GEORG-AUGUST-UNIVERSITAT
E GOTTINGEN

Uni G6/GWDG

HPS

julian.kunkel@gwdg.de

Julian Kunkel

Welcome to the Practical Course on High-Performance Computing

programming

- effluency Op operMP

CUDAManyCore

OpenCL
Libraries supercomputer

enjoyful

2024-04-17

Practical Course on High-Performance Computing


julian.kunkel@gwdg.de

Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming

Conclusions

Recording!

B This broadcast channel will be recorded via BBB
» This includes your video, audio (if shared) and chat messages
» We can start/stop video recording if necessary

B Recordings will be available 1-2 days later

B We may publish selected trainings on our YouTube channel

» Will include video, audio if shared
» Feel free to use the chat in broadcast if you have questions to lectures
It won’t be rendered for the YouTube video

Julian Kunkel Practical Course on High-Performance Computing

2/49



Organization of the Module  Scientific Method  High-Performance Computing Distributed Computing  Parallel Computing Programming  Conclusions
00000000 0000000 00000 000000 000000000 00000000 000

Outline

Organization of the Module
Scientific Method

High-Performance Computing

Parallel Computing
Programming

Conclusions

Julian Kunkel Practical Course on High-Performance Computing 3/49

B Distributed Computing
6



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

90000000

Learning Objectives of the Module

Construct parallel processing schemes from sequential code using MPI and
OpenMP

B Justify performance expectations for code snippets

Julian Kunkel

Sketch a typical cluster system and the execution of an application

Characterize the scalability of a parallel app based on observed
performance

Analyze the performance of a parallel application using performance
analysis tools

Describe the development and executions models of MPI and OpenMP
Construct small parallel apps that demonstrate features of parallel apps
Demonstrate the usage of an HPC system to load existing software
packages and to execute parallel apps and workflows

Demonstrate the application of software engineering concepts

Practical Course on High-Performance Computing 4/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
Oe000000

Organization of the Module
B Attendees
» GWDG academy users
* Researchers, PhD students, users of HPC systems in the NHR and local
» University students
* Need to develop a software after the course to obtain their credits
* Details will be explained at the end of the week
B Webpage https://hps.vidio.org/teaching/summer_term_2024/pchpc
provides
» Links to Slides, exercise sheets and more
B Communication via two BBB channels
» Broadcast: you should listen to this one the whole week
e The trainer will present slides, walk through exercises, share suggestions
* Do not share video, note that we record this channel
» Breakout: room for group work and general support requests during sessions
B For university attendees: may use StudIP for asynchronous communication
» We use it for announcements
» Please use it for any purpose around the topic!

Julian Kunkel Practical Course on High-Performance Computing 5/49


https://hps.vi4io.org/teaching/summer_term_2024/pchpc

Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
00®@00000

Organization of the Module

B Block course: 1 week of training (this week)
» Mix of lecture, hands-on tutorials and guided exercises
» May contain introductory and harder tasks
» You can take a break anytime as necessary (particularly during guided
exercises)
B Group work and community (30 min)
» Learning in a virtual environment is difficult, therefore, we form groups!
» Imagine you sit in a room with 4 people to share ideas and work together
» The group should stick together in a breakout room the whole week
» We will now organize teams of 5 attendees
Join the Breakout BBB session
Room 1-9 are reserved for GWDG-Academy attendees
Room 10-11 are for DLR attendees
Room 12+ are for University attendees
Join a random room with < 5 attendees - or with peers you know
A Work on the "Welcome" groupwork (next slide)

Julian Kunkel Practical Course on High-Performance Computing 6/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
000e0000

Group Work: Welcome

B Tasks:

Introduce yourself to your peers and describe with one sentence why you join
this course
Have one of you share the screen of the course

B Time: 25 min

B Organization: breakout groups - please use your mic and chat

Julian Kunkel Practical Course on High-Performance Computing 7/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
0000e000

Support Structure

B Support request takes place primarily in the Breakout BBB
» This channel will never be recorded
» Ask questions to colleagues and to us
» We will support your learning journey but YOU are responsible for it
B Utilize screen sharing (similarly as we would if in the same room)
B L1: Try to resolve issues in your breakout group with your peers
» Please use your microphone, share screen and work together (on issues)
» It is beneficial for learning
B L2: Ask questions in the global breakout chat
» We have trainers that will reply to you, maybe other peers will reply too!
B L3: If breakout chat doesn't help, a trainer will connect to your breakout
group
B If we realize that the issue should be given to all, the trainer will use the
broadcast channel to demonstrate how the issue can be resolved

Julian Kunkel Practical Course on High-Performance Computing 8/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
00000e00

A Typical Session

Trainer gives an introduction to the topic
» May include some short/small group works (for your breakout group)
Trainer may give a tutorial to overcome introductory obstacles

» Step-by-step walkthrough
» We provide an exercise sheet describing the steps and giving an introduction

Attendees work on tasks individually and in their breakout group

» We provide an exercise sheet
» Attendees should store their results (e.g. in a Git repository)

A At the end of the session volunteers may share results on broadcast channel

Julian Kunkel Practical Course on High-Performance Computing 9/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
000000e0

Credits

B This course can be taken via the following modules
» Modul M.Inf.1829: Praktikum High-Performance Computing (6C)
Modul B.Inf.1803: Fachpraktikum | (5C)
Modul B.Inf.1804: Fachpraktikum Il (5C)
Modul B.Inf.1805: Fachpraktikum Ill (5C)
Modul B.Inf.1833: Fachpraktikum Data Science (9C)
Modul B.Inf.1834: Fachpraktikum Data Science | (klein) (5C)
» Modul B.Inf.1835: Fachpraktikum Data Science Il (klein) (5C)

B Of these, only M.Inf.1829 is graded

B Credits depend on the chosen module

vvyvyYVvyy

B Make sure to register for the one you want

Julian Kunkel Practical Course on High-Performance Computing 10/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
0000000e

Learning Outcomes

After the session, a participant should be able to:
B Characterize distributed, parallel computing and HPC
B Describe how the scientific method relies on HPC
B Sketch generic parallel/distributed system architectures
B Sketch a simple program for vector addition using pseudocode

Julian Kunkel Practical Course on High-Performance Computing 11/49



Organization of the Module  Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming  Conclusions
00000000 @®000000 00000 000000 000000000 00000000 000

Outline

Scientific Method

Julian Kunkel Practical Course on High-Performance Computing 12/49



Qrganizatiqn of the Module  Scientific Method High-Performance Computing pistributed Computing  Parallel Computing Programming  Conclusions

©O®@00000

Scientific Method Start

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Think of
Interesting

Questions

‘Why does that
pattern occur?

Develop '

General Theories
General theories must be
consistent with most or all

available data and with other

current theories.

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions Hypotheses

Relevant data can come from the What are the general
literature, new observations, or causes of the
formal experiments. Thorough phenomenon | am

testing requires replication to | . wondering about?

verify results.
Figure: Based on “The Scientific Method as an Ongoing Process”, ArchonMagnus
https://en.wikipedia.org/wiki/Scientific_method

Julian Kunkel Practical Course on High-Performance Computing 13/49

Formulate

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...



https://en.wikipedia.org/wiki/Scientific_method

rformance Computing D

ion of the Module  Scientific Method

ibuted Computing
)O ©00e0000 OcC DO

Pillars of the Scientific Method

Science

Theory
Experimentation

Julian Kunkel Practical Course on High-Performance Computing 14/49



Organization of the Module  Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming  Conclusions
00000000 ©000e000 00000 000000 000000000 00000000 000

Pillars of Science: Modern Perspective

Science

Theory
Simulation

Experimentation

Julian Kunkel Practical Course on High-Performance Computing 15/49



Organization of the Module Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming

000e00

Conclusions

Computer-Aided Simulation

Modelling and Simulation of the world replaces traditional experiment

Computer simulation is an instrument empowering scientists with

Julian Kunkel

arbitrary temporary and spatial resolutions

manipulation of arbitrary (model) parameters

reproducibility

conducting experiments that are infeasible due to ethics, risks or costs

» Impact of explosion of nuclear power plant
» Impact of poison to humans
» Influence of brain neurons

Prediction of the future

» Weather forecast, climate
» COVID19 infection progression ...

Practical Course on High-Performance Computing

16/49



Organization of the Module Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming
000080

Conclusions

Simulation is Compute and Memory-Intense

Examples

B Simulation of billions of neurons requires certain memory
B Modelling of plane engines consist of billions of "elements"

B Al-Models compute with 1000s of GPUs
M Deadline of simulations

» Weather prediction requires high resolutions but must complete faster than
24h

Julian Kunkel Practical Course on High-Performance Computing

17/49



Organization of the Module Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming  Conclusions
000080

Simulation is Compute and Memory-Intense

Examples
B Simulation of billions of neurons requires certain memory
B Modelling of plane engines consist of billions of "elements"

B Al-Models compute with 1000s of GPUs
M Deadline of simulations

» Weather prediction requires high resolutions but must complete faster than
24h

How can we cope with the huge demand for compute/storage resources?

B A single PC/server/workstation is not able to solve compute task

Julian Kunkel Practical Course on High-Performance Computing 17/49



Organization of the Module Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming  Conclusions
000080

Simulation is Compute and Memory-Intense

Examples

B Simulation of billions of neurons requires certain memory
B Modelling of plane engines consist of billions of "elements"

B Al-Models compute with 1000s of GPUs
B Deadline of simulations
» Weather prediction requires high resolutions but must complete faster than

24h
How can we cope with the huge demand for compute/storage resources?
B A single PC/server/workstation is not able to solve compute task
B We need more performance ... High performance ...
High-Performance Computation

Julian Kunkel Practical Course on High-Performance Computing 17/49



Organization of the Module Scientific Method High-Performance Computing  Distributed Computing  Parallel Computing  Programming  Conclusions
O0000e

Relation of the Scientific Method to Simulation

Simulation models real systems to gain new insight
B Instrument to make observations, e.g., high-resolution and fast timescale
B Typically used to validate/refine theories, identify new phenomen
B Classical computational science: hard facts (based on models)

B The frontier of science needs massive computing resources on
supercomputers

B Data-intensive sciences like climate imposes challenges to data handling,
too

Julian Kunkel Practical Course on High-Performance Computing 18/49



Organization of the Module  Scientific Method  High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
00000000 0000000 @®0000 000000 000000000 00000000 000

Outline

High-Performance Computing

Julian Kunkel Practical Course on High-Performance Computing 19/49



Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
O@000

High-Performance Computing

Definitions
B HPC: Field providing massive compute resources for a computational task
» Task needs too much memory or time for a normal computer
= Enabler of complex challenging simulations
B Supercomputer: aggregates power of many compute devices

» In the past large monolithic computers such as the Cray
» Nowadays: 100-1,000s of servers that are clustered together
» Comparison: Car is to Formula-1 like Computer to Supercomputer

S

Julian Kunkel Practical Course on High-Performance Computing 20/49



Organlzatlon of the Module Scientific Method  High-Performance Computing I?l;,trrlrbruyed Computing Fjarrgllrerl pgmputlng Programmlng Conclusions

0000000 [ele] lele] 000000 000000000 00000000 000

Introducing: One of the Fastest Supercomputers of the World

FUGAKU at RIKEN Center for Computational Science
M Nodes/Servers: 158,978
7.6 Million CPU Cores

B Compute Peak: 540 Petaflop/s
(10%°)

B Memory: 5 Petabyte

B Storage: 150 Petabyte HDDs

B Energy Consumption: 30 Megawatt
B Costs: 1 Billion (program) $ REN
The Top500 is a list of the most performant supercomputers

Julian Kunkel Practical Course on High-Performance Computing 21/49


http://www.top500.org

Organization of the Module Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
[elefe] le]

Supercomputers & Data Centers

Data center User
Node Node OH”
( Memory ) ( Memory )
NVM

Internet

Central storage \

Credits: STFC

JASMIN Cluster at RAL / STFC

Used for data analysis of the Centre for
Environmental Data Analysis (CEDA)

Julian Kunkel Practical Course on High-Performance Computing 22/49



ic Method  High-Performance Computing Di
D [elefole] ) O

ion of the Module  Sci Pa Pr ing Conclusions
) o oc¢ oc o 0o

HPC in Gottingen

GWDG: unversity data center and providing innovative technology solutions

B HPC sytems for local scientists, German wide and for DLR

B Integrates research for HPC systems and services

Julian Kunkel Practical Course on High-Performance Computing 23/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing Parallel Computing Programming Conclusions
00000000 0000000 00000 @®00000 000000000 00000000 000

Outline

B Distributed Computing

Julian Kunkel Practical Course on High-Performance Computing 24/49



Organization of the Module  Scientific Method  High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
0!

Distributed Computing
Field in computer science that studies distributed systems!
Definition
B System which components? are located on different networked computers
B Components communicate and coordinate actions by passing messages
B Components interact to achieve a common goal
B Wider sense: autonomous processes coordinated by passing messages

Characteristics
B Distributed memory: components have their own (private) memory

B Concurrency of components: different components compute at same time
B Lack of a global clock: clocks may diverge

B Independent failure of components, e.g., due to power outage

Yhttps://en.wikipedia.org/wiki/Distributed_computing
2In this context, means a component from a software architecture.

Julian Kunkel Practical Course on High-Performance Computing 25/49


https://en.wikipedia.org/wiki/Distributed_computing

Organization of the Module  Scientific Method
00000000 0000000

High-Performance Computing
00000

Distributed Computing Parallel Computing Programming Conclusions
00@000 000000000 00000000 000

Example Distributed System and Distributed Program
B A distributed program (DP) runs on a distributed system
» Processes are instances of one program running on one computer
B A distributed application/algorithm may involve various DPs/vendors
Hardware perspective

S .
@ | Processor & | Processor
2| Memory 2| Memory
€ S
5] 5]
(&) (&)
I I
| Network(s)
|
@ | Processor
2| Memory
£
S |
(&)
Julian Kunkel

Software perspective (mapped to hw)

: Program 3
i Process : i Process Process }
IMessages : :

Practical Course on High-Performance Computing 26/49



Organization of the Module  Scientific Method  High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
OO

Example Distributed Applications and Algorithms

Applications
B The Internet and telecommunication networks
B Cloud computing
B Wireless sensor networks
B The Internet of Things (IoT) - “everything is connected to the Internet”

Algorithms (selection from real world examples)
B Consensus: reliable agreement on a decision (malicious participants?)
B Leader election
B Reliable broadcast (of a message)
B Replication

Julian Kunkel Practical Course on High-Performance Computing 27/49



ion of the Module  Sci

Pgrformance Computing

Di
oc

'bruted Computing P

Pro

ing  Conclusions
o 000

Cloud Computing

Definition
B On-demand availability of

computer system resources (data
storage and computing)

» Without direct active
management by the user

B Typically relates to distributed
resources

» provided by data centers
» to many users
» over the Internet

B Fog/Edge Computing: brings cloud
closer to user

Julian Kunkel

Practical Course on High-Performance Computing

Servers

Laptops

[

Application

Desktops

Monitoring Collaboration K

Finance
Communication

3

Database

Platform

Identity

Queue
Object Storage Runtime

Infrastructure

a «

Network
Block Storage

Compute

Phones Tablets

Cloud computing

Image source: Frank, B. Wilson - CloudNINE, https://en.wikipedia.org/wiki/Cloud_computing

28/49


https://en.wikipedia.org/wiki/Cloud_computing

Organization of the Module  Scientific Method  High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
L]

Challenges using Distributed Systems

B Programming: concurrency introduces new types of programming mistakes
» It is difficult to think about all cases of concurrency
» Must coordinate between programs
» No global view and debugging
B Resource sharing: system shares resources between all users
B Scalability: system must be able to grow with the requirements
» numbers of users/data volume/compute demand
» retain performance level (response time)
» requires to add hardware, though
B Fault handling: detect, mask, and recover from failures
» Failures are inevitable and the normal mode of operation
B Heterogenity: system consists of different hardware/software
B Transparency: Users do not care about how/where code/data is
B Security: Availability of services, confidentiality of data

Julian Kunkel Practical Course on High-Performance Computing 29/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing Parallel Computing Programming Conclusions
00000000 0000000 00000 000000 @®00000000 00000000 000

Outline

Parallel Computing

Julian Kunkel Practical Course on High-Performance Computing 30/49



Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
L

Definition: Parallel Computing

Many calculations or the execution of processes are carried out simultaneously?
Characteristics
B Goal is to improve performance for an application
» Either allowing to solve problems within a deadline or increased accuracy
B Application/System must coordinate independent parallel processing
» There are various programming models for parallel applications
B Different architectures speed up computation: may use distributed systems

Levels of parallelism (from hardware perspective)
B Bit-level: process multiple bits concurrently (e.g., in an ALU)

B Instruction-level: process multiple instructions concurrently on a CPU
B Data: run the same computation on different data

B Task: run different computations concurrently
3https://en.wikipedia.org/wiki/Parallel_computing

Julian Kunkel Practical Course on High-Performance Computing

31/49


https://en.wikipedia.org/wiki/Parallel_computing

Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing
000000

Programming

Conclusions

Bit-Level Parallelism: Vector Parallelism with SIMD

B SIMD = Single instruction multiple data

» Apply the same operation on multiple data
B Example: Vector addition: a=b + ¢

» Cc; = a; + b, for all vector elements i

B AVX-512 works on 8x 64-bit elements in parallel,
i.e., run same operation on all

» The example Xeon can do 8xFP64 FMA
(@a=a+ (b-c)) percycle

Julian Kunkel Practical Course on High-Performance Computing

il

32/49



Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

0®@0000

Parallel Architectures

Shna erchce syystems are a mix of two paradigms:

memo Distributed memory systems (again!)

@ | Processor Processor Processor 5| Processor 8| Processor
= | | | 2| Memory 2| Memory
g' | Network | E E
o ‘ o Extra HW o
o Memory \ \
| Network(s) |
\
B Processors can access joint 5| Processor
memory; Enables é. Memory
communication/coordination S
B Cannot be scaled up to any size B Processor only see own memory
B Expensive to build one big system B Performance of the network is key
B Programming with OpenMP

Julian Kunkel

B Programming with Message Passing

Practical Course on High-Performance Computing 33/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing Parallel Computing
00000000 0000000 00000 000000 ©0O000e0000

Multicore CPU: Xeon Platinum 8280M Cascade Lake-SP

Performance § 0 1808 80t $08t t 3 fudt
B FLOPs: 32 - frequency - cores srao pomas SR S umao  peeas
CBDMA PCle x16
» 28 cores, 2.7 GHz (1.8 GHz PR | I | SR | | (S— |
AVX5 1 2 ) Core Core Core Core Core Core
:> 2.2 TFLOPS .::u nnnnnnn rEvR oL reva (111 aoeu ey LI P s.:m/::
. 6 Channel DDR4, maXx 2933 GHZ Core Core Core Core Core Core
» Th roughpu t 131 GB/s . w:mmu xo /e b v aopiLs v aopiL v .m,f:m .
B Power: 205 Watt o ||| core core || || core core || |} =
Archi tecture (| e PR — | [ | (- -, P— .
. EaCh core exeCUteS COde Core Core Core Core Core Core
independent|y LLLLL | i | [ P —— | I | - — R ([ | S —
» Feature rich: speculative
i Core Core Core Core Core Core
execution,... L S gy = L_§ —l L.

Bl Each core has two AVX-512 units
» Vector parallelism on 512 bits

B Summary: complex architecture, heavy cores, optimized for latency

Julian Kunkel Practical Course on High-Performance Computing

34/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing Parallel Computing Programming Conclusions
o] (ele]e] (ele]e]

00000000 0000000 00000 000000 00000e@000 00000000

Manycore GPU: NVIDIA A100
Accelerated computing is outside of this course, concepts are transferrable
Performance
B FLOPs: 9.7 TFLOPs FP64

» 312 TFLOPs Tensor (FP16)
» 1.41 GHz
B 40 GByte HBM2 memory

» 10 memory channels
» Throughput 1600 GB/sec
B Power: 400 Watt
Architecture
B 128 Streaming
multiprocessors

» Each with 32 FP64 cores
= 4096 cores per GPU
B Summary: Simple cores, optimized for throughput
B Problem: deep pipeline, higher latency, costly startup time of program

Julian Kunkel Practical Course on High-Performance Computing 35/49




Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
0000e0

Parallel Programs

B A parallel program runs on parallel hardware
In the strict sense: A parallel application coordinates concurrent processing

Processor provides all parallelism levels

Schema of a multicore processor B Multiple ALU/other units
1 . . . .
S Core Core B Pipelining of processing stages
8 Cache Cache B SIMD: Single Instruction - Multiple Data
Q Instr. | Data Instr. |Data
g_ — 1 - — 1 » Same operation on multiple data
o | Fast bus{Net\Nork | » Instruction set: SSE, AVX
é Memory Controller Bl Multiple cores
i » Each with own instruction pointer
Memory B May use (GPU) accelerators

» CPU in charge of processing

https://en.wikipedia.org/wiki/Microarchitecture

Julian Kunkel Practical Course on High-Performance Computing 36/49


https://en.wikipedia.org/wiki/Microarchitecture

Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
00000e

Group Work

B Think about an application of parallel computation
» Describe the use case briefly

B What computation is performed in parallel?

B Which architecture / hardware presented would you like to use for it?
B Time: 5 min

B Organization: breakout groups - please use your mic or chat

Julian Kunkel Practical Course on High-Performance Computing 37/49



Organization of the Module  Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions
L

Challenges

B Programming: imports errors from distributed computed +
» Low-level APIs and code-optimization to achieve performance
» Performance-optimized code is difficult to maintain
» Expensive and challenging to debug 1’000 concurrently running processes
» Utilizing all compute resources efficiently (load balancing)
» Grand challenges are difficult to test, as nobody knows the true answer
B Performance engineering: Optimizing code is main agenda for HPC
» Covered in this course
B Scalability: stricter than distributed systems
» Strong-scaling: same problem, more parallelism shall improve performance
» Weak-scaling: data scales with processors, retain time-to-solution
B Environment: bleeding edge and varying hardware/software systems
» Special-purpose hardware (FPGA/ASIC Application-Specific Integrated Circuit)
» Limited knowledge to administrate, use, and to compare performance

Julian Kunkel Practical Course on High-Performance Computing 38/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming Conclusions
00000000 0000000 00000 000000 000000000 90000000

Outline

B Programming

Julian Kunkel Practical Course on High-Performance Computing 39/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming
L o]

Conclusions

Programming

B Let's investigate how to create a “parallel” program

Abstractions and examples

B Sequential code to compute vector addition
B Automatically parallelizable code for shared memory using OpenMP
» Parallelizes code based on user-provided directives

B Manual parallelization for distributed memory using Message passing

Julian Kunkel Practical Course on High-Performance Computing

40/49



ion of the Module  Sci ic Method  Hi
o o

Performance Computing  Distributed Computing

Conclusions
00

Vector Addition: Sequential CPU Code

Compute function

-

void vecAdd(int * restrict a, int * restrict b, int * restrict c, int n){
for(int i=0; i < n; i++){
c[i] = a[i] + b[il;

oo W N
-

Execution

1 int a[8];

int b[8];

int c[8];

// fill a and b somehow
vecAdd(a, b, c, 8);

[S/ B VI N

B Both codes may be placed in the same file = we call this a "single source"

Julian Kunkel Practical Course on High-Performance Computing 41/49



Performance Computing  Di

S i i u'ged Computing

Directive-Based Parallelism using OpenMP: CPU Code

Compute function

void vecAdd(int * restrict a, int * restrict b, int * restrict c, int n){
//Preprocessor directive telling compiler to parallelize for loops
#pragma OMP parallel for
for(int i=0; i < n; i++){
c[i] = al[il + b[i];

-

N o o W N

}

Bl The same code as before, just compile with -fopenmp...

Execution

1 int a[8];

int b[8];

int c[8];

// fill a and b with values ...
vecAdd(a, b, c, 8);

g W N

Julian Kunkel Practical Course on High-Performance Computing 42/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming

00000000 0000000 00000 000000 000000000 00008000

Conclusions

Message Passing
Definition
B Message passing is the sending of a message to a process*
B What: any data from the memory of the sender

B How: Programmer explicitly requests send/recv
Content of a message

B Header (Sender, receiver, type®)

B Data (from memory)
Addressing

MW How to define to whom | sent, from whom to receive?

» Addressing via "process number": Rank 0 - (N-1)
» Processes are enumerated upon start

4The general definition in distributed systems is more generic
>Distinguishs different messages

Julian Kunkel Practical Course on High-Performance Computing

43/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming Conclusions
00000000 0000000 00000 000000 000000000 00000e00 000

Example Execution of an Message Processing Program

B Processes are instances of an application
» Executed on different computers
» May execute the same or different code
» Addressing via enumeration of the processes

B Different applications can be executed concurrently

Hardware perspective Software perspective
@ | 'Processor @ | [ Processor _ ! Program3 i
E 5 : Process H : Process Process :
g_ Memory E_ Memory ! |Messages | : :
i Process H
[<] o : H :
3 | [Extakw] S| ! Program2 | :
‘ — R P B —
| Network(s) | | Messages |
| S |
Processor i
Memory Process

Computer

Julian Kunkel Practical Course on High-Performance Computing 44/49




Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming
[e]e] o}

Conclusions

Programming with Message Passin
B Code of processes of the program define how they cooperate
B Important standard: The Message Passing Interface (MPI)
» MPI implementations are a library with communication functions
Single Program Multiple Data (SPMD)
B SPMD: A single binary program created from one source code
B Every process of a program runs on different data

Example message passing

int Rank = getRank(); // Determine my rank
if(Rank == 0){

// Send message (18 bytes to Rank 1)

send(1, 18, "Hello from rank 0");
}else if(Rank == 1){

char data[100];

// Receive message from Rank 0

receive(0, 18, data);

printf("ss\n", data);

© ® N o g W N e

H
o
-

Julian Kunkel Practical Course on High-Performance Computing

45/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing Programming
[e]e]e] ]

Conclusions

Concurrent Execution
B Assumption: our example program is executed with two processes

» Instructions of both processes are executed concurrently and independent
Executed code

Prozess 0 Prozess 1
int rang = getRank(); // returns 0 int rang = getRank(); // returns 1
if(rang == 0){ if(rang == 0){
send(1, 18, "Hello from rank 0");
lelse... Jelse if(rang == 1){
e

Ss char data[100];
Qge receive(0, 18, data);
printf("%s\n", data);

} }
B Semantics of message exchange is defined by operation/function

» Receive must block until a suitable message is received

» Sending might complete before message is actually received/processed
B Program code is parallelizable if any paralell and concurrent execution

path leads to the same solution

Julian Kunkel Practical Course on High-Performance Computing

46/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing  Programming Conclusions
00000000 0000000 00000 000000 000000000 00000000 000

Outline

Conclusions

Julian Kunkel Practical Course on High-Performance Computing 47/49



Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing ~ Programming Conclusions
L Je}

Computational Science
B When we talked about computer-aided simulation, we meant computational
science
Definitions
B Multidisciplinary field using advanced computing capabilities to
understand and solve complex problems
» Typically using mathematical models and computer simulation
» Problems are motivated by industrial or societal challenges
B May utilize single computer, distributed systems, or supercomputers
Examples utilizing distributed computing
B Finding the higgs boson (CERN)
B Bioinformatics applications, e.g., gene sequencing
Examples utilizing high-performance computing
B Computing the weather forecast for tomorrow / next week
B Simulating a tokamak fusion reactor

https://en.wikipedia.org/wiki/Computational_science

Julian Kunkel Practical Course on High-Performance Computing 48/49


https://en.wikipedia.org/wiki/Computational_science

Organization of the Module  Scientific Method  High-Performance Computing  Distributed Computing  Parallel Computing ~ Programming

Conclusions
oe

Summary

Julian Kunkel

HPC and supercomputers are enablers for scientific computing
Supercomputers are relevant for data science

Parallel computing is the simultaneous calculation/execution
Shared-memory, distributed-memory and GPU-Architectures differ
GPUs are accelerating CPUs for massively parallel workloads

Programming can be challenging
Programming paradigms

» Auto-parallelization with compiler-directives (OpenMP, shared mem)
» Parallelization with Message Passing (distributed computing)

Simple example: Vector addition

Practical Course on High-Performance Computing

49/49



	Organization of the Module
	Scientific Method
	Scientific Method

	High-Performance Computing
	Distributed Computing
	Overview
	Cloud Computing
	Challenges

	Parallel Computing
	Overview
	Architectures
	Challenges

	Programming
	Message Passing

	Conclusions
	Overview


