
Slurm

Azat Khuziyakhmetov

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

Burckhardtweg 4, 37077 Göttingen

Phone: +49 551 39-30000 gwdg@gwdg.de www.gwdg.de

03.04.2024

Section 1

Slurm

Getting started with Slurm

How to use the cluster

Cluster divided into frontends and compute nodes
Compute nodes are for all calculations
You cannot connect directly to the compute nodes
You cannot run heavy calculations on the frontends

So how do you use the compute nodes?

Use our scheduler: Slurm!

How to use the cluster

Cluster divided into frontends and compute nodes
Compute nodes are for all calculations
You cannot connect directly to the compute nodes
You cannot run heavy calculations on the frontends

So how do you use the compute nodes?

Use our scheduler: Slurm!

How to use the Cluster

gwdu101 gwdu102 gwdu103

Compute Nodes

Slurm

Your first job

A job is a set of instructions for Slurm, including
one or multiple programs to execute
estimated runtime
required resources (CPUs, GPUs, Memory)
and more...

Your first job

Use srun to submit a job to Slurm
srun <program>

Example:

gwdu101:27 12:53:50 ~ > hostname
gwdu101
gwdu101:27 12:53:53 ~ > srun hostname
amp078
gwdu101:27 12:53:56 ~ > srun hostname -f
amp078.global.gwdg.cluster

Telling Slurm what to do

srun submits information on your job to Slurm
➥ What is to be done? (path to your program and required

parameters)
➥ What are its requirements? (e.g. which nodes, number of

tasks, maximum runtime)

Slurm matches the jobs requirements against the capabilities
of our nodes
When suitable free resources are found the job is started
Slurm prioritizes the jobs based on a number of factors.

Partitions

Different compute nodes have different features
Slurm differentiates using Partitions

Available Partitions

General purpose partitions:
medium General purpose partition, well suited for most jobs. Up to

1024 cores per job.
fat Up to 512 GB in one host.

fat+ For extreme memory requirements. Up to 2048GB per host.

Special purpose partitions:
gpu For jobs using GPU acceleration.
int For interactive jobs, i.e. jobs which require a shell or a GUI.

Basic Concepts 1

Cluster A collection of networked computers intended to
provide compute capabilities.

Node One of these computers, also called host or server.
Frontend Special node provided to interact with the cluster.

login-mdc.hpc.gwdg.de in our case.
Job Program consisting of one or several parallel tasks.

Partition A pool of nodes suitable for the job
Batch System Management system distributing job tasks across

job slots. Slurm.

Submitting a job

srun <parameters> <program>

common parameters
-p <partition> partition.
-t <hh:mm:ss> Maximum runtime. If this is exceeded the job

is killed.
-A <all> Specify account ’all’. Only necessary if you are

part of a working group with access to special
partitions.

Interactive Jobs

srun: Interactive jobs
--x11 Adds X11 (GUI) forwarding. This requires that you con-

nect to the frontend with ssh -Y and your local machine
supports X-Windows.

-p int Use the interactive partition. In int the nodes have no
slot limit. They will take jobs until their load crosses a
specified threshold, so jobs start immediately.

--pty interactive mode

Interactive X11 Job

Running Matlab

> ssh -Y login-mdc.gwdg.de
> module load matlab
> srun --x11 -p medium matlab

The job will be dispatched and as soon as an available node is
found and the Matlab interface will start.
If you have your own license for Matlab then you need to place
your license.lic file in $HOME/.matlab/R2015a_licenses
directory (depending on the version you are using).

Interactive Console Job

Running R interactively

> ssh login-mdc.hpc.gwdg.de
> srun --pty -p medium R

Exercises

Exercise
Run a command on a compute node (e.g. hostname)
Get an interactive shell on a compute node
Try X11 forwarding (you can use xterm instead of Matlab)

10 Minutes

Basic Concepts 2

Serial job Job consisting of one task using one job slot.
SMP job Job with shared memory parallelization (often realized

with OpenMP), meaning that all processes need
access to the memory of the same node. Therefore
uses several job slots on the same node.

MPI job Job with distributed memory parallelization, realized
with MPI. Can use several job slots on several nodes
and needs to be started with a helper program, e.g.,
mpirun or srun.

Single node vs. MPI

MPI jobs are a lot of independent tasks that (usually) use one
core each

➥ started with srun or mpirun
➥ Slurm calls these tasks

Single node jobs are usually just one task with many cores
Both can be combined into hybrid jobs: multiple tasks using
multiple cores each

Resource selection: CPU

srun options for parallel (SMP or MPI) jobs.
-N <min>-<max>,
--nodes=<min>-<max>

Minimum and maximum node
count. You can also specify the
exact number.

-n,--ntasks=<n> Number of tasks (not equally dis-
tributed!)

--tasks-per-node=<n> Tasks per node. If used with -n
it denotes the maximum number of
tasks per node.

-c,--cpus-per-task=<n> CPUs per tasks.

Rule of thumb
-c for single node jobs
-n for MPI jobs

Resource Selection: Memory

srun options

--mem <size[K|M|G|T] > Memory per node.
--mem-per-cpu <size[K|M|G|T] > Memory per core.

without options:
➥ each partition has a DefMemPerCPU option
➥ can be retrieved via scontrol show partition <name>

How to avoid waiting

Reservation: pchpc-2024 and pchpc-2024-2

Usage
Either: --reservation=pchpc-2024 for each job
Or: export SBATCH_RESERVATION=pchpc-2024
The latter has to be unset, if you want to submit to a partition
besides medium.

Exercises

Exercise
Try these job configurations:

1 10 tasks
2 10 tasks distributed over 3 nodes
3 3 nodes with 3 tasks each
4 1 task with 5 cores
5 2 tasks per node on 2 nodes with 4 cores per task

Play with the combination of number of cores or tasks, nodes
and their effect on your available memory:

1 1 core and --mem 4G
2 3 tasks and 2 nodes, see effect of --mem and --mem-per-cpu
3 20 tasks, see distribution of memory over hosts.

use slurm_resources script to see the resources of your job

Time: 20 Minutes

Non interactive Jobs

Problem
if you have big jobs, your queue time will be long
srun needs you to stay logged in
jobs can run for days

Solution
Batch Jobs!

Non interactive Jobs

Problem
if you have big jobs, your queue time will be long
srun needs you to stay logged in
jobs can run for days

Solution
Batch Jobs!

A job script is a shell script with a special comment section.
The #SBATCH lines have to come first!

sbatch: Basic job script example

#!/bin/bash
#SBATCH -p medium
#SBATCH -t 10:00
#SBATCH -o job-%J.out

slurm_resources

Submit with:

sbatch <script name>

Jobscripts

A job script is essentially a normal script
usually bash/shell, but can be any scripting language (R,
python, perl)
#SBATCH lines need to be at the top!
you can copy files, load modules, and do any scripting you
want
for MPI, use srun or mpirun to start your program

sbatch: Using Job Scripts

More Options

sbatch <slurm options> jobscript

--mail-type=<TYPE> get mail notifications (type: BEGIN,
END, etc.)

--mail-user=<address> Default: ${USER}@gwdg.de
-o/-e <file> Store job output in file (slurm-

<jobid>.out by default). %J in the file-
name stands for the jobid.

Slurm Commands

sinfo Info about the system and partitions.
-p <partition>, -t <state>

squeue Show the job queue.
-p <partition>, --me

scancel Cancel Job
scancel <JobID>
scancel -p <partition>|-u $USER

Exercises

Exercise
Write your own Job script.

Use echo, hostname, and sleep X (sleep for X seconds) to
generate output or have it running for a longer time.
Have the job send you an email. Advanced: Take a look at the
different mail-type options. What do they do?
Write the output to a different file. Redirect output and error
into different files. Advanced: Take a look at the filename
pattern options. Include node and job name in the output file.

Time: 20 Minutes

Task Distribution

Distributing tasks in the medium partition

#SBATCH -p medium
#SBATCH -n 240
#SBATCH -o job-%J.out

module purge
module load intel-oneapi-compilers intel-oneapi-mkl intel-oneapi-mpi namd

srun namd2 +setcpuaffinity apoa1.namd

This will spread tasks among many nodes.

Task Distribution fixed

Distributing tasks in the medium partition

#SBATCH -p medium
#SBATCH -N 10
#SBATCH --ntasks-per-node 24
#SBATCH -o job-%J.out

module purge
module load intel-oneapi-compilers intel-oneapi-mkl intel-oneapi-mpi namd

srun namd2 +setcpuaffinity apoa1.namd

Memory is faster then network!
Try to spread your tasks to as little nodes as possible.

Job Disk Space Usage Options

/local Local hard disk of the node. SSD based and therefore
a very fast option for storing temporary data.
Automatic file deletion. A temporary directory is
created on all nodes at $TMP_LOCAL.

/scratch Shared scratch space, available on most nodes, but
there are two instances (use -C scratch or -C
scratch2). Very fast, no automatic file deletion, but
also no backup! Files may have to be deleted
manually when we run out of space.

/scratch/ssd special extra fast scratch file system only on scratch1.
Ideal for temporary data in jobs spanninh multiple
nodes. Automatic file deletion. A per-job directory is
created at $TMP_SCRATCH.

$HOME Available everywhere, permanent, with backup.
Personal disk space can be increased. Comparably
slow.

Recipe: Using /scratch

#!/bin/bash
#SBATCH -p medium
#SBATCH -n 24
#SBATCH -N 1
#SBATCH -C scratch
#SBATCH -t 1-00:00:00

export g09root="/usr/product/gaussian/g09/d01"
source $g09root/g09/bsd/g09.profile

if [${TMP_SCRATCH} -a -d ${TMP_SCRATCH}]; then
export GAUSS_SCRDIR=${TMP_SCRATCH}

else
export GAUSS_SCRDIR=$TMP_LOCAL

fi

g09 myjob.com myjob.log

Exercises

Exercise
Write a job script, where you

create a scratch directory
copy data from your home file system to the scratch directory
run a job with the data
copy the results back
delete the scratch directory

If you do not have a program/data to try this on, there is a small
python program in /scratch/projects/scc-course/ and a bit of
input data.

The fat+ partition

The fat+ partition contains:
5 nodes with 1.5Tb Memory
1 node with 2Tb Memory

Usage recommendations:
Work your way up. Start in fat and only use fat+ if your jobs
runs out of memory.
Use sacct or profit-hpc, see if your job really is memory
bound
When unsure, ask us!
--mem or --mem-per-cpu is mandatory
You might get angry mails from me, if you waste resources
here

Recipe: Combine shared memory and MPI

Running hybrid jobs

#SBATCH -p medium
#SBATCH -N 5
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=6
#SBATCH -o job-%J.out

module purge
module load openmpi

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun hybrid_job

Longer or shorter jobs

The --qos parameter

Default maximum runtime: 2 days
--qos= <qos> can select a QoS
Two extra QoS available:

short for shorter jobs (max. 2h), has higher priority, limited job slots
long longer jobs (max. 5d), limited job slots.

But my job is even longer

try parallelizing more
break it down into smaller steps
check, if your software supports checkpoints
check again!
contact us

More Slurm Commands

scontrol show [partition|node|job] <x> where x should be a node
name, JobID or partition name.

sprio Priority information about pending jobs
sacct Get information about a job after it finished

-j <jobid>
--format=JobID,User,JobName,MaxRSS,Elapsed,Timelimit

Using the gpu partition

GPU parameters

-G | --gpus=[type:]<n> requests n GPUs of type
--gpus-per-task=[type:]<n> requests n GPUs of type per task
--gpus-per-node=[type:]<n> requests n GPUs of type per node

CPUs are evenly distributed for every GPU
Available types are:

➥ rtx5000
➥ v100
➥ gtx1080

See: sinfo -p gpu --format=%N,%G

Debugging

take a look at your output files, while the job is running:
➥ tail -f /path/to/output

take a look at the jobs, while it is running
➥ you can ssh into every node that currently calculates your job
➥ use htop to see the processor and ram usage

Debugging

Read the extra job information

==
JobID = 4383174
User = mboden, Account = admin
Partition = gpu, Nodelist = dge[001,006]
==
[job output]
============ Job Information ===
Submitted: 2020-04-24T17:35:41
Started: 2020-04-24T17:35:41
Ended: 2020-04-24T17:45:45
Elapsed: 10 min, Limit: 60 min, Difference: 50 min
CPUs: 2, Nodes: 2
============= ProfiT-HPC ===
To generate the ProfiT-HPC text report, run the following command
profit-hpc 4383174
==

Take a look at all the information. Is it as expected?

Debugging

Read your errors!
slurmstepd: error: Detected 1064 oom-kill event(s) in step XXXXXX.0 cgroup.
Some of your processes may have been killed by the cgroup out-of-memory handler.
srun: error: gwda024: task 3: Out Of Memory

Might have something to do with memory!
Have a look at your jobs memory with:
sacct -j JOBID -o jobid,MaxRSS,MaxRSSNode

And for more advanced job statistics, use profit-hpc

	Slurm

