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Introduction to GPUs [4]

= Core Specs o e
720

= Benchmarks 640 $576.06
560

- Throughput S 480 $ 429,57

= Bandwidth é::g $ 320.58

= Efficiency e s
160 $133.83

= Architecture B | (4, $5625 S75.04 R

0

GPU Market size, 2022 to 2032 (estimated)

Graph source: GPU Market, Graphic Processing Unit Market Size 2023-2032 - Precedence Research
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GPU Applications [1, 4]
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Image source: The Artful Science of Mold Simulation - Digital Engineering 24/7
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Complexities in GPU Benchmarking
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Conclusion and Future Work

Measuring GPU Performance [4]

= Data Transfer Speed
= Read/Write Speed

= Computation Speed
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Available GPU Benchmarks [13, 14]

= 3DMark

= Superposition
= Cinebench 2024
= FurMark

" |n-game benchmarks

—~d

-~ Sy
——

RIE 1

= PassMark Software

-

= MLCommons

Image source: Julian M. Kunkel — HPDA Slides
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MLCommons Benchmark Categories [9]

= Al Safety Benchmarks

= MLPerf Training

= Scientific MLPerf Inference: Mobile

= Machine MLPerf Training: HPC

= Cryptocurrency MLPerf Inference: Tiny
= MLPerf Inference: Datacenter

= MLPerf Storage

= MLPerf Inference: Edge
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Intro - MLPerf™ HPC Overview [8]

= Benchmark Suite:
» Climate Segmentation (CAM5+TECA)
» Cosmological Parameter Prediction (CosmoFlow)
» Catalyst Modeling (Open Catalyst 2020)

» Protein Structure Prediction (OpenFold)

= Key Metrics:
» Time to Solution(TTS)
» Throughput(optional)

Reference: Benchmark MLPerf Training: HPC | MLCommons V2.0 Results
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MLPerf™ HPC Overview [3]

= Data Handling

» Data can start on any durable storage (excluding RAM) as of v3.0

= Submission Requirements

> TTS in every submission

- e | R
» Power measurements optional but encouraged

DeepCAM 5
.. OpenCatalyst 5
= Minimum runs per benchmark
CosmoFlow 10
OpenFold 10

Reference: Benchmark MLPerf Training: HPC | MLCommons V2.0 Results
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Complexities in GPU Benchmarking
alelelelele

Conclusion and Future Work
SISISIST.

Closed Division Vs Open Division

* Closed Division:
» Standardized Settings
» Restricted Hyperparameters and Optimizers

To create a level playing field

= QOpen Division:

» Flexibility in Implementation

» Unrestricted Hyperparameters and Optimizers

Encourages innovation and optimization

Reference: MLCommons: MLPerf™ HPC Training Rules | Github
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Problems Benchmarking HPC

= Requires all available resources
= Access restrictions
= Other work needs to be put on hold

» Creates backlog

" Scale Adjustment Index of /project/dasrepo/cosmoflow-benchmark

= Compliance and Validation

Name Last modified Size Description

= Documentation JR
arent HECIO[}_’ -

Q cosmoUniverse 2019 05_4parE_tf v2 tar 2021-03-17 08:11 16T
ﬂ cosmoUniverse 2019 05 _4parE_tf v2_muni tar 2023-03-28 23:32 5.5G

Reference: CosmoFlow Datasets (nersc.gov)
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MLPerf Training [3]

model reference implementation framework

Relatively small scaled resnet50v1.5 vision/classification_and_detection  tensorflow2

Not optimized RetinaNet : | pytorch

= Works using docker file 3DUnet ion/imag ta pytorch

= Cover various domains Stable Diffusionv2  ima - pytorch

= Frameworks include BERT-large _ tensorflow

> TensorFlow GPT3 ! N paxml,megatron-Im
> PyTorch LLama2 70B-LoRA g LM Inii pytorch

> TorchRec DLRMvZ2 torchrec

RGAT NN pytorch

Table source: MLPerf™ Training Reference Implementations v4
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MLPerf Training (Benchmarks)

Area Banchmark Datasat Quality Targat Referance Latest Varsion
Implemantation Modal | Availabile

Wision Image classification Imagaiat 5.90% classification ResMat-50 v1.5 va.
e Image segmentation _— O 208 Mean DICE -

WS O [lnedlcaljl EiT519 — A0 U-Met wad (]
Wision J_L"EFL slosiaie il s Dpen Images 34.0% mAP RetinaMat wd

waight)
Languape MLP Wikipadia 2020/01/01 ‘r'”‘! Ha_::ak . BERT-larga v 0
accuracy
Language LLM e 268 log perplaxity GPT3 wad (1
Language LLM hinatunmg GovRep rl/r2/rd ROUGE score Llama 2 FOB wad ()
Commearca Recommendation Criteo 4TB multi-hot CLEOEZ ALC OLREM-derv? wad ()
e T s it : ; FID<=30 and e HE Lt

Marketing, Art, Gaming | Image Genaratior LAIOMN-400M-filterad CLIE> =015 Stable Diffusion2 vid 0

Table source: Benchmark MLPerf Training | MLCommons Version 2.0 Results
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Area Banchmark Dataset Quality Targat Referance Latest Version
Implemeantation Modal | Available
= E gl . " - ol [ F i I'ID';._E":' Eird ey 1 e #
Marketing, Art, Gaming | Image Generatior LAIDOMN-400M-filterad CLIP: =015 Stable Diffusicny2 v 0
Graph neural retwork .r_;-‘ra[_:-r'vrlr:ural bk IGEH-Full Hg‘" E!H?SI (Eaken R-GEA] v O
(GMN) accuracy
P — Object datection ~emnemy CL3Y 7 Bax mim AP and . . -
VEShr {haavy waight) Ol 0,339 Mask min AP lelel s vl
Language spaach recogrition Librispeech 0058 Word Error Hate | RMM-1 vl
Commerca Recommendation 1TB Click Logs CLBO25 ALC DLRM vl
3 e . H TR |
Resaarch Reinforcament learming | Go ':_'L_]Ii_w”_ Wi i ?H_‘bd_ha_t' - v
checkpoint Alpha Go paper)
Vision Object detection (light | s 23.0% mAP S50 vl
waight)
Languape Translation {recurrent) | WMT English-German | 240 Sacre BLEU M1 w7
Language sonluileni e WM T English-Garman 2500 BLEU Iranstormear vy

rECUrrer: L:|

Table source: Benchmark MLPerf Training | MLCommons Version 2.0 Results
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Challenges in GPU Performance Measurement

= Complexity of Applications
= Synchronization and Memory Transfers
Variability in Workloads

= Hardware and Software Variations

Benchmarking Limitations
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Conclusion and Future Work
SISISIST.

Benchmarketing [10, 11, 12]

= Cherry-Picking Benchmarks

» Products shown in the best light
= QOver-Optimization for Benchmarks
= Misleading Benchmarking Practices

» Qutdated benchmarks

> Inappropriate workloads

» Unfair comparisons

= Lack of Transparency

» Not provide information about their benchmarking methodologies
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Benchmarketing — Example [5, 6]

= AMD Radeon RX 6000 series
» Released in November 2020
> Based on the new RDNAZ2 architecture
» Performance benchmarked on SD2.1
> Previous series (RX 5000) benchmarked on SD1.5
» Promised a 1.65x performance per watt gain over RX5000

= Led to numerous controversies and AMD being publicly questioned
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Conclusion and Future Work
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Benchmarketing — Example [15, 16, 17]

= Nvidia’s GeForce RTX 4090 graphics cards
> Released in October 2020
» Melting wires in the 16 pin 12VHPWR power connector adapter
» Approximately 20 consumers reported this
» Lawsuit seeking class-action status and was filed by Lucas Genova
" The lawsuit was dismissed

= Potential settlements and reasons of dismissal undisclosed
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GPU bottlenecks Prevention

= CPU-GPU Balance 000 SSD GPU
@D®
= Memory Access Patterns P00 ®
- 2000 @®
= Parallel Scalability 000000 (py
ROOROES
= Data Transfer Speeds 0O H60®
. 0000000000000 00 O
= VRAM Limitations 2O0SEBAO
= GPU Utilization ::::::.
* Hardware Compatibility ‘::::’
BOO®
®0@

Image source: Intel i5 Bottlenecking GTX 1080 - Quora
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Future Trends in GPU Technology [19]

= Al and Machine Learning Integration

= New GPU Architectures e.g Nvidia’s Hopper architecture
= Ray Tracing Technology

= Enhanced VR and AR Experiences

= Energy Efficiency and Sustainability

* The Rise of Cloud Gaming

= Custom GPUs for Specific Workloads

= Advancements in Rendering Techniques
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Implementation: Progress and Problems

= Progress:
» Working grete: shared and grete:interactive
> Working Slurm script

» Acquired benchmarks and datasets

" Problems:
» Resource allocation delays
» Github data upload error
» Direct data upload error
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Conclusion and Futurework

= Benchmark analysis
= Conducting a more in depth literature review
= Practical implementation
» Troubleshoot existing problems
» Run MLPerf Training benchmarks on different GPUs

» Discuss finding in the final report
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