
SH

∞

Seminar Report

Parallel Ray Tracing

Pranay Bhatia, Karan Sharma

MatrNr: 17935037, 21032486

Supervisor: Zoya Masih

Practical course in High-Performance Computing,
Georg-August-Universität Göttingen

Institute of Computer Science

October 29, 2024

Abstract
Ray tracing is a powerful rendering technique capable of producing photorealistic images
by simulating the complex interactions of light with objects in a scene. Despite its visual
fidelity, traditional ray tracing methods are computationally expensive, making real-time
applications like video games and simulations challenging. This report explores the im-
plementation of parallel ray tracing as a means to overcome these limitations, focusing
on techniques that reduce rendering time while maintaining high image quality.

We begin by discussing the foundational concepts of ray tracing, including ray casting,
path tracing, and acceleration structures like Bounding Volume Hierarchies (BVH). The
report also provides Python code for the parallel ray tracing implementation, which is op-
timized to leverage task and data independence for significant performance improvements.
Additionally, different types of materials, such as Lambertian, metallic, and dielectric, are
explored to understand their impact on rendering.

To evaluate the performance gains from parallelization, we compare serial and parallel
implementations using 1, 4, and 8 CPU cores. The results highlight substantial reductions
in rendering times without compromising image quality. Furthermore, an additional ex-
periment is conducted to analyze sphere intersection using geometric methods, providing
deeper insights into the computational efficiency of ray tracing algorithms.

Benchmarking results confirm the effectiveness of parallelization, demonstrating its
potential for real-time applications. The report concludes with a discussion on the impli-
cation

i

Contents

List of Figures iii

1 Introduction 1
1.1 Problem Statement . 2

2 Background 4
2.1 Components of a Ray Tracing Scene . 4
2.2 Algorithm: The Pseudo Code Behind Ray Tracing 5
2.3 The Scene Setup . 6
2.4 Ray Intersection & Definition . 7
2.5 Sphere Intersection . 7
2.6 Blinn Phong Reflection . 8
2.7 Sphere Intersection: Geometric Considerations 8

3 Parallelization with MPI 9
3.1 MPI Setup and Process Distribution . 9
3.2 Handling Variable-Sized Image Segments to Prevent Tiling 10
3.3 Performance Benefits of Parallelization . 10
3.4 Setting Up the Environment and Running the Script 11

4 Results 12
4.1 Scene Complexity Results . 12
4.2 Light Source Position Results . 13
4.3 Performance Results Based on Scene Complexity 13

4.3.1 Observations . 15

5 Conclusion 16

ii

List of Figures
1 different ways of interaction of light: [Joh14] 2
2 Observation: independence of task . 3
3 Components of ray tracing scene source: [Afl21] 5
4 Scene setup source: [Afl21] . 6
5 Sphere Discriminant . 8
6 Low Complexity Scene (2 spheres) . 12
7 Medium Complexity Scene (4 spheres) . 12
8 High Complexity Scene (7 spheres) . 12
9 Light Source on the Left . 13
10 Light Source on the Right . 13
11 Light Source on the Top . 13
12 Execution Time vs. Number of Processes (Low Complexity) 14
13 Execution Time vs. Number of Processes (Medium Complexity) 14
14 Execution Time vs. Number of Processes (High Complexity) 15

Listings
1 sudo_code . 6
2 MPI Initialization and Row Distribution 9
3 Handling Variable-Sized Image Segments to Prevent Tiling 10

iii

Parallel Ray Tracing

1 Introduction
Ray tracing is a rendering technique that fundamentally relies on the physics of light to
produce images with a high degree of realism. The basic premise of ray tracing involves
tracing the paths of light rays as they travel through a scene, interacting with objects
and materials. The ultimate goal of ray tracing is to produce images that can be indistin-
guishable from those captured by a camera, even in animated films. This technique has
become a cornerstone in modern visual effects, utilized extensively in both non-real-time
applications such as film and television, and real-time applications like video games.

When you observe the world around you, the objects you see are illuminated by beams
of light. Ray tracing works by following the path of these beams backward, from your
eye to the objects that the light interacts with. This approach allows for the simulation
of various optical phenomena, such as reflections, refractions, and shadows, which are
essential for creating photorealistic images. [Nvi18] These effects are critical in modern
movies, where ray tracing is used to generate or enhance special effects, creating lifelike
reflections on surfaces, accurate refractions through transparent materials, and realistic
shadowing in complex scenes.

Ray tracing is not just limited to visual effects in media. It is also employed in
various other fields such as lighting design, architecture, and engineering. In these areas,
ray tracing helps professionals visualize how light interacts with different materials and
environments, enabling them to design spaces and objects that are both aesthetically
pleasing and functionally effective.

Definition and Purpose

As defined by Brian Caulfield from Nvidia,
"Ray tracing is a rendering technique that can realistically simulate the lighting of a

scene and its objects by rendering physically accurate reflections, refractions, shadows,
and indirect lighting." [Nvi18]

This definition encapsulates the core purpose of ray tracing: to simulate the behavior
of light in a way that is true to the physical world. By calculating how light rays interact
with objects, ray tracing can produce images that are visually indistinguishable from
reality.

Applications

Ray tracing’s ability to simulate complex light interactions makes it invaluable in various
applications:

• Non-real-time applications: In film and television, ray tracing is used to create
high-quality visual effects that enhance the realism of scenes. This includes every-
thing from the subtle reflections on a wet street to the dramatic lighting of an alien
spaceship. [Vas+18]

• Real-time applications: Video games use ray tracing to enhance the visual fi-
delity of virtual environments, making them more immersive for players. Recent
advancements in hardware have made real-time ray tracing feasible, bringing cine-
matic quality graphics to interactive media. [Nvi18]

Section 1 Pranay Bhatia, Karan Sharma 1

Parallel Ray Tracing

• Lighting design: Professionals in the field of lighting design use ray tracing to
simulate how light sources will interact with a space. This helps in optimizing
lighting setups for both aesthetics and energy efficiency. [KK08]

• Architecture and engineering: In these fields, ray tracing is used to visualize the
effects of light on building designs and materials, aiding in the creation of structures
that are both visually striking and functionally sound.

In summary, ray tracing is a versatile and powerful tool that has transformed how we
create and interact with visual content. Its ability to simulate realistic light interactions
makes it a critical technology in fields ranging from entertainment to engineering. As we
continue to push the boundaries of what is possible in computer graphics, ray tracing will
undoubtedly play a central role in shaping the future of digital imagery.

1.1 Problem Statement

While ray tracing offers unparalleled realism in rendering images, it comes with signifi-
cant computational challenges. The technique’s complexity arises from its fundamental
approach of simulating the interactions of light rays with objects in a scene. In the real
world, a light source emits an infinite number of rays, each of which can interact with var-
ious surfaces, materials, and other rays in countless ways. [Jun+21] Accurately modeling
these interactions is computationally expensive, making ray tracing a resource-intensive
process.

Figure 1: different ways of interaction of light: [Joh14]

The primary challenge in ray tracing is the high computational cost associated with
rendering images. Each pixel in an image requires the simulation of numerous light

Section 1 Pranay Bhatia, Karan Sharma 2

Parallel Ray Tracing

interactions, including reflections, refractions as shown in figure: 1, [Vas+18] and shadows.
As the number of rays and interactions increases, so does the time required to produce
a high-quality image. [Joh14] This presents a significant barrier to using ray tracing in
real-time applications, such as video games and interactive simulations, where rendering
speed is critical.

Given these challenges, the objective of this work is to explore methods for reducing
rendering time while maintaining image quality. One promising approach is the paral-
lelization of ray tracing algorithms, which distributes the computational workload across
multiple processing units. By leveraging parallelization techniques, it is possible to achieve
significant reductions in rendering time, making ray tracing more viable for real-time and
resource-constrained environments. [Vas+18]

Parallelization Opportunities

The potential for parallelization in ray tracing is supported by several key factors:

(a) Pixel by Pixel image perception Source:
[Joh14] (b) Tracing light for 1 pixel: [24]

Figure 2: Observation: independence of task

• Independence of Task: Each pixel in the image is independent of the others (see
Figure 2b, meaning the computation for one pixel does not affect the computation
of another. This independence allows for parallel processing, where each pixel’s ray
tracing can be handled simultaneously by different processing units.

• Data Independence: The same tracing computation must be performed across the
entire image data. Since each pixel requires similar calculations, the workload can
be evenly distributed across multiple processors, further enhancing parallelization
efficiency.

• Speed-up Potential: Given a large enough problem size, such as high-resolution
images or complex scenes, the potential for speed-up through parallelization becomes
significant. Each pixel can be individually calculated for its illumination and is
independent of other pixels. (see 2) Larger problems benefit more from parallel
processing, as the workload can be divided more effectively.

• Resource Optimization: By distributing the computational load across multiple
processors or cores, the utilization of available resources can be maximized. This not

Section 1 Pranay Bhatia, Karan Sharma 3

Parallel Ray Tracing

only reduces rendering times but also improves the overall efficiency of the system,
allowing for faster and more cost-effective rendering.

These factors make ray tracing a suitable candidate for parallelization, offering the
potential to overcome the inherent computational challenges and make high-quality, real-
time rendering more accessible.

2 Background
Ray tracing is a powerful and flexible technique for rendering images by simulating the
behavior of light as it interacts with objects in a scene. To implement ray tracing ef-
fectively, it’s essential to understand the mathematical foundations, components involved
in the scene setup, and the algorithm that drives the process. This section delves into
these prerequisites and foundational concepts, setting the stage for a deeper exploration
of parallelization techniques.

Mathematical Basics

At the core of ray tracing are vector operations, which are fundamental to computing the
paths of light rays and their interactions with objects. The following are key mathematical
concepts necessary for understanding and implementing ray tracing:

• Vector Operations: These include addition, subtraction, and calculating the
length and direction of vectors. Vector operations are used to determine the position
and movement of rays in 3D space. [Byjnd]

• Unit Vector: A unit vector has a magnitude of one and is used to indicate direction.
In ray tracing, unit vectors are crucial for normalizing direction vectors, ensuring
that calculations of light paths are accurate.[Byjnd]

• Dot Product: The dot product of two vectors is a scalar value that can be used to
determine the angle between the vectors. This is particularly useful in calculating
reflections and lighting interactions.[Byjnd]

• Solving Quadratic Equations: Many intersections between rays and objects,
such as spheres, involve solving quadratic equations. The solutions to these equa-
tions determine the points at which rays intersect with objects. [Bri21]

These mathematical basics are the building blocks of ray tracing algorithms. A solid
grasp of these concepts is necessary to implement the complex calculations involved in
simulating realistic lighting and shading effects.

2.1 Components of a Ray Tracing Scene

In addition to the mathematical foundation, a ray tracing setup requires an understanding
of the basic components that define a scene 3. Each component plays a vital role in how
rays are generated, traced, and rendered. The key components include:

Section 2 Pranay Bhatia, Karan Sharma 4

Parallel Ray Tracing

Figure 3: Components of ray tracing scene source: [Afl21]

• 3D Space: The environment in which all objects are positioned using three coor-
dinates (x, y, z). This space provides the framework for all ray tracing calculations.

• Objects: These are the entities within the 3D space that rays interact with. For
simplicity, spheres are often used in basic ray tracing implementations due to their
straightforward geometric properties. In more complex scenes, objects can include
various shapes and materials.

• Light Source: A point within the scene that emits light in all directions. The light
source is critical for determining how objects are illuminated and how shadows are
cast.

• Camera: The position from which the scene is observed. The camera defines the
viewpoint and the direction in which rays are cast through the scene.

• Screen: A rectangular plane through which the camera views the objects. The
screen is composed of pixels, and each pixel represents a potential ray that can be
traced from the camera through the scene.

These components together create the framework of a ray tracing scene, allowing for
the simulation of light as it interacts with objects from the perspective of the camera.

2.2 Algorithm: The Pseudo Code Behind Ray Tracing

The ray tracing process is driven by an algorithm that simulates the behavior of light rays
as they interact with objects in the scene. The following pseudocode outlines the basic
steps involved in this process:

Section 2 Pranay Bhatia, Karan Sharma 5

Parallel Ray Tracing

1 for each pixel of the screen:
2 pixel.color = black
3 ray <direction> = generateRay(camera, pixel)
4 if extended ray at pixel intersects any object of the scene then:
5 calculate the intersection point (i) to the nearest object
6 if intersection == true && no object
7 between point of intersection (i) and Light (l):
8 pixel.color = calculateColor(object, i, l)

Listing 1: sudo_code
In this algorithm, rays are generated from the camera through each pixel on the screen.

The rays are then extended into the scene to check for intersections with objects. If an
intersection occurs, the algorithm calculates the exact point of intersection and determines
whether any objects obstruct the path to the light source. If no obstruction is found, the
pixel’s color is updated based on the calculated lighting and shading effects.

2.3 The Scene Setup

To provide a concrete example of how the ray tracing algorithm is applied, consider a
simple scene setup:

Figure 4: Scene setup source: [Afl21]

• Camera Location: The camera is positioned at the point (x=0, y=0, z=1), pro-
viding a view of the scene from above.

• Screen Position: The screen is part of the plane formed by the x and y axes,
through which the camera observes the objects in the scene.

Section 2 Pranay Bhatia, Karan Sharma 6

Parallel Ray Tracing

• Ray Intersection: For each pixel on the screen, a ray is generated from the camera
and extended through the scene. The algorithm checks for intersections between the
ray and any objects, calculating the point of intersection and determining whether
the pixel should be illuminated.

This simple setup allows for the demonstration of the core concepts of ray tracing,
such as ray generation, intersection calculation, and lighting determination.

2.4 Ray Intersection & Definition

The next step of the algorithm is to determine whether the ray (line) originating from the
camera and directed towards point p intersects any object in the scene.

Since the ray starts at the camera and extends in the direction of the currently targeted
pixel, a unit vector should point in a similar direction. Therefore, a "ray that starts at
the camera and goes towards the pixel" can be defined as follows:

ray(t) = camera +
pixel − camera

∥pixel − camera∥
t

The ray moves further away from the camera in the direction of the pixel. This
formulation represents a parametric equation yielding a point along the line for a given t.

In a similar manner, a ray can also be defined that starts at the origin O and extends
towards a destination D:

ray(t) = O +
D −O

∥D −O∥
t

= O + d · t

For convenience, d is defined as the direction vector. Subsequently, the code can
be completed by adding the computation of the ray. The normalize(vector) function,
which returns a normalized vector, has been included. Additionally, the computation of
the origin and direction, which together define a ray, has been established. It is noteworthy
that the pixel has z = 0 since it lies on the screen, which is contained in the plane formed
by the x and y axes. [Afl21]

2.5 Sphere Intersection

The ray equation and the condition for a point to lie on a sphere are known. Thus,
substituting the ray equation into the sphere equation allows for the determination of
t. This involves addressing the question of for which t the expression ray(t) lies on the
sphere:

∥r(t)−C∥2 = r2 (1)

This results in an ordinary quadratic equation solvable for t. The coefficients associated
with t2, t1, and t0 are denoted as a, b, and c respectively. The discriminant of this equation
can be calculated as follows:

D = b2 − 4ac (2)

Section 2 Pranay Bhatia, Karan Sharma 7

Parallel Ray Tracing

Figure 5: Sphere Discriminant

Given that d (the direction) is a unit vector, a equals 1. Upon calculating the dis-
criminant, three possibilities arise:

Only the third case will be utilized to detect intersections from Figure 5. The following
function can detect intersections between a ray and a sphere. It will return t, the distance
from the origin of the ray to the nearest intersection point, if the ray intersects the sphere.
If no intersection occurs, it will return None. It is essential to note that only the nearest
intersection is returned (as there are two potential intersections) when both t1 and t2 are
positive.

2.6 Blinn Phong Reflection

To simulate realistic lighting, ray tracing often incorporates an illumination model. One
such model is the Blinn Phong reflection model [Con20], which defines how light interacts
with the surface of objects to produce different visual effects. According to this model,
any material in the scene has the following properties:

Ip = ka ∗ ia + kd ∗ id ∗ L ·N + ks ∗ is ∗
(
N · L+ V

∥L+ V ∥

)α
4

• Ambient Color: The color an object appears in the absence of light.

• Diffuse Color: The color closest to what we typically perceive as the object’s color,
resulting from diffuse reflection.

• Specular Color: The color of the shiny part of an object when light strikes it,
often appearing white.

• Shininess: A coefficient representing the object’s reflective properties, determining
how sharp or blurred the reflections appear [Par19].

The illumination of a point on an object’s surface is calculated using the Blinn Phong
model by combining the ambient, diffuse, and specular components, each modulated by
the light’s properties and the object’s material coefficients.

2.7 Sphere Intersection: Geometric Considerations

In the context of ray tracing, accurately calculating the intersection between rays and
spheres is crucial. The process involves determining the distance t from the origin of the

Section 2 Pranay Bhatia, Karan Sharma 8

Parallel Ray Tracing

ray to the nearest point of intersection. This distance is found by solving a quadratic
equation that yields two potential values for t, denoted as t1 and t2. The smaller of these
values represents the first point of contact between the ray and the sphere.

To determine whether a pixel should be illuminated, the algorithm checks if the light
source is directly visible from the intersection point. If no objects obstruct the path
between the intersection point and the light source, the pixel is illuminated; otherwise, it
remains in shadow.

This background section provides a comprehensive overview of the fundamental con-
cepts, mathematical foundations, and components involved in ray tracing. By under-
standing these elements, we can appreciate the challenges and opportunities in optimizing
ray tracing through parallelization, which will be explored in subsequent sections of the
report.

3 Parallelization with MPI
Parallelization is a crucial aspect of the ray tracing implementation in this project. To
achieve efficient parallelization, we use the mpi4py library, which provides bindings for
the Message Passing Interface (MPI) in Python. The use of MPI allows the workload to
be distributed across multiple processes, significantly reducing the computation time for
rendering high-resolution images.

3.1 MPI Setup and Process Distribution

One key challenge in parallelizing the ray tracing process is ensuring that the image is
evenly distributed among the available processes, especially when the number of rows in
the image is not divisible by the number of processes. In early versions of the implemen-
tation, this mismatch resulted in a tiling effect in the final image, where some rows were
duplicated or misaligned. To resolve this issue, we adjusted the distribution of rows and
used MPI.Gatherv to correctly gather variable-sized segments from each process.

The main strategy for parallelizing the ray tracing process is to divide the image into
horizontal strips, where each process is responsible for rendering a specific portion of the
image. This is achieved by assigning each process a range of rows to compute.

1 comm = MPI.COMM_WORLD
2 size = comm.Get_size () # Number of processes
3 rank = comm.Get_rank () # Process rank (ID)
4

5 # Calculate rows assigned to each process
6 rows_per_proc = config["height"] // size
7 remainder = config["height"] % size
8

9 if rank < remainder:
10 start_row = rank * (rows_per_proc + 1)
11 end_row = start_row + rows_per_proc + 1
12 else:
13 start_row = rank * rows_per_proc + remainder
14 end_row = start_row + rows_per_proc
15

Section 3 Pranay Bhatia, Karan Sharma 9

Parallel Ray Tracing

16 image_segment = np.zeros((end_row - start_row , config["width"], 3))

Listing 2: MPI Initialization and Row Distribution

In this updated row distribution logic, extra rows (if the image height is not divisible by
the number of processes) are distributed among the first few processes. This ensures that
each process handles a balanced number of rows and no part of the image is duplicated
or skipped.

3.2 Handling Variable-Sized Image Segments to Prevent Tiling

Once the row distribution is set, each process computes its assigned rows of the image. The
next challenge is gathering the computed image segments correctly on the root process.
Since each process may handle a different number of rows, we use MPI.Gatherv, which
allows us to gather variable-sized data from each process and place it correctly in the final
image.

1

2 # Prepare to gather the image segments with variable sizes
3 sendcounts = np.array([((config["height"] // size) + (1 if r < remainder
4 else 0)) * config["width"] * 3 for r in range(size)])
5 displacements = np.array([sum(sendcounts[:r]) for r in range(size)])
6

7 combined_image = None
8 if rank == 0:
9 combined_image = np.zeros((config["height"], config["width"], 3))

10

11 # Gather the image segments into the combined image
12 comm.Gatherv(image_segment, [combined_image, sendcounts, displacements,
13 MPI.DOUBLE], root=0)

Listing 3: Handling Variable-Sized Image Segments to Prevent Tiling

The use of sendcounts and displacements ensures that each process sends the cor-
rect number of rows, and these rows are placed in the appropriate positions in the final
image. This adjustment fixes the tiling effect and ensures that the image is seamless when
gathered from multiple processes.

3.3 Performance Benefits of Parallelization

The independence of pixel calculations makes ray tracing highly suitable for paralleliza-
tion. Each pixel can be computed independently, allowing the work to be easily divided
among multiple processors. By using MPI, we can take advantage of multiple CPU cores
to reduce the overall rendering time.

This parallelization approach results in significant performance improvements, partic-
ularly for larger and more complex scenes. For example, by dividing the workload among
20 processes, the rendering time is drastically reduced compared to running the program
serially. The scalability of the solution ensures that it can handle even higher resolutions
and more complex scenes efficiently as the number of available processors increases.

Section 3 Pranay Bhatia, Karan Sharma 10

Parallel Ray Tracing

3.4 Setting Up the Environment and Running the Script

Before running the ray tracing script, it is important to set up the environment, install
the necessary dependencies, and configure the system for parallel execution. This involves
creating a Python virtual environment, installing required packages, and then running the
script using either mpiexec or srun for parallel processing.

To begin, a Python virtual environment is created to isolate the dependencies, ensuring
consistency across different runs of the experiment. You can create and activate the
environment using the following commands:

1 # Load the necessary Python module (if required by the HPC environment)
2 module load python/3.9
3

4 # Create a virtual environment named "mpi"
5 python3 -m venv mpi
6

7 # Activate the virtual environment
8 source mpi/bin/activate

Once the environment is activated, the dependencies for the project can be installed
via a requirements.txt file. This file lists the Python libraries needed to run the ray
tracing script, such as mpi4py, numpy, and matplotlib. The following is an example of
the requirements.txt file used for this project:

1 # requirements.txt
2 mpi4py
3 numpy
4 matplotlib

To install these dependencies, use the following command inside the activated virtual
environment:

1 # Install all required packages
2 pip install -r requirements.txt

With the environment set up and the necessary packages installed, the ray tracing
script can be run in two ways: manually using mpiexec or via job submission using srun
in a Slurm-managed environment.

If you prefer to run the script manually, you can use mpiexec to control the number
of MPI processes, as shown below:

1 # Activate the virtual environment
2 source mpi/bin/activate
3

4 # Run the Python script with 4 MPI processes
5 mpiexec -n 4 python ray_tracer.py low
6

7 # For medium and high complexity scenes, you can specify different levels:
8 mpiexec -n 4 python ray_tracer.py medium
9 mpiexec -n 4 python ray_tracer.py high

Section 3 Pranay Bhatia, Karan Sharma 11

Parallel Ray Tracing

In this example, the -n option is used to specify the number of MPI processes, while
the complexity of the scene (low, medium, or high) is passed as an argument to the Python
script.

Alternatively, the ray tracing script can be executed via Slurm using the srun com-
mand inside a Slurm batch script. You can submit the batch script with sbatch as
follows:

1 # Submit the batch script using Slurm
2 sbatch your_batch_script.sh

Inside the batch script, the srun command is used to run the Python script for different
scene complexities:

1 srun python ray_tracer.py low
2 srun python ray_tracer.py medium
3 srun python ray_tracer.py high

After running the experiments, the final images are generated and saved for review.
The results are validated by checking for correctness in the output (e.g., no tiling artifacts)
and measuring performance metrics, including total execution time and speedup from
parallelization.

4 Results
In this section, we present the visual output of the ray tracing algorithm for various
scene complexities and light source positions. These images were generated during the
experiments using different levels of scene complexity and configurations for the light
source position, and they illustrate the correctness and performance of the algorithm.

4.1 Scene Complexity Results

The following images show the output of the ray tracing algorithm for three different levels
of scene complexity: low, medium, and high. Each image is rendered with an increasing
number of spheres and objects, demonstrating the algorithm’s ability to handle scenes of
varying computational difficulty.

Figure 6: Low Complexity
Scene (2 spheres)

Figure 7: Medium Complex-
ity Scene (4 spheres)

Figure 8: High Complexity
Scene (7 spheres)

These images illustrate the progression in complexity, starting from the simplest scene
(two spheres) to more complex scenes with additional spheres and reflections. The increase

Section 4 Pranay Bhatia, Karan Sharma 12

Parallel Ray Tracing

in the number of objects results in more complex interactions between light, shadows, and
reflections, demonstrating the efficiency of the ray tracing algorithm.

4.2 Light Source Position Results

In this experiment, we varied the position of the light source to test the algorithm’s
accuracy in generating shadows. The light source was positioned to the left, right, and
top of the scene, and the results were compared by inspecting the shadows cast by the
spheres. The following images show the output of the scene with the light source in
different positions.

Figure 9: Light Source on
the Left

Figure 10: Light Source on
the Right

Figure 11: Light Source on
the Top

As shown in the images, the shadows cast by the spheres correctly correspond to the
position of the light source. For example:

• When the light source is positioned to the left, the shadows are cast to the right of
the spheres.

• When the light source is positioned to the right, the shadows move to the left of
the spheres.

• With the light source placed at the top, the shadows appear below the spheres.

This confirms the correctness of the ray tracing algorithm in calculating the direction
and position of shadows based on the light source’s position.

4.3 Performance Results Based on Scene Complexity

The following graphs display the relationship between the number of processes and the
execution time for three different scene complexities: low, medium, and high. The ex-
periments were performed with varying numbers of processes, and the execution times
were recorded to analyze the scalability and performance of the parallelized ray tracing
algorithm.

Section 4 Pranay Bhatia, Karan Sharma 13

Parallel Ray Tracing

Figure 12: Execution Time vs. Number of Processes (Low Complexity)

Figure 13: Execution Time vs. Number of Processes (Medium Complexity)

Section 4 Pranay Bhatia, Karan Sharma 14

Parallel Ray Tracing

Figure 14: Execution Time vs. Number of Processes (High Complexity)

4.3.1 Observations

The results from the three graphs show a consistent reduction in execution time as the
number of processes increases, demonstrating the effectiveness of parallelization. Across
all scene complexities—low, medium, and high—the execution time roughly halves each
time the number of processes is doubled, particularly in the early stages of parallelization.
This behavior illustrates the strong scalability of the ray tracing algorithm, especially for
more complex scenes.

In the initial stages, as the number of processes is increased from 1 to 10, there is a
substantial reduction in execution time for all scene complexities. Doubling the number
of processes from 10 to 20 results in a further noticeable decrease in execution time. For
instance, the execution time consistently drops by a factor of two or more as the number
of processes doubles, reflecting the linear scalability of the parallelized algorithm.

However, as the number of processes continues to increase, the rate of improvement
diminishes. This is particularly evident in the low complexity scene, where the execution
time begins to level off after about 20 processes, and further increases in process count
provide only marginal gains. This behavior is expected in simpler scenes where the com-
putational workload is not sufficient to fully utilize a larger number of processes, and the
overhead of managing more processes begins to counteract the performance benefits.

For medium and high complexity scenes, the trend of execution time halving continues
for a larger range of process counts, reflecting the greater computational demands of these
scenes. Even as the number of processes reaches 80 or 90, there are still measurable
reductions in execution time, particularly in the high complexity scene. This indicates
that for more demanding workloads, parallelization remains effective at distributing the
computation across a larger number of processes, though the rate of improvement slows
as the number of processes increases.

Section 5 Pranay Bhatia, Karan Sharma 15

Parallel Ray Tracing

5 Conclusion
This report investigated the implementation and performance of a parallelized ray tracing
algorithm using MPI, focusing on how varying the number of processes impacts execution
time across different scene complexities. By distributing the computational workload
among multiple processes, the algorithm was able to significantly reduce rendering times,
particularly for more complex scenes. The results showed that in the initial stages of
parallelization, doubling the number of processes led to a near-halving of execution time,
demonstrating strong scalability. However, as the number of processes increased further,
the benefits diminished, particularly for simpler scenes where the computational workload
was not sufficient to fully utilize all the available processes.

For more complex scenes, such as those with higher object counts and reflections, the
algorithm continued to benefit from additional processes, though at a slower rate. While
the high complexity scene saw measurable reductions in execution time even with 90 pro-
cesses, the results emphasized the importance of balancing the number of processes with
the scene’s complexity. Over-parallelization can lead to diminishing returns, especially
when the overhead of managing more processes outweighs the performance gains. Fu-
ture work could explore optimizing the algorithm for more heterogeneous workloads and
implementing dynamic load balancing to ensure even better resource utilization across
different complexity levels.

Section 5 Pranay Bhatia, Karan Sharma 16

Parallel Ray Tracing

References
[24] active tonight active. Reddit - Dive into anything. Reddit.com, 2024. url:

https://www.reddit.com/r/raytracing/comments/rv1er1/sample_per_
pixel_and_ray_per_pixel_in_ray_and/ (visited on 09/29/2024).

[Afl21] Omar Aflak. Ray Tracing From Scratch in Python. Medium, Aug. 2021. url:
https : / / omaraflak . medium . com / ray - tracing - from - scratch - in -
python-41670e6a96f9.

[Bri21] A. Brijesh. Quadratics (Quadratic Equation) - Definition, Formula & Solution.
Accessed: 2024-09-29. 2021. url: https://byjus.com/maths/quadratics/.

[Byjnd] Byju. Vector Formulas with Solved Examples and Equations. https://byjus.
com/vector-formulas/. Accessed: [insert access date]. n.d.

[Con20] Wikipedia Contributors. Blinn–Phong reflection model. Accessed: 2024-09-29.
2020. url: %5Curl%7Bhttps://en.wikipedia.org/wiki/Blinn%E2%80%
93Phong_reflection_model%7D.

[Joh14] Brian R. Johnson. Ray trace. Washington.edu, 2014. url: https://courses.
washington.edu/arch481/1.Tapestry%20Reader/ (visited on 09/29/2024).

[Jun+21] Wang Jun-Feng et al. “Parallel optimization of the ray-tracing algorithm based
on the HPM model”. In: The Journal of Supercomputing 77 (Mar. 2021),
pp. 10307–10332. doi: 10.1007/s11227-021-03680-0. url: https://d-
nb.info/1231681616/34 (visited on 05/05/2023).

[KK08] Syukriah Kadir and Tazrian Khan. “Parallel Ray Tracing using MPI and
OpenMP”. In: (Jan. 2008).

[Nvi18] Nvidia. Ray Tracing. NVIDIA Developer, Aug. 2018. url: https://developer.
nvidia.com/discover/ray-tracing.

[Par19] Paroj. Blinn-Phong Model. Accessed: [insert access date]. 2019. url: %5Curl%
7Bhttps://paroj.github.io/gltut/Illumination/Tut11%20BlinnPhong%
20Model.html%7D.

[Vas+18] Elena Vasiou et al. “A detailed study of ray tracing performance: render time
and energy cost”. In: The Visual Computer 34 (Apr. 2018), pp. 875–885. doi:
10.1007/s00371-018-1532-8. (Visited on 11/20/2021).

Section 5 Pranay Bhatia, Karan Sharma 17

https://www.reddit.com/r/raytracing/comments/rv1er1/sample_per_pixel_and_ray_per_pixel_in_ray_and/
https://www.reddit.com/r/raytracing/comments/rv1er1/sample_per_pixel_and_ray_per_pixel_in_ray_and/
https://omaraflak.medium.com/ray-tracing-from-scratch-in-python-41670e6a96f9
https://omaraflak.medium.com/ray-tracing-from-scratch-in-python-41670e6a96f9
https://byjus.com/maths/quadratics/
https://byjus.com/vector-formulas/
https://byjus.com/vector-formulas/
%5Curl%7Bhttps://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model%7D
%5Curl%7Bhttps://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model%7D
https://courses.washington.edu/arch481/1.Tapestry%20Reader/
https://courses.washington.edu/arch481/1.Tapestry%20Reader/
https://doi.org/10.1007/s11227-021-03680-0
https://d-nb.info/1231681616/34
https://d-nb.info/1231681616/34
https://developer.nvidia.com/discover/ray-tracing
https://developer.nvidia.com/discover/ray-tracing
%5Curl%7Bhttps://paroj.github.io/gltut/Illumination/Tut11%20BlinnPhong%20Model.html%7D
%5Curl%7Bhttps://paroj.github.io/gltut/Illumination/Tut11%20BlinnPhong%20Model.html%7D
%5Curl%7Bhttps://paroj.github.io/gltut/Illumination/Tut11%20BlinnPhong%20Model.html%7D
https://doi.org/10.1007/s00371-018-1532-8

	Contents
	List of Figures
	Introduction
	Problem Statement

	Background
	Components of a Ray Tracing Scene
	Algorithm: The Pseudo Code Behind Ray Tracing
	The Scene Setup
	Ray Intersection & Definition
	Sphere Intersection
	Blinn Phong Reflection
	Sphere Intersection: Geometric Considerations

	Parallelization with MPI
	MPI Setup and Process Distribution
	Handling Variable-Sized Image Segments to Prevent Tiling
	Performance Benefits of Parallelization
	Setting Up the Environment and Running the Script

	Results
	Scene Complexity Results
	Light Source Position Results
	Performance Results Based on Scene Complexity
	Observations

	Conclusion

