GWDG — Kurs
Parallel Programming with MPI

Parallel Computing:

Basic Principles

Oswald Haan
ohaan@gwdg.de

Parallel Computing

Wikipedia:

“Parallel computing is a type of computation in
which many calculations or the execution of
processes are carried out simultaneously”

Why
How

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Demand for more Computing Power

Simulating complex systems in different areas at all scales:

cosmology, climate, engineering, drugdesign, biochemistry,
elementary particles, . ..

Analysing huge datasets from experiments and observations:
particle physics, genomes, internet, . ..

Artificial Intelligence
training and using Al systemes, . ..

April 2024 Parallel Programming with MPI

Delivering more Computing Power

computing power of a computing system is defined as
r [flop/s, Kilo-, Mega-, Giga-, Tera-, Peta, Exa-flop/s] =

maximal number of floating point operations per second
delivererable by the system

r depends on computer system parameters:

N : number of computing elements in the system

n : number of circuits involved in one floating point operation
T : cycle time of a circuit in the system

f=t1: frequency or clock rate of the system

r=Nxnixf
v v

more computing elements higher frequency

more computing power

April 2024 Parallel Programming with MPI

Evolution of Microprocessors

50 Years of Microprocessor Trend Data

7 _
10 Transistors

(thousands)

108

10° A Single-Thread
| ’} : Performance ,
10% s s L | (SpecINT x 10%)

| \‘ . Frequency (MHz)
10° s,
| | | +| Typical Power
2 1 o L PLTREI >
10 £ 5 : (Watts)

1 3 | , Number of
10 . : *| Logical Cores

109

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

April 2024 Parallel Programming with MPI

(Not-)Moore’s Law

Moore’s Law

(Intel co-founder Gordon E. Moore, 1965) :

The number of transistors on integrated circuits
doubles approximately every two years (or every 18
months).

Not-Moore’s Law is that clock rates do, too
Moore’s Law holds (and will for some time)

Not-Moore’s Law held until = 2003, then broke down

April 2024 Parallel Programming with MPI

Computing Power of TOP500 Supercomputers

Performance Development

10 EFlop/s
1 EFlop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s

100 TFlop/s

i
<
I~
@
S
5
Q

10 TFlop/s

1 TFlop/s
100 GFlop/s
10 GFlop/s
1 GFlop/s

100 MFlop/s
1990 2000 2005 2010 2015 2020

Lists

—o— Sum —— #1 —=— #500

April 2024 Parallel Programming with MPI

Conclusion from the Why of Parallel Computing

Single compute nodes have O(10) computing elements

Compute clusters have O(1 000 000) computing elements

Using the computing power of nodes and clusters for complex
simulations and for analysing large datasets is possible,
and requires

Parallel computing

April 2024 Parallel Programming with MPI

Faster Problem Solving with
Parallel Computing?

hardware supports simultaneous execution of
several independend operations

Parallel Hardware

problem can be decomposed into
independend pieces
Parallel Algorithm

software maps parallel algorithm to parallel
hardware

Parallel Programming Language
resulting application solves the problem faster
Parallel Efficiency

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Components of a Processor

10SS320.4d

Register—

U

I
’
’
’
’
7
7
7
7
7
7
7
’
’
’
’
I
’
’
’
u

Instruction Unit

April 2024

Arithmetic/Logic Unit

memory

central processing unit

Functional Units

Multiplication-
Pipeline

Data Lines

Parallel Programming with MPI

Parallelism in Hardware Components

parallel bit-processing
(64bit-architecture)

parallel segments in arithmetic pipelines
(assembly line processing)

parallel functional units
(superscalar architectur)

Maximal 4 double precision floatingpoint operations per cycle time:
10 GigaFlop/s for2,5 GHz cycle frequency

April 2024 Parallel Programming with MPI

Parallelism with
Multiple Computing Elements

SIMD (Single Instruction Stream-Multiple Data Streams)

memory

parallel functional units ® o o
(graphics processor)

April 2024 Parallel Programming with MPI

Parallelism with
Multiple Computing Elements

MIMD (Multiple Instruction Streams-Multiple Data Streams)

memory

parallel CPUs

shared memory multiprocessor . s
e.g. multi-core processor

Interconnect
parallel processors | |

distributed memory multicomputer | -p CPU

e.g. cluster of single-core processors [/
memory memory

April 2024 Parallel Programming with MPI

Hybrid-Systems: Cluster of Shared-Memory Nodes

Interconnect

memory memory

April 2024 Parallel Programming with MPI

Connection in Shared Memory Systems

* Bus
— Serial memory access
— non-scalable
— low latency

—TT

e Switch

(Hypertransport, Quick Path)

— parallel memory access possible
(for advantageous data layout)

— scalable
— Larger latency

April 2024 Parallel Programming with MPI

Connection in Systems with distributed memory

e Switch

e 2d Lattice

April 2024 Parallel Programming with MPI

Parameters of Network-Connections

latency t,.
a
arrival time of the first bit

bandwidth C
rate of data transfer

effective bandwidth
1

t. -C
1_|_ lat /
ndat
bisection width

minimal number of connections between two equally sized
parts of the network

Cst = C-

April 2024 Parallel Programming with MPI

Relevance of Network Parameters

communication
network

/

P2

Every processor has computing power r
network has latency ¢, .und bandwidth ¢

tlat T number of flops, which could be executed during latency

64 - T/C number of flops, which could be executed during
transfer of 8 Bytes (floating point number)

April 2024 Parallel Programming with MPI

Typical Network Parameters

Bandwidth
c[Ghit/s]

Computing
Power
r [GFlop/s]

Intel Broadwell
Single Node

64

1 core:
8.8

2 024

Intel Cascade Lake
Single Node

75

1 core:
9,2

3 032

Intel Broadwell
Infiniband FDR

50

24 cores:
211

274 300

Intel Cascade Lake
Intel Omni-Path

90

96 cores:
883

1 060 000

April 2024

Parallel Programming with MPI

The future was (always) massively parallel

Connection Machine
CM-1 (1983)

12-D Hypercube

65536 1-bit cores
(AND, OR, NOT)

Rmax: 20 GFLOP/s

Today's notebook PC

Laeibniz-Rechenzentrum

April 2024 Parallel Programming with MPI

TOP500(2019) #1: Summit (Oak Ridge National Laboratory)

9216 IBM Power 9
(22 cores each)

27648 NVIDIA GPUs
(Volta GV100)

Rmax : 146 PetaFlop/s

April 2024 Parallel Programming with MPI

TOP500(2020) #1: FUGAKU
(RIKEN Center for Computational Science (R-CCS) in Kobe, Japan)

158,976 nodes ARM A64FX v8.2-A
(48 cores each)

Rmax : 416 PetaFlop/s

April 2024 Parallel Programming with MPI

TOP500(2022) #1: FRONTIER
(DOE/SC/Oak Ridge National Laboratory)

9472 nodes with
1 AMD-EPYC-7xx3 (64 cores)
4 AMD-Instinct MI250X-GPUs

Rmax : 1.194 ExaFlop/s

April 2024 Parallel Programming with MPI

Memory-Hierarchy in
Parallel Computers

t
network

~ memory -

+— Register
«— Functional Unit

April 2024 Parallel Programming with MPI

Speed of Memory Accesses

Memory Hierarchy

size
[GB] [words/cycle]
distributed memory 100

P 0,02

local memory

I 0,1

cache
2

4 Ops / cycle

April 2024 Parallel Programming with MPI

Golden Rule for Data Access

The maximal computing power of a parallel system

R . = clockrate * #CPUs * #Operatations per CPU

can be realized exclusively for operating on data in cache.

In all other cases:
memory bandwidth limits the usable computing power

April 2024 Parallel Programming with MPI

Memory Access Patterns
for Matrix Multiplication

J

— \'n SR
aij = k=1 bik ij, L,] = 1, e, N

N_. = 2n°

op

April 2024 Parallel Programming with MPI

Multiplication Column by Column

Calculation of one column:
2n? operations
n? data to be read from memory

If n% x size of numbers > Cachesize
mms) Slowing down due to Golden Rule

April 2024 Parallel Programming with MPI

Multiplication Block by Block

block-size bsz?

Computing a block multiplication aij(b) :
Nop = 2bsz® Ny, = 2bsz*
2bsz? < Cachesize obeys Golden Rule

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Parallel Algorithms

* |dentify data dependencies

vector addition: c(i) = a(i) + b(i),i=1 ,4
c(1) =a(1) + b(1) c(2) = a(2) + b(2) c(3) = a(3) + b(3) c(4) = a(4) + b(4)

sum of vector elements s=a(l) + a(2) + a(3) + a(4)
sl =a(1)+a(2) s2=a(3)+a(4)
s=s1+s2

generating random numbers z(i) = a*z(i-1) mod m,i=1, 4
z(1) =a*z(0) mod m
z(2) =a*z(1) mod m
z(3) =a*z(2) mod m
z(4) =a*z(3) mod m

April 2024 Parallel Programming with MPI

Types of Parallel Algorithms

* embarrassingly parallel

Simultaneous execution of independent tasks using multiple
processes

simulation of extended domains

Splitting a domain into subdomains, wich are mapped to
different processes.

Every process simulates the degrees of freedom in its
subdomain. Communication of boundaries.

* Algorithms for data fields (e.g. matrices):
Partitioning the fields into subfields, which are mapped to
different processes.
Every process manipulates data from its subfield, using data
communicated from other subfields

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Flynn-Taxonomie (1966)

SISD SIMD
Single Instruction Stream Single Instruction Stream

Single Data Stream Multiple Data Streams
(Von Neumann architecture (1945),

-stored program computer)
SIMD Computer

Processor Memory
Unit Module

SISD Computer

Processor Memory
Control Unit Module

Unit
]]
l A]]
]

Control I Processor Memory
Unit Unit Module Processor Memory

Unit Module

Instruction Stream

—_— Data Stream +

April 2024 Parallel Programming with MPI

Flynn-Taxonomie (1966)

MISD MIMD
Multiple Instruction Streams Multilple Instruction Streams
Single Data Stream Multiple Data Streams

—— Instruction Stream

MIMD Computer ——— DataStream
MISD Computer

6 Control Processor Memaory

it Init MWadule

Control Praocessor
Irit Unit

Control Processor Memaory
Cantral Processar IUnit Unit WMadule
Unit [Unit

Mermary Mernory emo
Maodule Wodule s a e
-]] e

e a
Caontrol Processar Proce ssor Memory
Unit [Unit Unit Module

April 2024 Parallel Programming with MPI

Programming Models for MIMD

Modelling the coordination of parallel instruction streams and parallel data streams
has to respect the memory organization of the computing system

* Shared Memory: memory
— Distribution of instructions to cpus | |

C2 | C3

— Synchronization of accesses to data

e Distributed Memory: network

— Distribution of instructions to processors, | |

— Distribution of data to local memories P2 | P3

— Communication of data between local memories

Two different programming models for parallel processing :

. shared memory

. message passing

Comparison to programming model for sequential processing
e Von Neumann

April 2024 Parallel Programming with MPI

Programming Model: Sequential (von Neumann)

objects:
data, instructions, program counter

instructions:
opcode opl, op2,...,rel,re2

order:
sequential

memory

instructions

A

CPU

A

y

A

y

instruction unit

»

arithmetic/logic uni

April 2024 Parallel Programming with MPI

Programming Model: Shared Memory

multiple instruction streams
(threads)

objects:
global data, instructions,

lokal PCs, thread-ID

instructions:

opcode opl, op2,...,rel,re2
atomic (uninterruptable) ops.

parallelism:

mapping instructions to streams

synchronization:
CREW (concurrent read,
exclusive write)

April 2024

memory

instructions

Parallel Programming with MPI

Programming Model: Message Passing

Multiple processors connected
to a communication network

objects:

local data + instructions,

local program counters (pc)
unique task identification (tid)

operations:
opcode (opl, op2,...,rel,re2)
send(ad,n,tid), recv(ad,n,tid)

synchronization:
recv is blocking

April 2024

memory

memory

memory

recv buffer

recv buffer

recv buffer

communication network

Parallel Programming with MPI

Languages for Parallel Programming

Use of established programmimg languages to control
execution within individual threads or tasks :
Fortran 77, Fortran 90, ..., C, C++, Python, ...

* Shared Memory Programming Model:
creation and coordination of threads

POSIX Threads Library
OpenMP (Open Multi Processing)

* Message Passing Programming Model:

creation and coordination of tasks
communication between tasks:
MPI (Message Passing Library)

* SIMD Programming Model (Graphics Processors):
CUDA (Compute Unified Device Architecture)

April 2024 Parallel Programming with MPI

Overview

e Why

— Evolution of Computing Power
* How

— Hardware Parallelism

— Data Dependency
— Programming Models

— Parallel Efficiency

April 2024 Parallel Programming with MPI

Efficiency of Parallel Computers
Unit of computing power:
[flop/s] floating point operations per second

maximal power 1, =P Ny T
number of processors (=Cores)
number of functional units per processor

cycle time for one segment of pipeline

frequency (cycle rate) of processor

GWDG’s amp-Cluster (Intel Cascade Lake Platinum 9242)
p =92 %96 = 8832, Ng = 32, s = 2,3 GHz
..., = 650 Teraflop/s

April 2024 Parallel Programming with MPI

Efficiency in Real Applications

* Reduction of parallel efficiency
Sequential parts of application
Load imbalance
Communication of data
Synchronization

* Reduktion of single processor efficiency
1. Memory accesses
Pipeline disruption
Unused parallel pipelines

April 2024 Parallel Programming with MPI

Sequential Parts

Phases of an application: data initialization
data transformation
extraction of results

T

e

Execution time:
T=T, + T, + T,

April 2024 Parallel Programming with MPI

Parallel Execution with Sequential Parts

Execution time:
T =T, +Tt/3+Te

April 2024 Parallel Programming with MPI

Amdahl‘s Law

N, sequential und N, parallelops: N = N_ + N,

Execution time on p prozessors:
szr-(NS+ﬂn) =T-N(0+E)
p p

Speed Up: § = 1 = - —
peed Lp. B T, =P 1+(p—1).c p-oow
S 1

p 1+(p-1)0

Efficiency: e =

0.,: sequential part leading to 50% efficiency (e=0.5)

G, = |for p =8832: o, ~0,00011

April 2024 Parallel Programming with MPI

Parallel Execution with Load imbalance

T
To
T

Execution time:
T=T.+T,+T,

April 2024 Parallel Programming with MPI

Generalization: Load Imbalance

process i,i = 1,---,p executes N; operations,
_ VP

i=1""1

N
average load per processor N, = ?p

maximal deviation A=maxN;— Ny, = 0N,
l

execution time p = T- (NS + max Nl) = 1N (G + 90 + E)
b

. T, 1
efficiency e =—L=
pT, 1+(p—1)C+pO

April 2024 Parallel Programming with MPI

Parallel Execution with Communication

T./3 T. T./3

X

Execution time:
T=T,+ T,+ T+ (T, + T,)/3

T. may depend on the number of parallel processes

April 2024 Parallel Programming with MPI 52

Synchronization

Coordination of different prozesses:
Waiting for completion of all partial results

Sequential synchronization
Cascade synchronization toyne = In(P) - £}y,

Parallel granularity n, :
number of parallel operations between synchronization points

Condition for high effiziency: r~! ny/p > Lo,

April 2024 Parallel Programming with MPI

Example: Matrix-Vector-Multiplication

y:A.x yi:zAij.xj’i:]".“'n
J

distribution of data and work:

every of p processors has
n/p elements from x and n/p rows from 4,

every of p prozessors calculates
n/p elements von y

y A X

April 2024 Parallel Programming with MPI

Matrix-Vector-Multiplication

Every processor calculates n/p elements of y,
executing 2 - n?/p operations

Every processor receives n/p elements of x from each of
(p — 1) remaining processors

2
=r‘1-2-%+(p—1)-(tlat+c_1-n/p)

1

(-1

2n2

Tty + pZ_nl -r/c

April 2024 Parallel Programming with MPI

Matrix-Vector-Multiplication

Conditions for good efficiency:

(p-1)
2n?

c P -r-tlat < 1

gwdg-Cluster:
e r-tlat =1060000

r

. = 628
c

April 2024 Parallel Programming with MPI

