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Abstract
The performance of Graphics Processing Units (GPUs) plays a critical role in the effec-
tiveness of Machine Learning (ML) and High-Performance Computing (HPC) tasks. With
the ever-growing complexity of ML models, standardized benchmarks like MLCommons’
MLPerf are essential for evaluating and comparing GPU performance. This report in-
vestigates GPU performance with a focus on MLPerf benchmarks, specifically evaluating
models such as NVIDIA A100, NVIDIA V100, and AMD Instinct MI250. The bench-
marking involved testing various ML tasks, including image classification with ResNet-50
and natural language processing with BERT, under training and inference scenarios. Key
results indicate that the NVIDIA A100 outperforms other models in training speed and
energy efficiency, while the AMD MI250 shows competitive performance in data-intensive
tasks due to its superior memory bandwidth. The analysis includes figures, tables, and
references to empirical data, highlighting the impact of architectural optimizations, pre-
cision modes, and scalability on GPU performance. These findings are crucial for guiding
hardware selection and optimization in ML and HPC environments.

i



Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

✓□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts
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Understanding GPU Performance Using MLCommons MLPerf Benchmarks

1 Introduction
The rapid growth of Machine Learning (ML) and High-Performance Computing (HPC)
has significantly increased the demand for hardware that can efficiently handle complex
and data-intensive tasks. Graphics Processing Unit (GPU) has emerged as the preferred
hardware for these applications due to their high parallel processing capabilities, optimized
data handling, and superior performance compared to traditional Central Processing Unit
(CPU) for parallelizable workloads. Although GPUs were originally designed to accelerate
graphics rendering, they have evolved into versatile processors capable of supporting a
wide range of computationally intensive tasks, including scientific simulations, financial
modeling, cryptography, and, most notably, ML and Artificial Intelligence (AI) workloads
[DB+17].

GPUs are especially well-suited for tasks that require the concurrent execution of mul-
tiple computations, as their architecture, consisting of thousands of smaller, efficient cores
designed for parallel execution, enables them to handle large numbers of calculations si-
multaneously. This makes GPUs ideal for operations such as matrix multiplications, which
are foundational to deep learning algorithms. The tensor cores, specialized hardware units
introduced in NVIDIA’s Volta architecture, accelerate matrix multiplications—a funda-
mental operation in deep learning. These cores allow mixed-precision calculations, such
as FP16 (16-bit floating-point), which enables faster computation without significant loss
in accuracy[Cor20]. In addition to their use in ML, GPUs play a significant role in data
analytics, video processing, and other domains that require high computational power
[He+16].

However, the performance of different GPU models can vary significantly depend-
ing on the task, underlying architecture, and optimization techniques. To address this
variability, standardized benchmarks are essential for evaluating and comparing the per-
formance of GPUs across different workloads. These benchmarks assess factors such as
computation speed, memory bandwidth, power efficiency, and scalability. Benchmarking
methods range from synthetic benchmarks, which simulate specific computational tasks,
to application-based benchmarks that measure performance using real-world applications
such as gaming, rendering, and data processing [DC22]. In the context of ML and HPC,
benchmarks tailored specifically to these domains provide more detailed insights into GPU
capabilities when handling complex workloads.

1.1 Machine Learning Benchmarks for GPUs

In the ML domain, benchmarks have evolved to assess not only the raw computational
power of GPUs but also their effectiveness in training and inference tasks involving state-
of-the-art models. Typically, ML benchmarks involve running standard neural networks,
such as Convolutional Neural Networks (CNN) for image classification or Transformer
models for Natural Language Processing (NLP), across various hardware platforms to
measure metrics such as training time, inference latency, accuracy, and energy consump-
tion. These benchmarks are crucial for researchers, engineers, and organizations seeking
to identify the best hardware solutions for their specific needs [MLBenchmarks].

Prominent ML benchmarks include MLPerf, DAWNBench, and DeepBench. For in-
stance, DAWNBench focuses on end-to-end training and inference times while also consid-
ering cost-effectiveness, whereas DeepBench targets low-level operations such as matrix
multiplication and convolution performance. Among these, MLPerf stands out as the
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most comprehensive benchmarking suite, offering a wide range of tasks that reflect di-
verse real-world ML workloads [ZL24].

1.2 MLCommons and MLPerf Benchmarks

MLCommons, a consortium of researchers, hardware vendors, and software developers,
developed the MLPerf benchmark suite to provide standardized and reproducible evalua-
tions of ML performance across various hardware platforms, including GPUs, TPUs, and
CPUs. MLPerf benchmarks encompass both training and inference workloads, covering
a broad spectrum of ML tasks, including image classification, object detection, language
translation, recommendation systems, and reinforcement learning [MLC23]. The bench-
mark suite is regularly updated to include the latest models and reflect best practices in
the field of ML.

MLPerf’s benchmarks are divided into several categories, each designed to assess spe-
cific aspects of hardware performance. These categories include Training, Inference, Tiny,
HPC, and Edge, among others. Each of these benchmarks focuses on different com-
ponents, such as computational power, memory handling, and scalability in distributed
environments. In addition to traditional categories, newer benchmarks like AI Safety,
Cryptocurrency, and Storage have been introduced to address emerging AI and hardware
domains. This comprehensive approach helps users better understand how different GPU
models perform across various workloads, leading to more informed hardware selection
and optimization decisions. Table 1 summarizes the key MLCommons benchmarks and
their specific uses.

MLPerf’s extensive use across academia and industry underscores its importance as a
benchmarking standard. By providing a transparent and open benchmarking methodol-
ogy, MLPerf enables meaningful comparisons of hardware performance, fostering innova-
tion and driving improvements in GPU design and software optimizations [GK23].

The remainder of this report is structured as follows. Section 2 provides an overview
of GPU architecture, focusing on key models such as the NVIDIA Ampere 100 (A100),
NVIDIA Volta 100 (V100), and AMD Instinct 250 (MI250), and highlights their architec-
tural strengths and applications. Section 3 explores the MLPerf benchmarks, explaining
how they are used to evaluate GPU performance in training and inference tasks. Section
4 presents a performance analysis of various GPUs using MLPerf benchmarks, showcas-
ing the strengths and weaknesses of different models. Section 5 identifies key challenges
in GPU benchmarking, including synchronization bottlenecks and optimization biases.
Finally, Section 6 concludes the report by summarizing the findings and suggesting direc-
tions for future research to advance GPU benchmarking in ML and other environments.

2 GPU Architecture and Specific Mod-
els

GPUs are specifically designed to accelerate computations by executing multiple oper-
ations in parallel. The architecture of a GPU is fundamentally different from that of a
CPU. While CPUs are optimized for single-threaded tasks with lower latency, GPUs excel
at high-throughput tasks, which involve executing thousands of threads simultaneously.
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Table 1: MLCommons Benchmarks and Their Uses

Benchmark Cate-
gory

Primary Use

MLPerf Training Measures the efficiency of hardware in training ML mod-
els, including tasks like image classification (ResNet-
50), object detection, and natural language processing
(BERT). Used to evaluate time to convergence and scal-
ability across GPUs.

MLPerf Inference:
Mobile

Specific for mobile platforms, measuring inference effi-
ciency, energy consumption, and latency for AI models
used on smartphones and edge devices.

MLPerf Inference:
Datacenter

Targets datacenter GPUs, focusing on inference perfor-
mance under heavy workloads and large-scale operations
typical in cloud environments.

MLPerf Inference:
Tiny

Focuses on low-power devices like microcontrollers and
Internet of Things (IoT) devices, measuring how effi-
ciently lightweight ML models can be run.

MLPerf Inference:
Edge

Assesses the performance of edge devices, testing infer-
ence capabilities in constrained environments where re-
sources like power and bandwidth are limited.

MLPerf Training:
HPC

Designed for HPC environments, this benchmark mea-
sures the training efficiency of large-scale ML models,
often used in scientific and engineering applications.

AI Safety Bench-
marks

Tests AI models in critical environments to assess safety,
robustness, and reliability, which is vital for applications
like autonomous vehicles and medical devices.

Cryptocurrency
MLPerf Inference

Focuses on the efficiency of GPUs in cryptocurrency-
related ML tasks, such as blockchain validation and
fraud detection.

MLPerf Storage Measures the performance of storage systems in AI en-
vironments, testing data throughput, latency, and scal-
ability in ML workloads.

Key architectural components that define GPU performance include the number of pro-
cessing cores, memory hierarchy, memory bandwidth, and specialized hardware units such
as tensor cores, which are particularly useful in ML tasks. These architectural elements
are designed to maximize parallelism and data transfer efficiency within the GPU, mak-
ing them essential for workloads such as deep learning and high-performance computing
[DB+17].

2.1 GPU Architecture

At the heart of modern GPUs is a grid of Streaming Multiprocessors (SM), each con-
taining several processing cores that handle parallel tasks. These cores are responsible
for executing threads concurrently, making GPUs particularly adept at vector and matrix
operations, which are fundamental to deep learning algorithms like backpropagation and
matrix multiplications.
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Memory hierarchy is another critical component of GPU design. GPUs utilize several
types of memory to store and access data: registers, shared memory (which is accessi-
ble by threads within an SM), Level 1 Cache (L1) and Level 2 Cache (L2) caches, and
global memory (the largest and slowest form of memory). The effective use of these
memory levels determines the speed of computation, as faster memory is typically more
limited in size. High memory bandwidth, especially with innovations like High Band-
width Memory (HBM), allows GPUs to efficiently handle large datasets and models in
ML tasks. For example, the AMD Instinct MI250 employs High Bandwidth Memory,
version 2e (HBM2e), which significantly improves memory throughput [Cor20].

A crucial architectural innovation in modern GPUs is the introduction of tensor cores.
Tensor cores are specialized units designed for accelerating matrix multiplications and
are essential for deep learning, where such operations dominate. First introduced in
NVIDIA’s Volta architecture, tensor cores allow mixed-precision computations (16-bit
Floating Point (FP16), Brain Floating Point, 16-bit (BFLOAT16)), thereby reducing
computational time while maintaining accuracy, particularly for training large models like
Bidirectional Encoder Representations from Transformers (BERT) or GPT-3 [He+16].

GPUs also rely on interconnect technologies like NVLink, which enables direct com-
munication between multiple GPUs, ensuring fast data transfer between devices in a
multi-GPU setup. This feature is particularly useful in distributed ML training tasks,
where large models are divided and processed across several GPUs. Another such inno-
vation, Infinity Fabric, employed by AMD in its GPUs, enables efficient communication
within the chip and between multiple GPUs, enhancing scalability in large-scale HPC
workloads.

With these architectural advances, GPUs have become indispensable in high-performance
machine learning workloads. However, evaluating these architectural improvements re-
quires standardized benchmarking methods. In the next section, we explore how bench-
marks like MLPerf allow for the comparison of these GPUs in practical machine learning
tasks.

2.2 Notable GPU Models

While there are numerous GPU models available, the NVIDIA A100, V100, and AMD
Instinct MI250 stand out due to their prominence in MLPerf benchmarks and their
widespread use in both research and enterprise settings. These models were selected
based on their architectural features, performance across a variety of ML tasks, and their
adoption in the ML and HPC communities. Each of these GPUs has distinct advantages
that make them suitable for particular workloads, whether in NLP, image classification,
or scientific simulations. Below, we explore the specific characteristics of these GPUs and
refer to the architectural comparison chart in Figure 1.

• NVIDIA A100: The NVIDIA A100, part of the Ampere architecture, is currently
one of the most advanced GPUs for deep learning and HPC. Its versatile archi-
tecture supports mixed-precision computations, including FP16, BFLOAT16, and
32-bit Floating Point (FP32), making it highly efficient for both training and infer-
ence tasks. The third-generation tensor cores in the A100 offer up to a 20 times
performance improvement for matrix operations compared to previous generations.
The A100 is particularly effective in handling large-scale NLP models like BERT and
GPT-3, which require massive amounts of data to be processed in parallel [Cor20].
Additionally, the A100 is equipped with Multi-Instance GPU (MIG) technology,
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which allows it to be partitioned into up to seven instances, providing flexibility in
multi-tenant environments. The A100’s superiority in both training and inference
tasks is reflected in its performance on MLPerf benchmarks, where it consistently
ranks at the top [ZL24].

• NVIDIA V100: The V100, part of NVIDIA’s Volta architecture, was the first
to introduce tensor cores, which made it a game-changer for ML tasks when it
was released. Although it is an older model compared to the A100, the V100
remains a workhorse in many enterprise and research settings due to its reliability
and power. The V100 supports mixed-precision training with FP16, allowing it
to accelerate ML workloads like ResNet-50 for image classification and Mask R-
CNN for object detection [He+16]. The V100 continues to perform competitively
in MLPerf benchmarks, particularly in inference tasks, where its FP16 tensor cores
significantly reduce processing times while maintaining accuracy. Despite the advent
of newer models, the V100 remains a popular choice for organizations seeking a
balance between performance and cost.

• AMD Instinct MI250: The AMD Instinct MI250 is AMD’s flagship GPU for ML
and HPC applications, offering strong competition to NVIDIA’s A100. It is based
on AMD’s CDNA 2 architecture and is designed to handle memory-intensive tasks
with its HBM2e memory, providing 3.2 terabytes per second of bandwidth, which is
crucial for large-scale scientific computing workloads like CosmoFlow and DeepCAM
[KA+21]. The MI250 is especially efficient in distributed training environments due
to its Infinity Fabric interconnect, which enables fast data exchange between GPUs.
In MLPerf benchmarks, the MI250 excels in tasks requiring large memory through-
put, making it highly effective for data-intensive tasks like molecular simulations
and climate modeling [MLC23].

In fig. 1, the distinct differences in architecture between the NVIDIA A100, V100,
and AMD Instinct MI250 can be noticed. The AMD Instinct MI250 leads in core count
and memory bandwidth, making it particularly well-suited for data-intensive tasks, such
as scientific simulations. The NVIDIA A100, while trailing in core count and memory
bandwidth, excels in both training and inference tasks due to its tensor cores, which are
designed to accelerate deep learning operations. The NVIDIA V100, despite being an older
model, remains relevant due to its Tensor Core efficiency, which allows it to handle many
ML tasks effectively, though it falls behind in both core count and memory bandwidth
compared to newer models. Overall, the AMD MI250 stands out for memory throughput,
the A100 for Tensor Core performance, and the V100 continues to be a reliable choice for
many enterprise-level ML tasks.

By providing detailed technical insights into these GPU models and their architectural
innovations, we can better understand the trade-offs and strengths each GPU offers for
specific ML workloads. These three GPUs have been selected not only for their popularity
in MLPerf benchmarks but also for their widespread adoption in research and industry
applications.
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Figure 1: Comparison of GPU Architectures: NVIDIA A100, V100, and AMD Instinct
MI250.

3 Benchmarking GPUs Using MLPerf
MLPerf benchmarks are among some of the most comprehensive tools available for eval-
uating the training speed, inference efficiency, accuracy, and scalability of ML models
on different hardware platforms. These benchmarks cover a variety of tasks, providing
an objective, standardized framework to compare the performance of GPUs, TPUs, and
CPUs in different deep learning applications [ZL24].

3.1 MLPerf Training Benchmarks

MLPerf Training benchmarks focus on evaluating how well GPUs perform during the
training phase of machine learning models. The training phase is computationally expen-
sive and requires a large amount of parallelism, which GPUs are inherently well-suited for.
The training benchmarks evaluate GPUs across diverse tasks such as image classification,
object detection, natural language processing, recommendation systems, reinforcement
learning, and more. The training performance is typically measured by time-to-train
or the number of epochs required to achieve a certain accuracy. These results are cru-
cial for organizations deciding on hardware for ML workloads, as they reflect real-world
training capabilities on popular models like ResNet-50, BERT, Single Shot Multibox De-
tector (SSD), and Deep Learning Recommendation Model (DLRM) [He+16; Dev+18;
Liu+16; Nau+19].
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3.1.1 ResNet-50 Training Performance

ResNet-50 is widely used as a benchmark for image classification due to its prominence in
computer vision tasks. This model allows for a standardized evaluation of training times,
accuracy, and energy efficiency across different GPU architectures. Table 2 shows the
performance comparison of the NVIDIA A100, NVIDIA V100, and AMD Instinct MI250
on the ResNet-50 training task.

Table 2: ResNet-50 Training Performance on Different GPUs

GPU Model Training Time (min) Top-1 Accuracy (%) Energy Efficiency (TFLOPS/W)

NVIDIA A100 37 76.3 12.5
NVIDIA V100 45 76.1 10.2
AMD Instinct MI250 42 75.8 11.0

The NVIDIA A100 outperforms the V100 and AMD MI250 in training speed and
energy efficiency due to its tensor cores optimized for mixed-precision capabilities[Cor20].
The AMD MI250, while slower in training time, demonstrates strong performance in
data-heavy tasks, thanks to its high memory bandwidth, which is ideal for handling
larger datasets during training [Cor22].

3.1.2 BERT Training and Inference

BERT is one of the most popular models for NLP tasks, such as question answering,
text classification, and named entity recognition [Dev+18]. The BERT benchmark tests
GPUs on both training time and inference latency. The transformer-based architecture of
BERT requires significant computational power, and GPUs that handle parallelism well
tend to excel in this task. Table 3 provides a comparison of BERT training and inference
performance on different GPUs.

Table 3: BERT Training Performance on Different GPUs

GPU Model Training Time (hours) Inference Latency (ms) Scalability Efficiency

NVIDIA A100 2.5 3.4 90%
NVIDIA V100 3.1 4.2 85%
AMD Instinct MI250 2.9 3.8 88%

The NVIDIA A100 leads the field in training time and inference latency, largely due to
its Tensor Core optimizations for matrix multiplications, which are central to transformer
models like BERT [Cor20]. The AMD MI250 shows competitive performance in scalability,
making it an attractive option for distributed training in large NLP models, especially
where memory bandwidth is a limiting factor [Cor22].

3.2 Other MLPerf Benchmarks

In addition to ResNet-50 and BERT, MLPerf benchmarks evaluate GPU performance
across other workloads that are crucial for many ML applications. Some notable bench-
marks include:

• Single Shot MultiBox Detector(SSD): A popular object detection model, SSD
measures a GPU’s ability to handle detection and classification tasks in real-time
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applications, such as autonomous driving and security systems [Liu+16]. GPUs
with fast inference speeds and high throughput excel in SSD benchmarks.

• Deep Learning Recommendation Model(DLRM): Used to benchmark recom-
mendation systems, DLRM is critical for e-commerce and content recommendation
platforms like Netflix and Amazon [Nau+19]. This benchmark evaluates how well
GPUs handle both dense and sparse feature models and requires GPUs with efficient
memory management and high scalability.

• Transformer for Language Modeling: Transformers are widely used in NLP
tasks like machine translation, speech recognition, and text summarization [Vas+17].
MLPerf benchmarks transformers to assess the training and inference capabilities
of GPUs in handling massive amounts of textual data.

• Reinforcement Learning (RL): RL benchmarks measure how GPUs handle
decision-making tasks in environments that require continuous interaction, such
as robotics and game AI [Mni+15]. GPUs that can manage complex, dynamic
environments with low latency perform well in these benchmarks.

3.3 Inference Benchmarks Across Devices

MLPerf also includes inference benchmarks tailored for different deployment environ-
ments, ranging from data centers to edge devices. Inference tasks evaluate the real-time
performance of GPUs, focusing on metrics like latency, throughput, and power efficiency
[ZL24]:

• Data Center Inference: Benchmarks for large-scale inference workloads, which
are common in cloud computing environments. These benchmarks assess how GPUs
perform under heavy traffic and high computational demand [GK23].

• Edge Inference: MLPerf also includes benchmarks for edge devices, which are
typically constrained by power, bandwidth, and latency requirements. Inference on
edge devices, such as IoT sensors or mobile devices, is critical for applications like
smart cities, autonomous vehicles, and real-time analytics [GK23].

3.4 Scalability and Multi-GPU Performance

Scalability is another key factor evaluated by MLPerf benchmarks. As ML models grow in
complexity, the ability to scale training across multiple GPUs or nodes becomes essential.
MLPerf measures how well GPUs perform in distributed training environments, where
communication between GPUs and memory bandwidth becomes bottlenecks.

• Horizontal scalability is measured by evaluating the system’s ability to parallelize
the training task as the number of GPUs increases.

• Interconnect performance, such as NVIDIA’s NVLink and AMD’s Infinity Fabric,
plays a crucial role in determining how well data is shared between GPUs [Cor20;
Cor22].
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4 Performance Analysis and Results
The performance of different GPU models can significantly impact training times, en-
ergy efficiency, and model accuracy in various machine learning tasks. Figure 2 provides
a comparative analysis of the training times for three GPUs—NVIDIA A100, NVIDIA
V100, and AMD Instinct MI250—on three widely used benchmarks: ResNet-50 for im-
age classification, BERT for natural language processing, and Mask R-CNN for object
detection.

Figure 2: Performance Comparison of GPUs on MLPerf Benchmarks.

The figure demonstrates that the NVIDIA A100 consistently delivers faster training
times compared to the other models across all tasks, primarily due to its superior ar-
chitecture and third-generation tensor cores optimized for deep learning workloads. For
example, in the ResNet-50 benchmark, the A100 outperforms both the V100 and MI250
by a considerable margin. The AMD Instinct MI250, however, shows competitive per-
formance in data-heavy tasks, such as BERT and Mask R-CNN, due to its high memory
bandwidth, which is essential for processing large datasets efficiently.

These results are consistent with previous discussions in Sections 2 and 3, where we
analyzed the architectural advantages of the A100 and MI250. The tensor cores in the
A100 significantly accelerate matrix multiplication-heavy tasks, while the MI250’s HBM2e
memory supports better data throughput, making it suitable for large-scale scientific
computing tasks, such as CosmoFlow and DeepCAM [ZL24].

4.1 Bottlenecking

While the GPUs play a pivotal role in determining performance, other hardware com-
ponents are also crucial for achieving optimal speed and efficiency. These components
include CPU, memory, and storage systems, and if not properly balanced, they can be-
come bottlenecks in the system, limiting the GPU’s potential.
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A high-end GPU like the NVIDIA A100 can be severely affected by an underperforming
CPU. In a study conducted by MLCommons, the same A100 GPU was paired with two
different CPUs—a high-performance AMD EPYC 7742 and a lower-end Intel Xeon Silver
4210. The results showed that when paired with the weaker CPU, training times increased
by 25% in multi-GPU setups. This was due to the slower CPU’s inability to supply data
fast enough, leaving the GPU underutilized [GK23].

In addition to CPU bottlenecking, there can be other types of bottlenecking such as
improper cooling can also hinder GPU performance. In a study evaluating NVIDIA’s
A100, researchers found that suboptimal cooling solutions, such as air-cooling in a poorly
ventilated environment, caused thermal throttling, reducing the GPU’s clock speed to
prevent overheating. This resulted in a 10-15% performance drop during extended ResNet-
50 training sessions compared to a system with an optimized liquid cooling solution, which
maintained stable performance over longer periods [thermalcooling2020].

Another example of a hardware bottleneck impacting GPU performance, particularly
in gaming, is memory (RAM) limitations. For graphically intensive games like Cyber-
punk 2077, users with GPUs such as the NVIDIA RTX 3080 can experience dramatically
different frame rates depending on their system’s RAM configuration. In setups with
only 8GB of RAM, the game tends to struggle with stuttering and lower frame rates,
especially at higher settings or resolutions. On the other hand, systems equipped with
16GB or 32GB of RAM generally run the game much more smoothly, with fewer frame
drops. This discrepancy arises because insufficient RAM forces the system to offload data
to slower storage, negatively affecting the game’s overall performance. This phenomenon
was well documented in several benchmarks, where adding more RAM notably improved
the frame rate consistency in Cyberpunk 2077.

The above mentioned problems highlight the importance of not only selecting the right
GPU but also ensuring that other components in the system are optimized to prevent
bottlenecks. There are numerous types of bottlenecking that can drastically impact the
overall system’s performance, as demonstrated by the examples.

5 Challenges in GPU Benchmarking
Benchmarking GPUs is essential for understanding their real-world performance across
different tasks, but it is also fraught with several challenges. Despite the standardized
nature of benchmarks like MLPerf, accurately comparing GPUs can be difficult due to a
variety of factors, including hardware variability, optimization techniques, and mislead-
ing practices. Benchmarking is defined as the process of running a series of standardized
tests and workloads on hardware to measure and compare performance metrics like speed,
efficiency, and scalability [DC22]. However, the reliability of these results can be compro-
mised by issues such as cherry-picking results, over-optimization, and lack of transparency,
which can mislead consumers and researchers alike [MLC23].

5.1 Key Challenges in GPU Benchmarking

Benchmarking GPUs is a complex process that faces multiple challenges, many of which
can distort performance metrics and lead to misleading conclusions about a GPU’s ca-
pabilities. While MLPerf provides a standardized, reproducible framework for evaluating
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GPU performance, several factors complicate this process and introduce potential biases.
Below are the key challenges faced in GPU benchmarking:

• Data Preprocessing and Loading Bottlenecks: Data handling is one of the
most significant bottlenecks in GPU benchmarking, especially in tasks that require
large datasets, such as image classification (e.g., ResNet-50) and recommendation
systems (e.g., DLRM). In these tasks, GPUs often remain idle while waiting for
data to be preprocessed and loaded into memory, particularly when I/O systems or
storage speeds are suboptimal. According to industry reports, the data handling
phase can account for 20-30% of the total training time, which skews benchmark
results by making GPUs appear less efficient than they are in practice [ZL24; DC22].
In MLPerf benchmarks, data-intensive workloads such as object detection (SSD) or
NLP models (BERT) suffer from slow data loading pipelines, especially when data
loading is not done in parallel with GPU computation [Liu+16; Dev+18].

• Synchronization and Communication Bottlenecks: In multi-GPU setups,
synchronization between GPUs introduces delays that reduce overall throughput.
This is especially problematic in large-scale deep learning models like GPT-3 and
BERT, which require frequent synchronization of weights across GPUs. Studies
have shown that in multi-GPU training of transformer-based models, synchroniza-
tion overhead can lead to a 15-20% reduction in scalability efficiency, limiting the
benefits of adding more GPUs [Cor20; Dev+18]. While technologies such as NVIDIA
NVLink and AMD Infinity Fabric aim to reduce these bottlenecks, even these high-
speed interconnects cannot completely eliminate them. In MLPerf’s multi-GPU
setups, slow interconnects can lead to further communication delays, severely im-
pacting distributed training performance [Cor22].

• I/O and Memory Bandwidth Constraints: Large-scale models, especially
those used in scientific computing like CosmoFlow, require substantial memory
bandwidth to operate smoothly. GPUs such as the AMD Instinct MI250, which
feature HBM2e, are designed for such tasks and can effectively handle high data
throughput. However, when memory bandwidth is insufficient, even the most pow-
erful GPUs experience bottlenecks, leading to slower training times and increased
energy consumption [Cor22; MP+20]. This is a critical issue for workloads that
demand vast data processing, where GPU performance becomes limited by their
memory bandwidth rather than their computational power.

5.2 Benchmarketing: Misleading Benchmarking Practices

"Benchmarketing" refers to the practice of using benchmarks in a way that misleads
consumers by cherry-picking results, over-optimizing for specific tests, or using outdated or
inappropriate benchmarks to showcase a product’s strengths while ignoring its weaknesses.
This practice can distort the perception of a GPU’s real-world performance and lead to
unrealistic expectations among buyers.

• Cherry-Picking Benchmarks: A common practice in marketing is to highlight
benchmarks that present a product in the best possible light while downplaying
results that reveal weaker performance. For instance, a GPU manufacturer might
emphasize the strong performance of their product in tasks like ResNet-50 image
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classification, while neglecting to mention slower results in other areas like object
detection or recommendation models such as DLRM [Liu+16; Nau+19]. This se-
lective reporting can create a skewed perception of a GPU’s overall performance,
leading consumers to overestimate its capabilities across different workloads.[DC22].

• Over-Optimization for Benchmarks: Many GPUs are optimized for specific
tasks, leading to skewed benchmark results. For instance, GPUs with specialized
hardware like NVIDIA’s tensor cores excel in matrix multiplication-heavy tasks
like BERT and ResNet-50, delivering up to 40-50% faster training times [Dev+18;
He+16]. However, these optimizations may not translate to tasks with varied work-
loads, such as reinforcement learning or object detection (e.g., SSD models). Some
hardware vendors optimize their GPUs specifically for benchmarks or use outdated
benchmarks. This can inflate performance results for certain specific tasks, however,
these optimizations do not necessarily reflect real-world performance in production
environments[MLC23; Dev+18].

For instance, AMD Radeon’s RX 6000 series (based on the new RDNA2 architec-
ture) was released in November 2020 and benchmarked on the SD2.1 standard. It
was an improvement over its predecessor, the RX 5000 series which was bench-
marked on SD1.5 [Cor22]. However, comparing the two using outdated workloads
may not provide an accurate representation of the true performance improvements.
AMD promised a 1.65x performance per watt gain, but these claims were later scru-
tinized, leading to public questioning and concerns about the validity of the results
[Cor22]. Similar real-world examples of misleading benchmarking practices can be
found across the tech industry.

• Lack of Transparency: Some companies may not provide enough information
about their benchmarking methodologies, making it difficult to evaluate the rele-
vance or fairness of the results [Cor22]. Often, claims like "1.5 times faster" or
"twice as fast" are used in marketing without providing the specific benchmarks or
detailed contexts behind these figures. Instead of offering concrete data, vague terms
are employed to create the impression of superior performance without clarifying
what specific tasks or scenarios the improvements are actually applicable.

• Misleading Performance Claims: Product marketing often emphasizes extreme
performance under special conditions while downplaying technical flaws. A notable
example is Nvidia’s GeForce RTX 4090, marketed for handling extreme power loads
and pushing performance limits. Early buyers, however, reported overheating and
melting of the 16-pin 12VHPWR power connector when pushed to its advertised
potential, with around 20 users filing complaints. Lucas Genova subsequently filed
a class-action lawsuit citing these defects. Although the lawsuit was dismissed with
undisclosed settlements, it highlights how marketing can obscure critical flaws in
favor of performance claims [Kan22; Klo23].

6 Future of GPUs and Conclusion
While ML workloads are a significant part of the GPU landscape, they represent only a
fraction of the overall usage of these powerful devices. GPUs have become indispensable
in industries such as gaming, film production, and scientific visualization. For example,
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in gaming, GPUs like the NVIDIA RTX 4090 enable real-time ray tracing and high
frame rates, offering exceptional visual fidelity in graphically demanding titles like Metro
Exodus and Flight Simulator[Cor20]. Beyond gaming, GPUs are integral to 3D rendering
and video production, enabling studios to produce complex animations and special effects
faster than ever before. Thus, while ML benchmarks provide insights into one aspect of
GPU performance, they do not fully represent the GPU’s capabilities across all domains.

6.1 Future of GPU Architecture and ML Demands

The future of GPU technology is poised to revolutionize not just machine learning but
a wide range of computational domains. Several upcoming advancements in GPU ar-
chitectures are expected to address current bottlenecks while pushing the boundaries of
performance, energy efficiency, and real-time processing capabilities. These innovations
will be vital as the demands from ML, gaming, rendering, and visualization tasks continue
to grow.

6.2 Market Dynamics and Competition

Recent developments in GPU architectures, such as NVIDIA’s Hopper and AMD’s RDNA
3, focus on increasing memory bandwidth, optimizing energy consumption, and enhancing
multi-GPU communication efficiency. For instance, NVIDIA’s Hopper architecture intro-
duces fourth-generation tensor cores, designed specifically for AI inference and training
workloads, with a focus on providing better performance while reducing energy consump-
tion. This new architecture emphasizes real-time AI and high-performance computing
tasks, making it crucial for future AI applications [ZL24]. Similarly, AMD’s RDNA 3
architecture is anticipated to improve both gaming and AI workloads, with innovations
in power efficiency and higher clock speeds, enabling smoother multitasking and faster
processing [Cor22].

Looking forward, the evolution of GPU architectures must address increasingly com-
plex ML models, which require both more computational power and higher energy effi-
ciency. As AI models continue to grow in size and complexity, real-time inference and
training capabilities will become critical. Innovations like improved memory bandwidth,
more efficient data movement between GPUs, and specialized cores will play a pivotal
role in enabling this growth.

For instance, memory bandwidth continues to be a bottleneck in large-scale ML
workloads. Technologies such as HBM2e and Graphics Double Data Rate 6 Extended
(GDDR6X) offer improvements, but as AI models grow, further advancements will be
needed. Additionally, interconnect technologies like NVIDIA NVLink and AMD Infinity
Fabric are essential for multi-GPU setups, facilitating fast data exchange between GPUs
in distributed training environments [Cor20; Cor22].

Another key aspect is energy efficiency. As GPUs become more powerful, the need
for energy-efficient designs becomes paramount, especially in large data centers running
AI and HPC workloads. Future architectures must continue to balance performance
gains with lower power consumption to meet both environmental concerns and economic
constraints.
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6.3 Market Dynamics and Competition

Currently, the GPU market is dominated by two key players—NVIDIA and AMD—with
NVIDIA holding a significant market share. As of 2023, NVIDIA controls almost 80% of
the market, leaving AMD with a much smaller portion. This lack of strong competition
contrasts with other tech sectors like CPUs, where competition between Intel and AMD
has driven faster innovation and better price-performance ratios [DC22].

A notable example is the rivalry between AMD’s Ryzen processors and Intel’s CPUs,
which has led to significant advancements in multi-core processing and energy efficiency.
A similar level of competition in the GPU market could encourage further innovation and
lead to more affordable GPUs for consumers. The dominance of NVIDIA may partly
explain the slower price reductions and less aggressive innovation cycles in the GPU
market compared to other tech areas.

6.4 Conclusion

The developments in GPU technology and benchmarking reflect an exciting era of progress,
yet they also underscore the growing complexity of machine learning workloads and high-
performance computing tasks. GPUs like the NVIDIA A100 and AMD Instinct MI250
have proven to be crucial in supporting the demands of modern AI models, offering im-
mense parallel processing capabilities and architectural innovations such as tensor cores
and HBM2e memory. These advancements have been pivotal in speeding up training
and inference for complex tasks in domains ranging from NLP to scientific simulations.
However, the industry still faces challenges in balancing computational power with energy
efficiency and scalability across multi-GPU systems.

Benchmarking practices like MLPerf have provided valuable insights into GPU perfor-
mance across diverse tasks, but the process is not without its limitations. Bottlenecks in
data handling, synchronization issues, and the tendency for manufacturers to cherry-pick
benchmark results all introduce biases that can skew hardware evaluations. To mitigate
these concerns, the future of benchmarking must emphasize transparency and compre-
hensive testing across multiple domains, allowing for more accurate comparisons. This
will ultimately lead to better hardware optimization, system balancing, and informed
decision-making for organizations and developers alike.

As we look to the future, continued innovation in GPU architecture will be essential
to meeting the growing needs of AI, scientific computing, and even industries like gaming.
Enhancements in memory bandwidth, real-time processing, and multi-GPU communica-
tion will drive the next generation of hardware. Moreover, fostering competition between
major players such as NVIDIA and AMD will not only accelerate technological advance-
ment but also help to lower costs and improve accessibility for a wider range of users. The
trajectory of GPU evolution promises to unlock new possibilities for machine learning and
high-performance computing, with far-reaching impacts across multiple fields.
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