

Understanding GPU performance e.g. using MLCommons MLBenchmarks

Raza, Ossama Bin

Supervisor: Chirag Mandal

2024-06-20

Newest Trends in High-Performance Data Analytics

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Introduction to GPUs [4]

- Core Specs
- Benchmarks
- Throughput
- Bandwidth
- Efficiency
- Architecture

GPU Market size, 2022 to 2032 (estimated)

Graph source: GPU Market, Graphic Processing Unit Market Size 2023-2032 - Precedence Research

GPU Applications [1, 4]

- Rendering Video Game Graphics
- Scientific Simulations
- Machine Learning
- Cryptocurrency Mining
- Professional Visualization

Image source: The Artful Science of Mold Simulation - Digital Engineering 24/7

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Intro to GPUs 00

MLPerf Training Overview 0000

Complexities in GPU Benchmarking 000000

Conclusion and Future Work 00000

Measuring GPU Performance [4]

Data Transfer Speed

000

- Read/Write Speed
- **Computation Speed**

Image Source: AMD Radeon RX 6800 Review - TechSpot

Raza, Ossama Bin

Newest Trends in High-Performance Data Analytics

MLPerf Training Overview

Complexities in GPU Benchmarking

Conclusion and Future Work

Available GPU Benchmarks [13, 14]

- 3DMark
- Superposition
- Cinebench 2024
- FurMark
- In-game benchmarks
- PassMark Software
- MLCommons

Image source: Julian M. Kunkel – HPDA Slides

MLCommons Benchmark Categories [9]

- Al Safety Benchmarks
- MLPerf Training
- Scientific MLPerf Inference: Mobile
- Machine MLPerf Training: HPC
- Cryptocurrency MLPerf Inference: Tiny
- MLPerf Inference: Datacenter
- MLPerf Storage
- MLPerf Inference: Edge

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Intro - MLPerf[™] HPC Overview [8]

- Benchmark Suite:
 - Climate Segmentation (CAM5+TECA)
 - Cosmological Parameter Prediction (CosmoFlow)
 - Catalyst Modeling (Open Catalyst 2020)
 - Protein Structure Prediction (OpenFold)
- Key Metrics:
 - Time to Solution(TTS)
 - Throughput(optional)

Reference: Benchmark MLPerf Training: HPC | MLCommons V2.0 Results

MLPerf[™] HPC Overview [3]

- Data Handling
 - Data can start on any durable storage (excluding RAM) as of v3.0
- Submission Requirements
 - TTS in every submission
 - Power measurements optional but encouraged
- Minimum runs per benchmark

Benchmark	Min. Runs		
DeepCAM	5		
OpenCatalyst	5		
CosmoFlow	10		
OpenFold	10		

Reference: <u>Benchmark MLPerf Training: HPC | MLCommons V2.0 Results</u>

Closed Division Vs Open Division

- Closed Division:
 - Standardized Settings
 - Restricted Hyperparameters and Optimizers

To create a level playing field

- Open Division:
 - Flexibility in Implementation
 - Unrestricted Hyperparameters and Optimizers

Encourages innovation and optimization

Reference: MLCommons: MLPerf[™] HPC Training Rules | Github

Problems Benchmarking HPC

- Requires all available resources
- Access restrictions
- Other work needs to be put on hold
 - Creates backlog
- Scale Adjustment
- Compliance and Validation
- Documentation

Index of /project/dasrepo/cosmoflow-benchmark Name Last modified Size Description Parent Directory Size cosmoUniverse 2019_05_4parE_tf_v2.tar 2021-03-17 08:11 1.6T cosmoUniverse_2019_05_4parE_tf_v2_mini.tar 2023-03-28 23:32 5.5G

Reference: CosmoFlow Datasets (nersc.gov)

Raza, Ossama Bin

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Complexities in GPU Benchmarking 000000

Conclusion and Future Work 00000

MLPerf Training [3]

00

- Relatively small scaled
- Not optimized
- Works using docker file
- Cover various domains
- Frameworks include
 - TensorFlow
 - PyTorch
 - TorchRec

model	reference implementation	framework	
resnet50v1.5	vision/classification_and_detection	tensorflow2	
RetinaNet	vision/object detection	pytorch	
3DUnet	vision/image segmentation	pytorch	
Stable Diffusionv2	image generation	pytorch	
BERT-large	language/nlp	tensorflow	
GPT3	language/llm	paxml,megatron-lm	
LLama2 70B-LoRA	language/LLM fine-tuning	pytorch	
DLRMv2	recommendation	torchrec	
RGAT	GNN	pytorch	

Table source: <u>MLPerf[™] Training Reference Implementations v4</u>

Raza, Ossama Bin

Intro to GPUs	GPU Benchmarking	MLPerf HPC Overview	MLPerf Training Overview	Complexities in GPU Benchmarking	Conclusion and Future Work
00	000	00000	0000	000000	00000

MLPerf Training (Benchmarks)

Area	Benchmark	Dataset	Quality Target	Reference Implementation Model	Latest Version Available
Vision	Image classification	ImageNet	75.90% classification	ResNet-50 v1.5	v4.0
Vision	Image segmentation (medical)	KiTS19	0.908 Mean DICE score	3D U-Net	v4.0
Vision	Object detection (light weight)	Open Images	34.0% mAP	RetinaNet	v4.0
Language	NLP	Wikipedia 2020/01/01	0.72 Mask-LM accuracy	BERT-large	v4.0
Language	LLM	C4	2.69 log perplexity	GPT3	v4.0
Language	LLM finetuning	GovRep r1/r2/r3	ROUGE score	Llama 2 70B	v4.0
Commerce	Recommendation	Criteo 4TB multi-hot	0.8032 AUC	DLRM-dcnv2	v4.0
Marketing, Art, Gaming	Image Generation	LAION-400M-filtered	FID<=90 and CLIP>=0.15	Stable Diffusionv2	v4.0

Table source: <u>Benchmark MLPerf Training | MLCommons Version 2.0 Results</u>

Raza, Ossama Bin

MLPerf Training (Benchmarks)

Area	Benchmark	Dataset	Quality Target	Reference Implementation Model	Latest Version Available
Marketing, Art, Gaming	Image Generation	LAION-400M-filtered	FID<=90 and CLIP>=0.15	Stable Diffusionv2	v4.0
Graph neural network	Graph neural network (GNN)*	IGBH-Full	72% classification accuracy	R-GAT	v4.0
Vision	Object detection (heavy weight)	сосо	0.377 Box min AP and 0.339 Mask min AP	Mask R-CNN	v3.1
Language	Speech recognition	LibriSpeech	0.058 Word Error Rate	RNN-T	v3.1
Commerce	Recommendation	1TB Click Logs	0.8025 AUC	DLRM	v2.1
Research	Reinforcement learning	Go	50% win rate vs. checkpoint	Mini Go (based on Alpha Go paper)	v2.1
Vision	Object detection (light weight)	сосо	23.0% mAP	SSD	v1.1
Language	Translation (recurrent)	WMT English-German	24.0 Sacre BLEU	NMT	v0.7
Language	Translation (non- recurrent)	WMT English-German	25.00 BLEU	Transformer	v0.7

Table source: <u>Benchmark MLPerf Training</u> | <u>MLCommons Version 2.0 Results</u>

Raza, Ossama Bin

Newest Trends in High-Performance Data Analytics

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Challenges in GPU Performance Measurement

- Complexity of Applications
- Synchronization and Memory Transfers
- Variability in Workloads
- Hardware and Software Variations
- Benchmarking Limitations

Benchmarketing [10, 11, 12]

- Cherry-Picking Benchmarks
 - Products shown in the best light
- Over-Optimization for Benchmarks
- Misleading Benchmarking Practices
 - Outdated benchmarks
 - Inappropriate workloads
 - Unfair comparisons
- Lack of Transparency
 - Not provide information about their benchmarking methodologies

Benchmarketing – Example [5, 6]

- AMD Radeon RX 6000 series
 - Released in November 2020
 - Based on the new RDNA2 architecture
 - Performance benchmarked on SD2.1
 - Previous series (RX 5000) benchmarked on SD1.5
 - Promised a 1.65x performance per watt gain over RX5000
- Led to numerous controversies and AMD being publicly questioned

Benchmarketing – Example [15, 16, 17]

- Nvidia's GeForce RTX 4090 graphics cards
 - Released in October 2020
 - Melting wires in the 16 pin 12VHPWR power connector adapter
 - Approximately 20 consumers reported this
 - Lawsuit seeking class-action status and was filed by Lucas Genova
- The lawsuit was dismissed
- Potential settlements and reasons of dismissal undisclosed

GPU bottlenecks Prevention

- CPU-GPU Balance
- Memory Access Patterns
- Parallel Scalability
- Data Transfer Speeds
- VRAM Limitations
- GPU Utilization
- Hardware Compatibility

Image source: Intel i5 Bottlenecking GTX 1080 - Quora

- Introduction to GPUs
- GPU Benchmarks
- MLPerf HPC Overview
- MLPerf Training Overview
- Complexities in GPU Benchmarking
- Conclusion and Future Work

Future Trends in GPU Technology [19]

- Al and Machine Learning Integration
- New GPU Architectures e.g Nvidia's Hopper architecture
- Ray Tracing Technology
- Enhanced VR and AR Experiences
- Energy Efficiency and Sustainability
- The Rise of Cloud Gaming
- Custom GPUs for Specific Workloads
- Advancements in Rendering Techniques

Implementation: Progress and Problems

- Progress:
 - Working grete: shared and grete:interactive
 - Working Slurm script
 - Acquired benchmarks and datasets
- Problems:
 - Resource allocation delays
 - Github data upload error
 - Direct data upload error

Conclusion and Futurework

- Benchmark analysis
- Conducting a more in depth literature review
- Practical implementation
 - Troubleshoot existing problems
 - Run MLPerf Training benchmarks on different GPUs
 - Discuss finding in the final report

References

00

- ¹Benchmarking TPU, GPU, and CPU Platforms for Deep Learning [https://arxiv.org/abs/1907.10701]
- ² MLPerf Training Benchmark (last revised 2 Mar 2020 (this version, v3)) [https://arxiv.org/abs/1910.01500]
- ³ MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems [https://arxiv.org/pdf/2110.11466]
- ⁴ Performance and Scalability of GPU-Based Convolutional Neural Networks [https://ieeexplore.ieee.org/document/5452452]
- ⁵ https://www.tomshardware.com/reviews/gpu-hierarchy,4388.html
- ⁶ https://www.videocardbenchmark.net/high end gpus.html
- ⁷ https://mlcommons.org/benchmarks/training-hpc/
- ⁸ https://mlcommons.org/benchmarks/training/
- ⁹ https://github.com/mlcommons
- ¹⁰ https://pythonspeed.com/articles/gpu-vs-cpu/
- ¹¹ https://www.pcgamer.com/hardware/processors/pay-no-attention-to-amds-horribly-misleading-benchmarks-for-its-new-ryzen-5000-xt-cpus/
- ¹² https://www.digitaltrends.com/computing/gpu-benchmarks-mislead-gpu-upgrade/
- ¹³ https://www.gearprimer.com/technology/best-pc-benchmark-tools/
- ¹⁴ https://www.tomshardware.com/pc-components/gpus/stable-diffusion-benchmarks
- ¹⁵ https://www.theregister.com/2022/11/18/nvidia flawsuit 4090/
- ¹⁶ https://www.pcgamer.com/nvidia-hit-with-class-action-suit-over-melting-rtx-4090-gpu-adapters/
- ¹⁷ https://uk.pcmag.com/graphics-cards/143891/nvidia-faces-class-action-lawsuit-over-melting-12vhpwr-cables

¹⁸ The Peak Performance Analysis Method for Optimizing Any GPU Workload [https://developer.nvidia.com/blog/the-peak-performance-analysis-method-for-optimizing-any-gpuworkload

¹⁹ The Peak Performance Analysis Method for Optimizing Any GPU Workload [https://developer.nvidia.com/blog/the-peak-performance-analysis-method-for-optimizing-any-gpuworkload]