
Lindemann Index

Practical Course on High-Performance Computing

Parallel processing of the Lindemann Index useing using MPI and numba



Introduction to the Lindemann Index
• The Lindemann Index is a measure of atomic 

displacement within a crystal structure.

• It helps in understanding the stability and phase 
transitions of materials.

• Calculated based on the relative displacements of 
atoms over a series of frames, e.g. a molecular 
dynamics simulation.

• I am the maintainer of a Python package that calculates 
the Lindemann Index 
(https://github.com/N720720/lindemann)

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 2



Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 3



Lindemann Index

and the system-averaged Lindemann index is given by

Sebastian Thurm26.07.2024 4

Practical Course on High-Performance Computing

where rij is the distance between the ith and jth atoms 
and < >T denotes the thermal average at temperature T.



Calculating the Lindemann Index
• Compute pairwise distances between atoms for each frame.

• The Welford algorithm is used to update the mean and 
variance. This online algorithm was chosen to be able to 
handle very long simulations without running out of memory. 

• Compute Lindemann index, by dividing the square root of the 
variance by the mean distance and averaging the results. 
(Ratio of the root mean square displacement to the mean distance).

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 5



Planning 
• Open Development

• Creating a github project for the planned improvements

• Use semantic versioning for the new releases

• Try to document all changes and improvements in the github issues

• Use github actions to have a CI/CD pipeline

• Write unit tests for the new functions to ensure that the results 
remain the same.

• Publish the new releases to pypi

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 6



Current Strategy
• Using numba to Just In Time compile (JIT) python 

code

• The complete Molecular Dynamic Simulation is 
loaded frame by frame

• For each frame, the pairwise distance is calculated

• Then the variance and the mean is updated with the 
Welford algorithm

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 7



Optimizations 
• To calculate the pairwise distances between atoms for each image, 

we could use established libraries to accomplish this task

• Scipy’s scipy.spatial.distance.pdist was tested to calculate the 
pairwise distances 

• This would have the advantage that we could use the vectorization 
of the Scipy vector library

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 8



Optimizations 
• Unfortunately pdist could not be used, it uses too much memory

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 9



Optimizations 
• We can only take functions from numpy and scipy into the jit areas 

that are supported by numba

• As we are dependent on numba, we have to live with the restrictions 
here

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 10



Numba JIT Compiler
• The code is compiled just in time (jit) with numba

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 11



Memory Optimizations 
• The original implementation of the Lindemann index calculation 

used a square-form distance matrix.

• This optimization replaces the square-form distance matrix with a 
distance vector.

• The distance vector requires N*(N-1)/2 storage space, compared to 
the N2 space needed for a full distance matrix, where N is the 
number of atoms.

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 12



Optimizations 
• After further work on the algorithm, I realized that I could merge the 

loop that calculates the pairwise distance and the the Welford 
algorithm loop that updates the variance and mean.

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 13



Optimizations on loading the Trajectory
• Loading entire trajectories into memory is often unfeasible for large 

datasets.

• OVITO's on-demand frame loading reduces memory usage by loading 
frames as needed.

• Welford's online algorithm updates mean and variance 
incrementally, allowing frame-by-frame processing without storing 
all frames in memory.

• We can therefore omit the frames f in the equation f * N * (N-1)/2 
for memory usage

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 14



Optimizations

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 15



Parallel Algorithm
• The existing algorithm is executed serially, limiting performance and 

scalability.

• The goal is to optimize the existing algorithm by introducing 
parallelization using Numba's just-in-time (JIT) compilation and 
parallel processing capabilities (numba prange).

• Laying the foundations for the development of a further mpi4py 
version

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 16



Parallel Algorithm
• Parallel Variance Calculation: Use Welford's algorithm with Numba

for numerical stability and performance.

• Chunk-wise Processing: Split frames into chunks for parallel 
processing (using prange). Compute mean and variance for each 
chunk independently.

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 17



Parallel Algorithm
• Combining Results: Aggregate results from all chunks to compute 

the final Lindemann index efficiently.

• Chan et al.[1] notes that Welford's online algorithm is a special 
case of an algorithm that works for combining arbitrary sets A 
and B:

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 18

[1] Chan et al. "Updating Formulae and a Pairwise Algorithm for Computing Sample Variances"

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf


Parallel Algorithm

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 19



Parallel Algorithm - CPU Scaling

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 20



Parallel Algorithm – With mpy4py
• Ideal for distributed computing across multiple nodes.

• Better scalability and performance in cluster environments.

• Efficiently utilizes multiple nodes. Enhances scalability for large-scale 
computations. Potential for significant performance improvements.

• Groundwork laid with Numba prange

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 21



Parallel Algorithm – With mpy4py
• Mpi4py shows very similar performance to the numba prange

version. This is not surprising as both use the omp threading layer.

• Since the scaling of the selected problemset already decreases at 16 
Cpu, no attempt has yet been made to distribute the work over 
several nodes.

• For this purpose, a synthetic problem set must be created that 
simulates such workloads.

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 22



Serial and Parallel Algorithm in C
• Both versions have been developed. 

• The shared libraries can be integrated via the python package 
ctypes.CDLL.

• The serial C version shows better performance than the numba
version, approx. 100 seconds vs. 125 seconds

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 23



Serial and Parallel Algorithm in C
• It still needs to be explored how the C code can be distributed

• One possibility would be to compile it on a manylinux container in 
CI/CD to support as many systems as possible and then distribute the 
shared libraries with the package.

• This would also require the upload to pypi to be integrated into the 
CI/CD.

• Another option would be to compile the C code on the target system 
when the package is installed. Here one could use the native arch 
flag of the compiler.

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 24



Utilities and Helpers
• A series of benchmarks were created

• A utility program for calculating memory requirements

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 25



Outlook
• Testing of various compilers clang, gcc, icx

(godbolt.org)

• Strategy for the distribution of C code

• Creation of documentation to support the user

• Conda package

Practical Course on High-Performance Computing

Sebastian Thurm26.07.2024 26


	Folie 1: Lindemann Index
	Folie 2: Introduction to the Lindemann Index
	Folie 3
	Folie 4: Lindemann Index
	Folie 5: Calculating the Lindemann Index
	Folie 6: Planning 
	Folie 7: Current Strategy 
	Folie 8: Optimizations 
	Folie 9: Optimizations 
	Folie 10: Optimizations 
	Folie 11: Numba JIT Compiler
	Folie 12: Memory Optimizations 
	Folie 13: Optimizations 
	Folie 14: Optimizations on loading the Trajectory
	Folie 15: Optimizations
	Folie 16: Parallel Algorithm
	Folie 17: Parallel Algorithm
	Folie 18: Parallel Algorithm
	Folie 19: Parallel Algorithm
	Folie 20: Parallel Algorithm - CPU Scaling
	Folie 21: Parallel Algorithm – With mpy4py
	Folie 22: Parallel Algorithm – With mpy4py
	Folie 23: Serial and Parallel Algorithm in C
	Folie 24: Serial and Parallel Algorithm in C
	Folie 25: Utilities and Helpers
	Folie 26: Outlook

