylinux container in 
CI/CD to support as many systems as possible and then distribute the 
shared libraries with the package.

• This would also require the upload to pypi to be integrated into the 
CI/CD.

• Another option would be to compile the C code on the target system 
when the package is installed. Here one could use the native arch 
flag of the compiler.
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Utilities and Helpers
• A series of benchmarks were created

• A utility program for calculating memory requirements
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Outlook
• Testing of various compilers clang, gcc, icx

(godbolt.org)

• Strategy for the distribution of C code

• Creation of documentation to support the user

• Conda package
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