
GWDG – Kurs
Parallel Programming with MPI

Parallel Computing:
Basic Principles

Oswald Haan
ohaan@gwdg.de

Parallel Computing

Wikipedia:

“Parallel computing is a type of computation in
which many calculations or the execution of
processes are carried out simultaneously”

Why

How
Parallel Programming with MPI 2April 2024

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 3April 2024

Demand for more Computing Power

• Simulating complex systems in different areas at all scales:
cosmology, climate, engineering, drugdesign, biochemistry,
elementary particles, . . .

• Analysing huge datasets from experiments and observations:
particle physics, genomes, internet, . . .

• Artificial Intelligence
training and using AI systems, . . .

April 2024 Parallel Programming with MPI 4

Delivering more Computing Power

computing power of a computing system is defined as
r [flop/s, Kilo-, Mega-, Giga-, Tera-, Peta, Exa-flop/s] =

maximal number of floating point operations per second
delivererable by the system

r depends on computer system parameters:
N : number of computing elements in the system

n : number of circuits involved in one floating point operation

τ : cycle time of a circuit in the system

f = τ -1 : frequency or clock rate of the system

r = N x n-1 x f
more computing elements higher frequency

April 2024 Parallel Programming with MPI 5

more computing power

April 2024 Parallel Programming with MPI 6

Evolution of Microprocessors

April 2024 Parallel Programming with MPI 7

(Not-)Moore’s Law

 Moore’s Law
(Intel co-founder Gordon E. Moore, 1965) :
The number of transistors on integrated circuits
doubles approximately every two years (or every 18
months).

 Not-Moore’s Law is that clock rates do, too

 Moore’s Law holds (and will for some time)

 Not-Moore’s Law held until ≈ 2003, then broke down

Computing Power of TOP500 Supercomputers

April 2024 Parallel Programming with MPI 8

Conclusion from the Why of Parallel Computing

Single compute nodes have O(10) computing elements

Compute clusters have O(1 000 000) computing elements

Using the computing power of nodes and clusters for complex
simulations and for analysing large datasets is possible ,
and requires

Parallel computing

April 2024 Parallel Programming with MPI 9

Faster Problem Solving with
Parallel Computing?

• If hardware supports simultaneous execution of
several independend operations

Parallel Hardware

• If problem can be decomposed into
independend pieces
Parallel Algorithm

• If software maps parallel algorithm to parallel
hardware

Parallel Programming Language

• If resulting application solves the problem faster

Parallel Efficiency

April 2024 Parallel Programming with MPI 10

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 11April 2024

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 12April 2024

RR

RR

RRmS

RR

Components of a Processor

April 2024 Parallel Programming with MPI 13

S

P
ro

ce
sso

r

M

CPU

memory

central processing unit

S
S

IE

Cache
Register

IU ALU

Instruction Unit Arithmetic/Logic Unit

mSmultadd

Functional Units

mS

Multiplication-
Pipeline

… …Data Lines

Parallelism in Hardware Components

parallel functional units

(superscalar architectur)

parallel segments in arithmetic pipelines

(assembly line processing)

parallel bit-processing

(64bit-architecture)

add

1

add

2

mult

1

mult

2

… …

Maximal 4 double precision floatingpoint operations per cycle time:
10 GigaFlop/s for2,5 GHz cycle frequency

April 2024 Parallel Programming with MPI 14

Parallelism with
Multiple Computing Elements

ALU1

memory

IIIUUI ALUnIUparallel functional units
(graphics processor)

April 2024 Parallel Programming with MPI 15

. . .

SIMD (Single Instruction Stream-Multiple Data Streams)

Parallelism with
Multiple Computing Elements

parallel CPUs

shared memory multiprocessor
e.g. multi-core processor

CPU

memory

April 2024 Parallel Programming with MPI 16

CPU. . .

MIMD (Multiple Instruction Streams-Multiple Data Streams)

CPU CPU

interconnect
parallel processors

distributed memory multicomputer
e.g. cluster of single-core processors

. . .
memory memory

Hybrid-Systems: Cluster of Shared-Memory Nodes

Parallel Programming with MPI 17April 2024

interconnect

. . .

CPU

memory

CPU. . .
CPU

memory

CPU. . .

Connection in Shared Memory Systems

• Bus
– Serial memory access
– non-scalable
– low latency

• Switch
(Hypertransport, Quick Path)

– parallel memory access possible
(for advantageous data layout)

– scalable
– Larger latency

Parallel Programming with MPI 18April 2024

Connection in Systems with distributed memory

April 2024 Parallel Programming with MPI 19

• Switch

• Tree

• 2d Lattice

Parameters of Network-Connections

April 2024 Parallel Programming with MPI 20

• latency
arrival time of the first bit

• bandwidth
rate of data transfer

• effective bandwidth

• bisection width
minimal number of connections between two equally sized

parts of the network

latt

c

dat

lat
eff

n
ct

cc

1

1

Every processor has computing power r
network has latency und bandwidth

number of flops, which could be executed during latency

number of flops, which could be executed during
transfer of 8 Bytes (floating point number)

r

Relevance of Network Parameters

April 2024 Parallel Programming with MPI 21

communication
network

P1 P2 Pn

𝑟
𝑐𝑡𝑙𝑎𝑡

𝑡𝑙𝑎𝑡 ∙ 𝑟

64 ∙ 𝑟/𝑐

April 2024 Parallel Programming with MPI 22

Latency Bandwidth

Computing

Power

Intel Broadwell

Single Node 0,23 64

1 core:

8,8 2 024 9

Intel Cascade Lake

Single Node 0,34 75

1 core:

9,2 3 032 11

Intel Broadwell

Infiniband FDR 1,3 50

24 cores:

211 274 300 270

Intel Cascade Lake

Intel Omni-Path 1,2 90

96 cores:

883 1 060 000 628

 seclatt sGbitc / sGFlopr /

rtlat cr /64

Typical Network Parameters

April 2024 Parallel Programming with MPI 23

April 2024 Parallel Programming with MPI 24

TOP500(2019) #1: Summit (Oak Ridge National Laboratory)

9216 IBM Power 9
(22 cores each)

27648 NVIDIA GPUs
(Volta GV100)

Rmax : 146 PetaFlop/s

April 2024 Parallel Programming with MPI 25

TOP500(2020) #1: FUGAKU
(RIKEN Center for Computational Science (R-CCS) in Kobe, Japan)

158,976 nodes ARM A64FX v8.2-A
(48 cores each)

Rmax : 416 PetaFlop/s

April 2024 Parallel Programming with MPI 26

TOP500(2022) #1: FRONTIER
(DOE/SC/Oak Ridge National Laboratory)

9472 nodes with
1 AMD-EPYC-7xx3 (64 cores)
4 AMD-Instinct MI250X-GPUs

Rmax : 1.194 ExaFlop/s

Memory-Hierarchy in
Parallel Computers

April 2024 Parallel Programming with MPI 27

.

network
memory

Cache
Register
Functional Unit

Speed of Memory Accesses

April 2024 Parallel Programming with MPI 28

Memory Hierarchy

distributed memory

local memory

size access
speed

[words/cycle]

cycle

cache

[GB]

0.001

Golden Rule for Data Access

April 2024 Parallel Programming with MPI 29

The maximal computing power of a parallel system

Rmax = clockrate * #CPUs * #Operatations per CPU

can be realized exclusively for operating on data in cache.

In all other cases:
memory bandwidth limits the usable computing power

Memory Access Patterns
for Matrix Multiplication

𝑎𝑖𝑗 = σ𝑘=1
𝑛 𝑏𝑖𝑘 𝑐𝑘𝑗 , 𝑖, 𝑗 = 1, … , 𝑛

𝑁𝑜𝑝 = 2𝑛3

April 2024 Parallel Programming with MPI 30

𝒊

𝒋 𝒋

𝒊= *

Multiplication Column by Column

Calculation of one column:
2𝑛2 operations
𝑛2 data to be read from memory

If 𝑛2 x size of numbers > Cachesize
slowing down due to Golden Rule

April 2024 Parallel Programming with MPI 31

= *

Multiplication Block by Block

Computing a block multiplication 𝑎𝑖𝑗
(𝑏) :

𝑁𝑜𝑝 = 2𝑏𝑠𝑧3 𝑁𝑖𝑛 = 2𝑏𝑠𝑧2

2𝑏𝑠𝑧2 < Cachesize obeys Golden Rule

April 2024 Parallel Programming with MPI 32

= *

block-size 𝑏𝑠𝑧2

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 33April 2024

Parallel Algorithms

• Identify data dependencies

vector addition: c(i) = a(i) + b(i), i = 1 ,4
c(1) = a(1) + b(1) c(2) = a(2) + b(2) c(3) = a(3) + b(3) c(4) = a(4) + b(4)

sum of vector elements s = a(1) + a(2) + a(3) + a(4)
s1 = a(1)+a(2) s2 = a(3)+a(4)

s = s1 + s2

generating random numbers z(i) = a*z(i-1) mod m, i = 1 , 4
z(1) = a*z(0) mod m

z(2) = a*z(1) mod m

z(3) = a*z(2) mod m

z(4) = a*z(3) mod m

April 2024 Parallel Programming with MPI 34

Types of Parallel Algorithms

• embarrassingly parallel
Simultaneous execution of independent tasks using multiple
processes

• simulation of extended domains
Splitting a domain into subdomains, wich are mapped to
different processes.
Every process simulates the degrees of freedom in its
subdomain. Communication of boundaries.

• Algorithms for data fields (e.g. matrices):
Partitioning the fields into subfields, which are mapped to
different processes.
Every process manipulates data from its subfield, using data
communicated from other subfields

April 2024 Parallel Programming with MPI 35

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 36April 2024

Flynn-Taxonomie (1966)

April 2024 Parallel Programming with MPI 37

SISD
Single Instruction Stream
Single Data Stream
(Von Neumann architecture (1945),
-stored program computer)

SIMD
Single Instruction Stream
Multiple Data Streams

Flynn-Taxonomie (1966)

April 2024 Parallel Programming with MPI 38

MISD
Multiple Instruction Streams
Single Data Stream

MIMD
Multilple Instruction Streams
Multiple Data Streams

Modelling the coordination of parallel instruction streams and parallel data streams

has to respect the memory organization of the computing system

• Shared Memory:

– Distribution of instructions to cpus

– Synchronization of accesses to data

• Distributed Memory:

– Distribution of instructions to processors,

– Distribution of data to local memories

– Communication of data between local memories

Two different programming models for parallel processing :

• shared memory

• message passing

Comparison to programming model for sequential processing

• Von Neumann

Programming Models for MIMD

April 2024 Parallel Programming with MPI 39

P1 P2 P3 P4

network

C1 C2 C3 C4

memory

Programming Model: Sequential (von Neumann)

Parallel Programming with MPI 40

instructions

data

program counter

memory

CPU

instruction unit arithmetic/logic unit

objects:
data, instructions, program counter

instructions:
opcode op1, op2,...,re1,re2

order:
sequential

April 2024

Programming Model: Shared Memory

Parallel Programming with MPI 41

instructions

data

PC0

memory

multiple instruction streams
(threads)

objects:
global data, instructions,
lokal PCs, thread-ID

instructions:
opcode op1, op2,...,re1,re2
atomic (uninterruptable) ops.

parallelism:
mapping instructions to streams

synchronization:
CREW (concurrent read,
exclusive write)

PC3PC1

CPU0 CPU1 CPU2

April 2024

recv buffer

Programming Model: Message Passing

April 2024 Parallel Programming with MPI 42

Multiple processors connected
to a communication network

objects:
local data + instructions,
local program counters (pc)
unique task identification (tid)

operations:
opcode (op1, op2,...,re1,re2)
send(ad,n,tid), recv(ad,n,tid)

synchronization:
recv is blocking

I D

pc

memory

cpu

communication network

cpu cpu

recv buffer

I D

pc

memory

recv buffer

I D

pc

memory

Languages for Parallel Programming

Use of established programmimg languages to control
execution within individual threads or tasks :
Fortran 77, Fortran 90, … , C, C++, Python, …

• Shared Memory Programming Model:
creation and coordination of threads

POSIX Threads Library
OpenMP (Open Multi Processing)

• Message Passing Programming Model:
creation and coordination of tasks
communication between tasks:

MPI (Message Passing Library)

• SIMD Programming Model (Graphics Processors):

CUDA (Compute Unified Device Architecture)

April 2024 Parallel Programming with MPI 43

Overview

• Why

– Evolution of Computing Power

• How

– Hardware Parallelism

– Data Dependency

– Programming Models

– Parallel Efficiency

Parallel Programming with MPI 44April 2024

Unit of computing power:
[flop/s] floating point operations per second

maximal power 𝑟𝑚𝑎𝑥 = 𝑝 ∙ 𝑛𝑓𝑙 ∙ 𝜏
-1

𝑝 number of processors (=Cores)

𝑛𝑓𝑙 number of functional units per processor

𝜏 cycle time for one segment of pipeline

𝑓 = 𝜏−1 frequency (cycle rate) of processor

GWDG‘s amp-Cluster (Intel Cascade Lake Platinum 9242)

𝑝 = 92 ∗ 96 = 8832, 𝑛𝑓𝑙 = 32, 𝑠 = 2,3 GHz

𝑟𝑚𝑎𝑥 = 650 Teraflop/s

Efficiency of Parallel Computers

April 2024 Parallel Programming with MPI 45

Efficiency in Real Applications

• Reduction of parallel efficiency

1. Sequential parts of application

2. Load imbalance

3. Communication of data

4. Synchronization

• Reduktion of single processor efficiency

1. Memory accesses

2. Pipeline disruption

3. Unused parallel pipelines

April 2024 Parallel Programming with MPI 46

Phases of an application: data initialization

data transformation

extraction of results

Sequential Parts

April 2024 Parallel Programming with MPI 47

Ti Tt Te

Execution time:
T =Ti + Tt + Te

Parallel Execution with Sequential Parts

April 2024 Parallel Programming with MPI 48

Ti Tt /3 Te

Execution time:
T =Ti + Tt /3 + Te

𝑁𝑠 sequential und 𝑁𝑝 parallel ops: 𝑁 = 𝑁𝑠 + 𝑁𝑝

Execution time on p prozessors:

𝑇𝑝 = 𝜏 ∙ 𝑁𝑠 +
𝑁𝑝

𝑝
= 𝜏 ∙ 𝑁 𝜎 + 𝜋

𝑝

Speed Up: 𝑠 =
𝑇
1

𝑇
𝑝

= 𝑝 ∙
1

1+(𝑝−1)∙𝜎 𝑝 →∞

1

𝜎

Efficiency: 𝑒 =
𝑠

𝑝
=

1

1+(𝑝−1)∙𝜎

𝜎½: sequential part leading to 50% efficiency (e=0.5)

𝜎½ =
1

𝑝−1
for 𝑝 = 8832: 𝜎½ ≈ 0,00011

Amdahl‘s Law

April 2024 Parallel Programming with MPI 49

Parallel Execution with Load imbalance

April 2024 Parallel Programming with MPI 50

Ti Te

Execution time:
T =Ti + Tt1 + Te

Tt1

Tt2

Tt3

process 𝑖, 𝑖 = 1,⋯ , 𝑝 executes 𝑁𝑖 operations,

𝑁𝑝 = σ𝑖=1
𝑝

𝑁𝑖

average load per processor 𝑁𝑎𝑣 =
𝑁𝑝

𝑝

maximal deviation Δ = max
𝑖

𝑁𝑖 −𝑁𝑎𝑣 = ∙ 𝑁𝑝

execution time 𝑇𝑝 = 𝜏 ∙ 𝑁𝑠 +max𝑁𝑖 = 𝜏𝑁 + +

𝑝

efficiency 𝑒 =
𝑇
1

𝑝𝑇
𝑝

=
1

1+ 𝑝−1 +𝑝

Generalization: Load Imbalance

April 2024 Parallel Programming with MPI 51

Parallel Execution with Communication

April 2024 Parallel Programming with MPI 52

Ti Tt /3 Te

Execution time:
T =Ti + Te + Tc + (Tt + Tt‘)/3

Tt‘ /3 Tc

Tc may depend on the number of parallel processes

Synchronization

Coordination of different prozesses:

Waiting for completion of all partial results

Sequential synchronization 𝑡𝑠𝑦𝑛𝑐 = 𝑝 ∙ 𝑡𝑙𝑎𝑡
Cascade synchronization 𝑡𝑠𝑦𝑛𝑐 = ln(𝑝) ∙ 𝑡𝑙𝑎𝑡

Parallel granularity ng :
number of parallel operations between synchronization points

Condition for high effiziency: 𝑟−1 ∙ ng/p ≫ 𝑡𝑠𝑦𝑛𝑐

April 2024 Parallel Programming with MPI 53

Example: Matrix-Vector-Multiplication

𝑦 = 𝐴 ∙ 𝑥 𝑦𝑖 =

𝑗

𝐴𝑖𝑗 ∙ 𝑥𝑗 , 𝑖 = 1,⋯ , 𝑛

distribution of data and work:
every of p processors has

n/p elements from 𝑥 and n/p rows from 𝐴,
every of p prozessors calculates

n/p elements von 𝑦

April 2024 Parallel Programming with MPI 54

Matrix-Vector-Multiplication

Every processor calculates n/p elements of 𝑦,
executing 2 ∙ 𝑛2/𝑝 operations

Every processor receives 𝑛/𝑝 elements of 𝑥 from each of
𝑝 − 1 remaining processors

𝑇𝑝 = 𝑟−1 ∙ 2 ∙
𝑛2

𝑝
+ 𝑝 − 1 ∙ 𝑡𝑙𝑎𝑡 + 𝑐−1 ∙ 𝑛/𝑝

𝑒 =
𝑇1

𝑝 ∙ 𝑇𝑝
=

1

1 + 𝑝 ∙
𝑝 − 1
2𝑛2

∙ 𝑟 ∙ 𝑡𝑙𝑎𝑡 +
𝑝 − 1
2𝑛

∙ 𝑟/𝑐

April 2024 Parallel Programming with MPI 55

Matrix-Vector-Multiplication

Conditions for good efficiency:

• 𝑝 ∙
𝑝−1

2𝑛2
∙ 𝑟 ∙ 𝑡𝑙𝑎𝑡 < 1

• 𝑝−1

𝑛
∙
𝑟

𝑐
< 1

gwdg-Cluster:

• 𝑟 ∙ 𝑡𝑙𝑎𝑡 = 1 060 000 ⟹
𝑛

𝑝
> 728

•
𝑟

𝑐
= 628 ⟹

𝑛

𝑝
> 628

April 2024 Parallel Programming with MPI 56

