

Lourens van Niekerk

Quantum Computing

A brief introduction for the curious

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

Learning Objectives

- The state of quantum computing
- What are qubits and quantum circuits?
- The cool phrases: superposition and entanglement
- How does quantum computing physically even work?
- The Deutsch-Josza algorithm

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

Table of contents

- 1 What is Quantum Computing?
- 2 Qubits and gates
- 3 Multiple qubits
- 4 Additional concepts
- 5 Deutsch-Josza algorithm

6 Final remarks

Qubits and gates

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

What is Quantum Computing?

"Quantum computation ... will be the first technology that allows ... distributing components of a complex task among vast numbers of parallel universes, and then sharing the results."

- Deutsch, The Fabric of Reality (1997)

Okay, still... what is Quantum Computing?

- Quantum computers utilizes quantum mechanics to solve complex problems
- From the ground up, it uses different physical representations to operate
 - ► XBits → ✓Qubits
 ► XTransistors → ✓e.g. lons, photons
 ► XVoltage → ✓LASERS!
 ► XLinear power → ✓Exponential power
- QC may be superior to classical computing in
 - Simulating Quantum systems (highly probable)
 - Combinatorial optimization problems (probable)
 - Cryptography / prime factorization (probable)
 - Machine learning and other fields (unknown)

What is Quantum Computing? $\circ \circ \bullet \circ$

Qubits and gates

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

A superconducting quantum computer

Figure: Source: IBM

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

State of Quantum Computing

- Noisy, intermediate-size Quantum era (NISQ)
- Quantum Computers with hundreds of qubits
- High error rate (noise) due to external influences and imperfect control
- Full error tolerance in NISQ era unachievable due to overhead
- Quantum advantage attempts and disputes
 - Google in 2019 Kalai, Rinott, and Shoham, "Google's Quantum Supremacy Claim: Data, Documentation, and Discussion"
 - IBM in 2023 Patra et al., "Efficient tensor network simulation of IBM's largest quantum processors"
 - probably requires thousands or millions of qubits
- Great time to do basic research
 - ... if interested in algorithms and/or Quantum mechanics
 - Availability of accessible frameworks and learning material
- Promising fields are Quantum Chemistry, Combinatorial Optimization, Machine Learning

What is Quantum Computing?	Qubits and gates ●○○○○	Multiple qubits	Additional concepts	Deutsch-Josza algorithm	Final remarks
The qubit			-		

- The smallest unit of information in QC is the **qubit**
- **Qubits are represented as two-dimensional** \mathbb{C} -vectors \vec{q} which are unitary
- Below two states of a qubit form its **Computational Basis**:

$$|0
angle = egin{bmatrix} 1 \ 0 \end{bmatrix}$$
 and $|1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$

- $|\psi\rangle$ known as **ket** notation
- Computations with these states are similar to classical computing (bits 0 and 1)
- All quantum states are a linear combination (**superposition**) of $|0\rangle$ and $|1\rangle$

$$| \psi \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha | \mathbf{0} \rangle + \beta | \mathbf{1} \rangle \text{ where } \alpha, \beta \in \mathbb{C}$$

• (Unitary implies $|\alpha|^2 + |\beta|^2 = 1$)

Gates: Operations on qubits

- Quantum gates do operations on qubits (cf. logic gates in classical computing)
- Gates apply linear transformations on the statevector of qubits, i.e. matrices
- (Since statevectors need to remain unitary, gates have determinant 1, always!)
- Important 1-qubit gates are the NOT gate (X) and the Hadamard gate (H)

$$\blacksquare X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X |0\rangle = |1\rangle \qquad \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow H |0\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Other notable gates: Pauli $\{X, Y, Z\}$, Phase $P(\phi)$, and Universal $U(\theta, \phi, \lambda)$

The inverse of any gate is shown with \dagger e.g. $GG^{\dagger} = I = G^{\dagger}G$ for some gate G

The Hadamard and Pauli gates are their own inverses, for example

Final remarks

 What is Quantum Computing?
 Qubits and gates
 Multiple qubits
 Additional concepts
 D

 0000
 00000
 00000
 00000
 00000
 00000

Deutsch-Josza algorithm

Final remarks

Quantum Circuits and Measurement

Quantum Circuits can represent quantum computations

- Contain the quantum & classical registers, gates and **measurements**
- Measuring qubits collapses them into computational bases i.e. $|0\rangle' s$ and $|1\rangle' s$
- These bases can then be turned into bits for classical computing
- Which one they collapse into depends on a probability distribution
- If $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, then prob. collapse to $|0\rangle : \mathbb{P}_{|\psi\rangle}(|0\rangle) = |\alpha|^2$
- (For greater detail on these probabilities, look at the Comprehensive-Notes pdf)

What is Quantum Computing?	Qubits and gates ○○○●○	Multiple qubits	Additional concepts	Deutsch-Josza algorithm	Final remarks

Superposition measurement

E.g: $|\psi\rangle = HX |0\rangle = H |1\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{-1}{\sqrt{2}} |1\rangle \Rightarrow$ Chances of $|0\rangle$ or $|1\rangle$ are 50\50

Even without X, we just made a coin toss

(This is Schrödinger's cat: We are officially Quantum now!)

Bloch Sphere: Useful representation of qubit statevectors (for our brains)

Can represent any statevector with 2 angles: $0 \le heta \le \pi$ and $0 \le \varphi \le 2\pi$

Multiple qubit states

Qubit states are combined by tensor product, i.e. for two qubits:

$$|a\rangle \otimes |b\rangle = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_0b_0 \\ a_0b_1 \\ a_1b_0 \\ a_1b_1 \end{bmatrix}$$

= $a_0b_0 |00\rangle + a_0b_1 |01\rangle + a_1b_0 |10\rangle + a_1b_1 |11\rangle$
Prob. distribution of measuring 2 qubits:
 $|a_0b_0|^2 + |a_0b_1|^2 + |a_1b_0|^2 + |a_1b_1|^2 = 1$
For example: $|0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle$

■ Can be extended to n qubits: |q₁ > ⊗ |q₂ > ⊗ ... ⊗ |q_n >
 ■ Grows exponentially, only ~30-40 qubits can be simulated classically

Lourens van Niekerk

 What is Quantum Computing?
 Qubits and gates
 Multiple qubits
 Additional concepts
 Deutsch-Josza algorithm
 Final remarks

 0000
 0000
 0000
 0000
 0000
 0000
 0000

MORE gates: 2-qubit gates

- We got the CNOT(controlled-not) gate
- is the target and is the control
- Also got the SWAP gate (X-X)

$$\blacksquare CNOT = CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & X \end{bmatrix} \qquad SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Note: Above form of *CX* only if applied to $|q_0q_1\rangle$, depends on control and target
- ANOTHER note: *Qiskit's* qubit ordering of a circuit top-down: $|q_1q_0\rangle$

What is Quantum Computing?	Qubits and gates	Multiple qubits	Additional concepts	Deutsch-Josza algorithm	Final remarks
SWAPs					

- In QC, qubits aren't always connected; SWAPs let them be
- SWAPs are expensive \$\$\$; want optimal connectivity (some QC have all-2-all)

Qubits and gates

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

Qiskit model and OpenQASM

- Qiskit contributors, Qiskit: An Open-source Framework for Quantum Computing is the quantum toolkit developed by IBM
- Can be installed as package to Python
- Uses OpenQASM Cross et al., "OpenQASM 3: A broader and deeper quantum assembly language" as its Intermediate Represenation to communicate with the QPUs

Figure: Compilation Model. Source: OpenQASM paper

Gate structure

- All n-qubit gates can be decomposed into 1- & 2-qubit gates (so stick to those)
- Thus 'n-qubit gates' in a circuit would refer to a subset of gates (for perspective)
- 2-qubit gates generally have the control\target form (except SWAPs)
- $\begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & G \end{bmatrix}$ with 1-qubit gate G
- Don't let names like control and target fool you; the control qubit can also be changed (this is called phase kickback)

Figure: Shor's algorithm, for example

Phase kickback

- Important tool for algorithms, namely the quantum phase estimation
- Key attribute setting quantum apart from classical
- The beauty of many quantum algorithms lies in saving the solution in the phase of qubits via controlled-gates
- Represents a reverse of roles:

distribution

First entry in the statevector can be $\in \mathbb{R}$

The Bloch sphere still looks the same

They differ by a **relative phase** (comp. effect!)

Some statevectors have same measurement prob.

Purpose of phase gate $P(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$

• You might wonder: 'if $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ with $\alpha, \beta \in \mathbb{C}$, what about $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} i \\ 0 \end{bmatrix}$ or $\begin{bmatrix} i \\ \sqrt{2} \\ 0 \end{bmatrix}$?' Basically... look at the Comprehensive Notes (we don't care much about)

• Multiplying any \mathbb{C} -unit (a **global phase**) by a statevector, does not change

PCHPC

Phases

What is Quantum Computing? Oubits and gates

it for our purposes

Multiple aubits

Additional concepts 00000

Deutsch-losza algorithm

Final remarks

What is Quantum Computing?	Qubits and gates	Multiple qubits	Additional concepts ○○○○●	Deutsch-Josza algorithm	Final remarks
Entanglement					

Entanglement

Consider the following circuit:

- $\blacksquare\,$ Each qubit is equally likely to be measured as $|0\rangle$ and as $|1\rangle$
- However, both qubits will always be in the same state after measurement

This is called entanglement

- Einstein's spooky action at a distance: More Quantum weirdness!
- What happens: $CNOT(I \otimes H) |00\rangle = CNOT[\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)] = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Qubits and gates

Multiple qubits

Additional concepts

Deutsch-Josza algorithm •0000 Final remarks

Deutsch-Josza algorithm overview

- First proposed by David Deutsch and Richard Josza in 1992 David Deutsch, "Rapid solution of problems by quantum computation"
- One of the first quantum algorithms that show quantum can trump classical
- Exponentially faster than any deterministic classical algorithm

■ JUST LOOK AT THAT SMILE! SO PROUD

- Consider an unknown function of a one bit input x
- The output f(x) could either be **constant** 0 or 1 or depend on x (**balanced**)
- Two tests required classically to determine balanced vs. constant
- Quantum circuit for the generalised problem:

Remember: Quantum gates must be reversible

Solution part 1: Phase kickback

- Our U(f) gate transforms $|x\rangle |y\rangle$ to $|x\rangle |y \oplus f(x)\rangle$ (\oplus : plus, then modulo 2)
- Let's "cheat": Instead of using $|0\rangle$ for $|y\rangle$ we use $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- Then, if we apply our gate U(f): $U(f) |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ $= |x\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |1 \oplus f(x)\rangle)$ $= (-1)^{f(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

Now we have encoded information in the sign (or phase) of the input qubit

Solution part 2: Input superposition

Oubits and gates

We will now use the function information encoded in the phase

Multiple aubits

• We initialize $|x\rangle$ as superposition of both possible values: $|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Additional concepts

Deutsch-losza algorithm

00000

- We can ignore the output Qubit and get, after applying U(f): $(-1)^{f(x)} |x\rangle = \frac{1}{\sqrt{2}}((-1)^{f(|0\rangle)} |0\rangle + (-1)^{f(|1\rangle)} |1\rangle)$
- That means constant functions result in $|q_0\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- **B**alanced functions result in $|q_0
 angle = \pm rac{1}{\sqrt{2}}(|0
 angle |1
 angle)$
- (Note that multiplying a Qubit state globally by -1 does not change it)
- \blacksquare Use the H gate and measure to get $|0\rangle$ for constant and $|1\rangle$ for balanced
- We have solved Deutsch's problem in one try!
- Deutsch-Josza extends this to input length n: One try vs. worst case $2^{n-1} + 1$

What is Quantum Computing?

Final remarks

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

Implementing Deutsch-Josza extended algorithm

- Let's look again at Deutsch's algorithm:
 - Prepare (input) qubit-0 in $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state
 - Prepare (output) qubit-1 in $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ state
 - Apply the oracle
 - Apply the Hadamard gate to qubit-0
 - Measure: If $|0\rangle$, the function is constant, else $|1\rangle$ if it is balanced
 - Oracles: constant implies 0 or 1. Balanced implies identity or negate
- Your job is to increase this to 3 or more input qubits (your job, not mine)
- The math of this general version can be found in the Comprehensive Notes
- Now balanced can be many more possibilities. Suppose 3 input qubits and 1 output qubit. Example balanced oracle:
 - f(000) = f(101) = f(111) = f(100) = 0
 - f(110) = f(011) = f(010) = f(001) = 1
 - $\blacktriangleright\,$ You should measure $|000\rangle$ for constant, and anything else for balanced

What does GWDG offer?

- Our QC team provides HPC-QC software solutions, research and consulting
- SCC, Emmy and Grete have QC containers to run simulations on
 - Qiskit, Qulacs, Cirq, Qsim, Qibo, QuTip...
- Bachelors/Masters theses are available!
- We are engaged in publishing new research regarding NISQ software
- We provide courses and workshops (like this one!)
- We do not have our own quantum computer
- Our webpage is https://gwdg.de/en/community-pages/qc-intro/ for more info

Multiple aubits

Additional concepts

Deutsch-losza algorithm

Final remarks 0000

Further reading

- Recap linear algebra: Essence of linear algebra on YouTube
- Deutsch's algorithm explained using a state machine: Quantum Computing for Computer Scientists on YouTube
- Introduction for self study:

Quantum computing for the very curious

- Everything on Qiskit, lots of tutorials: https://giskit.org/
- Good textbooks:
 - Quantum Computing: An Applied Approach by Jack D. Hidary
 - Quantum Computing verstehen von Matthias Homeister
- Brief overview of the field (link to arxiv.org):

Quantum Computing in the NISQ era and beyond, John Preskill

Additional concepts

Deutsch-Josza algorithm

References

Cross, Andrew W. et al. "OpenOASM 3: A broader and deeper guantum assembly language". In: ACM Transactions on Ouantum Computing, Volume 3, Issue 3, 2022 3,3 (Apr. 30, 2021), pp. 1–50, ISSN: 2643-6817. DOI: 10.1145/3505636. arXiv: 2104.14722 [guant-ph]. David Deutsch, Richard Josza, "Rapid solution of problems by guantum computation". In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439.1907 (Dec. 1992), pp. 553–558. ISSN: 2053-9177. DOI: 10.1098/rspa.1992.0167. Deutsch, David, The Fabric of Reality, Allan Lane, 1997. Kalai, Gil, Yosef Rinott, and Tomer Shoham, "Google's Quantum Supremacy Claim: Data, Documentation, and Discussion". In: (Oct. 2022). DOI: 10.48550/ARXIV.2210.12753. arXiv: 2210.12753 [guant-ph]. Patra, Siddhartha et al. "Efficient tensor network simulation of IBM's largest guantum processors". In: (Sept. 2023), DOI: 10.48550/ARXIV.2309.15642. arXiv: 2309.15642 [guant-ph]. Oiskit contributors, Oiskit: An Open-source Framework for Ouantum Computing, 2023, DOI: 10.5281/zenodo.2573505

Qubits and gates

Multiple qubits

Additional concepts

Deutsch-Josza algorithm

Final remarks

Exercises

Have fun with the exercises :)