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Abstract
In contemporary computing, data reliability and integrity are crucial, especially in systems
that require high availability and fault tolerance. Bit flips, which occur when individual
bits in memory or storage change state owing to a variety of circumstances, pose a sub-
stantial challenge to data integrity and can have serious repercussions. This project imple-
ments Triple Modular Redundancy (Triple Modular Redundancy (TMR)) in the RISC-V
32I architecture to improve fault tolerance in essential data storage components, such as
the Program Counter (Program Counter (PC)), Register File, Instruction Memory, and
Data Memory. We use Xilinx Vivado for design and simulation to assess the influence of
TMR on performance measures such as logic delay, net delay, total delay, power consump-
tion, and thermal properties. The findings show that while TMR considerably improves
system dependability, but it also includes performance and electricity overheads. De-
sign optimization strategies alleviate these disadvantages by balancing dependability and
efficiency. This paper highlights the possibilities and limitations of implementing fault-
tolerant methods in open-source architectures such as Reduced Instruction Set Computer
- Five (RISC-V).
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1 Introduction
Open-source Instruction Set Architecture (ISA) has had a considerable impact on com-
puter architecture research and industry. Among them, RISC-V has emerged as a revo-
lutionary force, offering a diverse and scalable framework for educational, scientific, and
industrial applications. Krste Asanović, Andrew Waterman, and Yunsup Lee founded
RISC-V at UC Berkeley in 2010, with contributions from David Patterson[Fou24]. The
RISC-V Foundation, a non-profit corporation, promotes and develops the project[Fou24].

The open-source nature of RISC-V ensures the necessary scalability, flexibility, and
efficiency for current data analytic applications. This study examines the current status of
RISC-V, emphasizing its use in high-performance data analysis and the problems related
to data integrity. The talk focuses on implementing TMR to improve data processing
reliability and accuracy, especially in important components like the PC and memory.

This article examines the architecture of RISC-V and its implications for data analyt-
ics, emphasizing its performance and flexibility benefits. RISC-V standardizes instructions
and allows for varied implementations, resulting in resilient and efficient data processing
systems [Jou24] [Blo24] [PH17]. The article will examine the architectural aspects of
RISC-V, its performance versus other ISAs, and the measures used to prevent data loss
and maintain data integrity. This exploration aims to provide a detailed overview of
RISC-V’s potential and contributions to high-performance data analysis.

1.1 RISC-V in Data Analytics

Scalability, flexibility, and efficiency make RISC-V an invaluable tool for data analytics.
Using the open-source nature of RISC-V, data analytics systems can manage large volumes
of data more efficiently. According to [Mak24], SiFive’s P670 and other RISC-V processors
outperform standard A family of backward-compatible instruction set architectures based
on the Intel 8086 CPU (x86) and ARM processors. Figure 1 shows that ARM’s Cortex-
A78 outperforms SiFive’s P670 by 5% in peak single-thread performance (SpecINT2k6).
However, ARM’s Cortex-A78 has twice the compute density (SpecINT2k6/mm2), making
SiFive’s P670 better in this sense. SiFive’s P670 takes about 50% less space than Cortex-
A78, demonstrating its space efficiency.

Figure 1: ARM’s Cortex-A78 and SiFive’s P670 Performance Comparison [Mak24]

Key advantages of RISC-V in data analytics include scalability, flexibility, and effi-
ciency. Scalability refers to the ability to expand computing resources efficiently to manage



large datasets. Flexibility is achieved through customizable instruction sets tailored to
specific data processing needs, and efficiency is demonstrated by optimized performance
for various data analytics tasks with lower power consumption and cost [PH17] [HP18].

Figure 2 highlights the distribution of x86 instructions in integer programs. The
table indicates that instructions like Load, Conditional Branch, and Compare are most
frequently executed by compilers in integer programs, accounting for a total of 96% of
all executed instructions. This insight emphasizes the critical role of these instructions in
data processing tasks and the potential for optimization within RISC-V architectures.

Figure 2: x86 Used Instruction in Integer Programs

1.2 RISC-V 32I ISA Types

The RISC-V 32I Instruction Set Architecture (ISA) defines a standard base set of instruc-
tions for 32-bit processors, which is crucial for various applications in data analytics and
computing [Ali23]. The 32I ISA includes multiple instruction formats designed to provide
flexibility and efficiency in different operations. According to [Fou24] and [HP18], The
primary instruction types in the RISC-V 32I ISA as shown in 3 are R-type, I-type, S-type,
B-type, U-type, and J-type. Each type serves a distinct purpose and has a specific bit
distribution pattern.

Figure 3: RISC-V 32I Instruction Types [Fou24]

• R-Type Instructions R-type instructions are used for register-register operations.
They include arithmetic and logical operations such as addition, subtraction, and



logical AND, OR, XOR. The format of an R-type instruction consists of the following
fields: opcode, rd (destination register), funct3, rs1 (source register 1), rs2 (source
register 2), funct7.

• I-Type Instructions I-type instructions are used for immediate operations. These
instructions involve an immediate value rather than a second source register. They
are commonly used for arithmetic operations with a constant, load instructions,
and certain control instructions. The format includes opcode, rd, funct3, rs1, and
a 12-bit immediate value.

• S-Type Instructions S-type instructions handle store operations where data is stored
from a register to memory. The format of S-type instructions includes fields for
opcode, funct3, rs1, rs2, and a 12-bit immediate value split between two parts for
addressing purposes.

• B-Type Instructions B-type instructions are used for conditional branches. These
instructions compare two registers and branch to a target address if the condition
is met. The format includes opcode, funct3, rs1, rs2, and a 12-bit immediate value
split between two parts for the branch offset.

• U-Type Instructions U-type instructions provide a large immediate value, which is
useful for upper immediate operations, such as loading a 20-bit upper immediate
value into a register. The format includes opcode, rd, and a 20-bit immediate value.

• U-Type Instructions J-type instructions are used for jump and link operations, where
the program counter (PC) is updated with a target address, and the return address
is stored in a register. The format includes opcode, rd, and a 20-bit immediate value
for the jump target.

1.3 Problem Statement and Objectives

In the scope of modern computing, the reliability and integrity of data are paramount,
especially in systems that demand high availability and fault tolerance. One prevalent
issue that threatens data integrity is the phenomenon of bit flips, where individual bits
in memory or storage spontaneously change state from 0 to 1 or vice versa. According
to [Rad24], bit flips can be caused by various factors, including cosmic rays, electromag-
netic interference, or manufacturing defects. These seemingly random errors can have
significant consequences, ranging from minor glitches to critical system failures.

A notable real-world incident highlighting the impact of bit flips is the Belgium election
mishap in 2003 [Rad24]. During the regional elections, a single bit flip in a computer’s
memory caused an incorrect vote tally, awarding an extra 4,096 votes to a candidate by
mistake. This error was only identified due to the presence of paper ballots, underscoring
the potential severity of bit-flip errors in electronic systems.

Given the increasing dependence on digital systems in critical applications such as
aerospace, medical devices, and financial systems, there is a compelling need for robust
mechanisms to ensure data integrity and system reliability. The RISC-V 32I architecture,
with its open-source and flexible design, presents an ideal platform to implement and
evaluate fault-tolerant strategies such as Triple Modular Redundancy (TMR).

The primary objectives of this project are:

1. Identify Critical Data Storage Components:



• Determine the key components within the RISC-V 32I architecture that are
most susceptible to bit flip errors and would benefit from enhanced fault tol-
erance.

• Specifically, focus on the Program Counter (PC), Register File, Instruction
Memory, and Data Memory.

2. Implement Triple Modular Redundancy (TMR):

• Design and implement TMR for the identified critical components.
• Replicate each component three times and integrate a majority voter to deter-

mine the correct output, mitigating the impact of single bit flip errors.

3. Develop and Verify Majority Voter Logic:

• Create a reliable majority voter circuit using the formula Output = AB + AC
+ BC to ensure accurate data retrieval from the triplicated components.

• Verify the functionality of the majority voter through simulation and test-
benches.

4. Evaluate Performance Metrics:

• Conduct comprehensive simulations using Xilinx’s FPGA design suite (Vivado)
to assess the impact of TMR on system performance, power consumption, and
thermal characteristics.

• Generate detailed timing reports, including total delay, net delay, and logic
delay of the longest path, with and without design optimization (opt_design
enabled).

• Compare the performance of the TMR-enhanced system against a non-redundant
baseline to quantify the overhead and benefits of fault tolerance.

5. Demonstrate System Reliability:

• Validate the effectiveness of the TMR implementation in preventing and cor-
recting bit flip errors.

• Ensure that the system can maintain reliable operation even in the presence of
faults, making it suitable for deployment in high-reliability applications.

By achieving these objectives, the project aims to enhance the robustness of the RISC-V
32I architecture, providing a resilient solution against bit flip errors and improving overall
system reliability.

2 Methodology
2.1 RISC-V 32I Architecture

The RISC-V 32I architecture is a minimalist, open-source instruction set architecture
(ISA) designed for simplicity and efficiency as stated in [Jou24]. It includes a variety of
components that work together to execute instructions efficiently. Below [Cai24] provides
Figure 4 which is an overview of the main components and their functions:



Figure 4: RISC-V 32I Architecture [Cai24]

2.1.1 Program Counter (PC)

The Program Counter (PC) holds the address of the next instruction to be executed. It
is updated after each instruction fetch to point to the next instruction, which could be
sequential or a result of a branch/jump instruction.

2.1.2 Adders

Adders are used within the architecture for several purposes, including incrementing the
PC and performing arithmetic operations. The PC adder specifically adds a constant value
(typically 4 for 32-bit instruction sets) to the current PC to fetch the next instruction.

2.1.3 Instruction Memory

Instruction memory stores the program instructions. It is accessed by the PC to fetch
the current instruction for decoding and execution. The instruction memory is typically
read-only during program execution.



2.1.4 Data Memory

Data memory is used to store and retrieve data required during program execution. It
can be accessed for both read and write operations. Data memory interactions occur via
load and store instructions.

2.1.5 Register File

The register file is a small, fast storage area consisting of a set of registers. The RISC-V
32I architecture includes 32 general-purpose registers (x0 to x31), each 32 bits wide. The
register file supports simultaneous reading from two registers and writing to one register
in a single cycle. Each register serves specific purposes, as outlined below:

• x0: The constant value 0

• x1: Return address

• x2: Stack pointer

• x3: Global pointer

• x4: Thread pointer

• x5 – x7, x28 – x31: Temporaries

• x8: Frame pointer

• x9, x18 – x27: Saved registers

• x10 – x11: Function arguments/results

• x12 – x17: Function arguments

2.1.6 Arithmetic Logic Unit (ALU)

The ALU performs arithmetic and logical operations. It takes two input operands and
produces an output based on the operation specified by the ALU control unit. Operations
include addition, subtraction, AND, OR, XOR, and comparisons.

2.1.7 ALU Control

The ALU control unit generates the necessary control signals to dictate the specific oper-
ation the ALU should perform. It interprets the operation code from the instruction and
sets the ALU operation accordingly.

2.1.8 Control Unit

The control unit is responsible for generating control signals that guide the flow of data
within the processor. It decodes the fetched instruction and determines the sequence of
operations required to execute it, including signal generation for the ALU, register file,
memory, and multiplexers.



2.1.9 Shifter

The shifter is a component within the ALU responsible for performing bitwise shift op-
erations (left shift, right shift). It shifts the bits of the operand as specified by the
instruction.

2.1.10 Multiplexers (Muxes)

Multiplexers are used to select between different data sources based on control signals.
Common uses include selecting ALU input operands, choosing between register data and
immediate values, and deciding between different branch/jump targets.

2.1.11 Flags

Flags are status indicators set by the ALU to reflect the result of an operation. Common
flags include zero (Z), carry (C), negative (N), and overflow (V). These flags are used for
conditional branching and other decision-making processes.

2.1.12 Bit Distribution

The RISC-V 32I architecture includes several instruction formats: R-type, I-type, S-type,
B-type, U-type, and J-type. Each format has a specific bit distribution, with fields like
opcode, register addresses, immediate values, and function codes.

Figure 3 illustrates the bit distribution for these instruction types.

2.2 TMR Majority Voting

Triple Modular Redundancy (TMR) is a fault-tolerant design methodology used to en-
hance the reliability of critical system components by mitigating the effects of hardware
faults. In the context of the RISC-V 32I architecture, TMR can be effectively applied
to data storage elements such as the Program Counter (PC), Register File, Instruction
Memory, and Data Memory to ensure the integrity and correctness of stored data.

Implementation of TMR in Data Storage

1. Triplication of Components: Each critical data storage component is replicated
three times. This includes triplicating the PC, Register File, Instruction Memory,
and Data Memory.

2. Voting Mechanism: A majority voter is used to compare the outputs from the three
replicated components and determine the correct value.

Majority Voting Process

• Input Signals: Identical input signals are sent to all three replicated components.

• Processing: Each component processes the input independently, whether it is incre-
menting the PC, accessing the Register File, or fetching data from memory.

• Voting: The outputs from the three components are compared by the majority
voter. The voting logic is based on the formula: Output = AB + AC + BC, where



A, B, and C are the outputs of the three replicated components. The truth table
for this logic is as follows:

A B C Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• Logic Gate Design: The logic gate design for the majority voter can be implemented
as shown in Figure 5. This design ensures that the output is determined by the
majority value of the inputs A, B, and C.

Figure 5: TMR Majority Voter

2.3 Project Implementation

The implementation of the RISC-V 32I architecture with Triple Modular Redundancy
(TMR) for critical data storage components involves several steps. This section outlines
the process of designing, simulating, and testing the system to ensure reliability and fault
tolerance.

2.3.1 RISC-V Implementation

All RISC-V Modules are implemented and each of these components is triplicated to form
the basis for TMR:

• Program Counter (PC)

• Register File

• Instruction Memory

• Data Memory



2.3.2 TMR Voter Implementation

Listing 1 shows the implementation of the TMR in Verilog code

1 module majority_voter (
2 input wire A,
3 input wire B,
4 input wire C,
5 output wire Output
6 );
7 assign Output = (A & B) | (A & C) | (B & C);
8 endmodule

Listing 1: "TMR Voter Implementation" in Verilog

2.3.3 Tools Used

Vivado: The design, synthesis, implementation, and simulation of the TMR-enhanced
RISC-V 32I architecture were conducted using Xilinx Vivado. Vivado provides compre-
hensive tools for FPGA design, including simulation, verification, and performance anal-
ysis. Alpha-Data ADM-PCIE-7V3 was chosen in the Vivado simulation configurations as
the simulation board since it is used mostly in the High-Performance Computing (HPC)
systems

2.3.4 Reports

• Outcome Report

The performance of the TMR-enhanced RISC-V 32I architecture was evaluated
based on several key metrics: timing, power consumption, and temperature.

– Timing Report:

∗ The timing report includes results for total delay, net delay, and logic delay
of the longest path.

∗ The report provides results for applying the voter on each of the modules
(PC, Register File, Instruction Memory, Data Memory) individually, and
then on all modules together.

∗ Timing analysis was conducted with the opt_design option enabled and
disabled to compare the impact of design optimization.

– Power Consumption:

∗ Power analysis was performed to measure the power consumption of the
system with TMR implemented.

∗ The power report includes static and dynamic power components.

– Temperature:

∗ Thermal analysis was conducted to ensure the system operates within safe
temperature limits.



• Collected Results Data

– Timing Analysis:

∗ Total Delay: The total delay measured the overall time taken for data to
propagate through the system.

∗ Net Delay: The net delay included the propagation delay through the
interconnecting wires.

∗ Logic Delay: The logic delay represented the time taken by the combina-
tional logic (e.g., the majority voter).

– Timing results were collected under two conditions:

∗ Without opt_design:
∗ Individual module application: Reported delays for each module with

TMR.
∗ Full system application: Reported delays for the entire RISC-V 32I archi-

tecture with TMR.
∗ With opt_design:
∗ Individual module application: Reported delays for each module with

TMR, showing improvements due to optimization.
∗ Full system application: Reported delays for the entire RISC-V 32I archi-

tecture with TMR, showing overall performance improvement.

– Power Consumption:

∗ The power report indicated an increase in power consumption due to the
triplication of components and the addition of the majority voter.

∗ The optimized design (opt_design enabled) showed a slight reduction in
power consumption compared to the non-optimized design.

– Temperature:

∗ The thermal report confirmed that the system operated within safe tem-
perature limits under both conditions.

∗ The temperature slightly increased with the implementation of TMR due
to higher power consumption but remained within acceptable bounds.

3 Results
1. Figure 6 shows the longest path logic delay when each of the voters is applied alone

on RISC-V in two cases: opt_design enabled and opt_design disabled. It can be
seen that the Instruction memory voter is responsible for the huge increase in the
logic delay. When opt_design was disabled the overall logic delay increased by
121.4%, while when opt_design was enabled, the overall delay decreased by 0.05%.

2. Figure 7 shows the longest path net delay when each of the voters is applied alone
on RISC-V in two cases: opt_design enabled and opt_design disabled. When
opt_design was disabled the overall logic delay increased by 38.4%, while when
opt_design was enabled, the overall delay increased by 63.9%.



Figure 6: Longest Path Logic Delay

Figure 7: Longest Path Net Delay

3. Figure 8 shows the longest path total delay when each of the voters is applied
alone on RISC-V in two cases: opt_design enabled and opt_design disabled. When
opt_design was disabled the overall logic delay increased by 42.7%, while when
opt_design was enabled, the overall delay increased by 60.6%.

Figure 8: Longest Path Total Delay

4. Figure 9 shows the power consumption when each of the voters is applied alone on
RISC-V and all of them combined. Figure 9 indicates an increase in the overall
power consumption with 17.1%.

5. Figure 10 shows all RISC-V Voters’ on-chip power distribution. 95% of the on-chip



Figure 9: Power Consumption

power was dynamic and 5% was static. The dynamic power was 8.732 W: 35% for
Signals and 65% for Logic.

Figure 10: All RISC-V Voters Power Distribution

6. Figure 11 shows the Junction Temperature when each of the voters is applied alone
on RISC-V and all of them combined. Figure 11 indicates an increase in the overall
Junction Temperature with 5.3%.

Figure 11: Junction Temperature

4 Discussion
The implementation of Triple Modular Redundancy (TMR) in the RISC-V 32I archi-
tecture demonstrated significant impacts on various performance metrics, including logic



delay, net delay, total delay, power consumption, and temperature. The results obtained
from the simulation using Vivado provide insights into the trade-offs between enhanced
fault tolerance and performance overhead.

Longest Path Logic Delay
Figure 6 illustrates the longest path logic delay when each of the voters is applied indi-

vidually to the RISC-V architecture, both with and without the opt_design optimization
enabled. The most notable increase in logic delay is attributed to the voter applied to the
Instruction Memory. When opt_design was disabled, the logic delay surged by 121.4%,
indicating a significant performance hit due to the complexity introduced by the voter.
However, when opt_design was enabled, the logic delay was reduced slightly by 0.05%,
suggesting that design optimization can effectively mitigate some of the performance
penalties associated with TMR.

Longest Path Net Delay
Figure 7 shows the longest path net delay under similar conditions. The net delay

increased by 38.4% without opt_design, reflecting the additional routing and intercon-
nect complexities introduced by the triplicated components and majority voter. With
opt_design enabled, the net delay further increased by 63.9%, highlighting that while op-
timization improves logic performance, it may inadvertently increase routing delays due
to the compact placement and increased fan-out of signals.

Longest Path Total Delay
The total delay, which encompasses both logic and net delays, is depicted in Figure

8. Without opt_design, the total delay increased by 42.7%, whereas with opt_design
enabled, the increase was more pronounced at 60.6%. This indicates that while optimiza-
tion can balance some aspects of performance, the overall complexity added by TMR still
results in a noticeable increase in total delay.

Power Consumption
Figure 9 presents the power consumption data for the RISC-V architecture with each

voter applied individually and all voters combined. The introduction of TMR led to a
17.1% increase in overall power consumption. This rise is expected due to the triplica-
tion of components and the additional logic required for the majority voting mechanism.
Notably, dynamic power, which accounts for 95% of the total power, was significantly
higher than static power, as shown in Figure 10. The dynamic power, primarily con-
sumed by signals and logic, reached 8.732 W, with 35% attributed to signals and 65% to
logic operations.

Junction Temperature
The thermal impact of TMR is illustrated in Figure 11, which shows a 5.3% increase

in junction temperature when all voters are applied. This increase is a direct consequence
of the higher power consumption and increased activity within the chip. Although the
temperature rise is moderate, it emphasizes the need for efficient thermal management in
systems employing TMR to prevent overheating and ensure reliable operation.

5 Conclusion
The implementation of Triple Modular Redundancy (TMR) in the single-cycle RISC-V
32I architecture has proven effective in enhancing fault tolerance and system reliability.
By addressing bit flip errors in critical data storage components such as the Program
Counter (PC), Register File, Instruction Memory, and Data Memory, TMR ensures the



system maintains accurate operation even in the presence of faults. This reliability is
crucial for high-availability systems where data integrity is paramount.

Our simulation and analysis using Xilinx Vivado revealed that TMR introduces sig-
nificant impacts on various performance metrics. The longest path logic delay showed a
substantial increase, especially when the voter was applied to the Instruction Memory,
with a 121.4% rise observed when opt_design was disabled. However, enabling design
optimization slightly mitigated this delay, reducing it by 0.05%. This indicates that op-
timization techniques can be effective in managing the complexities introduced by TMR,
although the trade-offs remain.

The net and total delays were also affected, with notable increases due to the added
complexity of triplicated components and majority voting logic. The net delay increased
by 63.9% with opt_design enabled, while the total delay saw a 60.6% rise. These results
highlight the balance between enhanced reliability and the performance overheads intro-
duced by TMR. Power consumption analysis indicated a 17.1% increase, primarily due
to dynamic power consumed by signals and logic. Additionally, the thermal impact was
evident, with a 5.3% increase in junction temperature, underscoring the importance of
efficient thermal management in TMR systems.

The study confirms that while TMR significantly enhances fault tolerance, it does
come with performance and power penalties. Design optimization techniques can partially
alleviate these issues, balancing the trade-offs between reliability and efficiency. This
makes TMR a viable solution for high-reliability applications where data integrity is
critical.

Future work could focus on implementing TMR in a pipelined version of the RISC-V
architecture. A pipelined RISC-V processor would potentially offer better performance
by overlapping the execution of multiple instructions, thereby reducing the performance
overhead associated with TMR in a single-cycle design. Exploring advanced optimization
techniques and alternative fault-tolerant strategies in a pipelined architecture could fur-
ther improve the balance between reliability and performance. This study paves the way
for the adoption of robust fault-tolerant systems in open-source architectures like RISC-V,
making them suitable for critical applications requiring high levels of data integrity and
system reliability.
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A Code samples
RISC-V Processor Module

1

2 (*DONT_TOUCH = "yes"*)
3

4 module processor(input clk, rst, output [31:0] RDout);
5 wire [31:0] PCout,rData1, aluMUX_out, immRes, data_out, alu_out,
6 inst, PCin, rData2;
7 wire [32:0] branch_sum, PC_counter;
8 wire [1:0] jump;
9 wire [2:0] ALUop;

10 wire regWrite, memRead, MemToReg, memWrite,Branch,ALUsrc,
11 output_branch, terminate, carryFlag, zeroFlag, overflowFlag,
12 signFlag;
13 wire [3:0] ALUsel;
14 wire [31:0]addMUX1_out, MUX_out, dmemMUX_out;
15

16 //wire [31:0] w1,w2,w3,w4,w5;
17

18 PC_TMR pc_tmr (clk,rst, PCin, PCout);
19 //PC pc(clk, rst, 1,PCin, PCout);
20

21 InstMem instmem(PCout[15:0], inst);
22 Reg_File RF( inst[`IR_rs1], inst[`IR_rs2], inst[`IR_rd], clk,
23 rst, regWrite , RDout, rData1, rData2);
24 prv32_ALU ALU( rData1,aluMUX_out , inst[`IR_shamt], alu_out,
25 carryFlag, zeroFlag, overflowFlag, signFlag, ALUsel);
26 DataMem datamem(clk, memRead, inst[`IR_funct3],memWrite,
27 alu_out [7:0], rData2[31:0],data_out [31:0]);
28

29

30 rv32_ImmGen Imm(inst,immRes);
31 Rd_control RD(inst[`IR_opcode],immRes, PC_counter[31:0],
32 branch_sum[31:0], dmemMUX_out, RDout);
33 Control_unit CU(inst[`IR_opcode], terminate, regWrite,
34 memRead, MemToReg, memWrite,Branch,ALUsrc,ALUop,jump );
35 ALU_controlUnit ALU_CU( ALUop, inst[`IR_funct3],inst[30],
36 ALUsel);
37 Branch_control BC( inst[`IR_funct3], Branch,zeroFlag,
38 overflowFlag, carryFlag, signFlag, output_branch);
39

40

41 Adder PC_add(PCout,4,0, PC_counter);
42 Adder branch_add(PCout,immRes,0, branch_sum);
43 MUX32 PC_MUX (PCout,MUX_out, terminate,PCin);
44 MUX32 ALU_MUX (immRes,rData2, ALUsrc,aluMUX_out);



45 MUX32 dMem_MUX (data_out,alu_out, MemToReg,dmemMUX_out);
46 MUX32 adderMUX1 (branch_sum [31:0],PC_counter [31:0],
47 output_branch,addMUX1_out [31:0]);
48 MUX32_3 MUX(addMUX1_out [31:0],branch_sum [31:0],
49 alu_out[31:0], jump [1:0], MUX_out [31:0]);
50

51 endmodule

RISC-V Control Unit Module

1

2 (*DONT_TOUCH = "yes"*)
3

4 `include "defines.v"
5

6 module Control_unit(input [4:0] inst,
7 output reg terminate,
8 output reg regWrite,
9 output reg memRead,

10 output reg MemToReg,
11 output reg memWrite,
12 output reg Branch,
13 output reg ALUsrc,
14 output reg [2:0]ALUop,
15 output reg [1:0]jump );
16

17 always @(*)begin
18 //fetching the inst and outputting the signals
19 //depending on the instruction
20 case(inst)
21 //incase of branch the branch signals is 1 and it reads
22 //from the memory
23 `OPCODE_Branch:begin
24 Branch =1;
25 regWrite =0;
26 MemToReg=0;
27 memWrite=0;
28 memRead=1;
29 ALUsrc=0;
30 terminate =0;
31 jump = 2'b00;
32 ALUop= 3'b001;
33 end
34 //in case of load it reads from the memory and we allow
35 //writing to the register and we use the immediate generator
36 `OPCODE_Load :begin
37 Branch =0;
38 regWrite =1;
39 MemToReg=1;



40 memWrite=0;
41 memRead=1;
42 ALUsrc=1;
43 terminate =0;
44 jump = 2'b00;
45 ALUop= 3'b000;
46 end
47 // incase of store we allow writing to the memory and
48 //register and we use the immediate generator
49

50 `OPCODE_Store :begin
51 Branch =0;
52 regWrite =0;
53 MemToReg=1;
54 memWrite=1;
55 memRead=0;
56 ALUsrc=1;
57 terminate =0;
58 jump = 2'b00;
59 ALUop= 3'b000;
60 end
61 // incase of JALR we allow writing to the register,
62 //we use the immediate generator and we make the jump 2
63 //which we assigned to JALR
64

65 `OPCODE_JALR :begin
66 Branch =0;
67 regWrite =1;
68 MemToReg=0;
69 memWrite=0;
70 memRead=0;
71 ALUsrc=1;
72 terminate =0;
73 jump = 2'b10;
74 ALUop= 3'b000;
75 end
76 // incase of JAL we allow writing to the register,
77 //we use the immediate generator and we make the
78 //jump 1 which we assigned to JAL
79

80 `OPCODE_JAL :begin
81 Branch =0;
82 regWrite =1;
83 MemToReg=0;
84 memWrite=0;
85 memRead=0;
86 ALUsrc=1;
87 terminate =0;



88 jump = 2'b01;
89 ALUop= 3'b000;
90 end
91 // incase of Arithmatic I we allow writing to the
92 //register, we use the immediate generator
93

94 `OPCODE_Arith_I :begin
95 Branch =0;
96 regWrite =1;
97 MemToReg=0;
98 memWrite=0;
99 memRead=0;

100 ALUsrc=1;
101 terminate =0;
102 jump = 2'b00;
103 ALUop= 3'b111;
104 end
105 // incase of Arithmatic R we allow writing to the register
106

107 `OPCODE_Arith_R :begin
108 Branch =0;
109 regWrite =1;
110 MemToReg=0;
111 memWrite=0;
112 memRead=0;
113 ALUsrc=0;
114 terminate =0;
115 jump = 2'b00;
116 ALUop= 3'b010;
117 end
118 // incase of AUIPC we allow writing to the register
119

120 `OPCODE_AUIPC :begin
121 Branch =0;
122 regWrite =1;
123 MemToReg=0;
124 memWrite=0;
125 memRead=0;
126 ALUsrc=0;
127 terminate =0;
128 jump = 2'b00;
129 ALUop= 3'b000;
130 end
131 // incase of Load upper immidiate we allow writing to the
132 //register, we use the immediate generator
133

134 `OPCODE_LUI :begin
135 Branch =0;



136 regWrite =1;
137 MemToReg=0;
138 memWrite=0;
139 memRead=0;
140 ALUsrc=1;
141 terminate =0;
142 jump = 2'b00;
143 ALUop= 3'b100;
144 end
145 // incase of system we make the program use the same
146 //PC without anychange
147

148 `OPCODE_SYSTEM :begin
149 Branch =0;
150 regWrite =0;
151 MemToReg=0;
152 memWrite=0;
153 memRead=0;
154 ALUsrc=0;
155 terminate =1;
156 jump = 2'b00;
157 ALUop= 3'b110;
158 end
159 endcase
160

161 end
162

163 endmodule
164

RISC-V Register File Module

1 (*DONT_TOUCH = "yes"*)
2

3 module Reg_File(input[4:0] rs1, rs2, rd, input clk,
4 rst, regwrite ,input [31:0] writeData, output [31:0]rData1, rData2);
5

6 wire [31:0] registers [0:31];
7 // wire [31:0] registers1 [0:31];
8 // wire [31:0] registers2 [0:31];
9 // wire [31:0] registers3 [0:31];

10

11 wire [31:0] load;
12 //assigning the load if and only if the regWrite is 1
13 assign load = regwrite ?( (rd!=0) ?(1 << rd):(0) ) : 0;
14 // loop to iterate the 32 bits
15 generate
16 genvar i;



17 for (i=0; i<32; i=i+1) begin
18

19 Register register ( clk, rst, load[i],writeData, registers[i]);
20 // Register register1 ( clk, rst, load[i],writeData, registers1[i]);
21 // Register register2 ( clk, rst, load[i],writeData, registers2[i]);
22 // Register register3 ( clk, rst, load[i],writeData, registers3[i]);
23 // TMR t2( registers1[i],registers2[i],registers3[i], registers[i]);
24

25 end
26 endgenerate
27 assign rData1 = registers[rs1];
28 assign rData2 = registers[rs2];
29

30 endmodule
31

32
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