GWDG — Kurs
Parallel Programming with MPI

MPI

Collective Operations

Oswald Haan
ohaan@gwdg.de

Learning Objectives

* Why Add Collective Operations to
Message Passing

 MPI Functions for Collective Operations:

MPI BCAST, MPI SCATTER, MPI GATHER,
MPI REDUVE, MPI BARRIER

April 2024 Parallel Programming with MPI

Outline

 Why Collective Operations?
 Data-Patterns of Collectives

* Syntax of Communcation Collectives:

MPI_BARRIER
MPI BCAST
MPI SCATTER
MPI GATHER
and variants

e Reduction Collectives

MPI_REDUCE
MPI_REDUCE SCATTER
MPI_SCAN, MPI_EXSCAN

April 2024 Parallel Programming with MPI

Motivation for Collective Operations

» Process 0 provides an input value:
copy this value to all processes

» All processes compute a number:
collect these numbers into an array in process O

» All processes compute a number:
determine the maximum of these numbers

MPI provides single function calls to perform the necessary
multiple point-to-point message passing communication for
collective communication patterns

April 2024 Parallel Programming with MPI

Motivation for Collective Operations

The implementation can provide different realizations for
collective operations, optimized with respect to the underlying
hardware and to the data layout in the application.

For Intel MPI implementation, see

https://software.intel.com/en-us/mpi-developer-reference-
linux-i-mpi-adjust-family-environment-variables

For OpenMPI, see

Choosing a Specific Collective Algorithm Implementation in
OpenMPI

and
https://www.open-mpi.org/fag/?category=tuningfmca-params

April 2024 Parallel Programming with MPI

https://software.intel.com/en-us/mpi-developer-reference-linux-i-mpi-adjust-family-environment-variables
https://medium.com/@esaliya/choosing-a-specific-collective-algorithm-implementation-in-openmpi-d96ccc8aa9e7
https://www.open-mpi.org/faq/?category=tuning#mca-params

Motivation for Collective Operations

Example: Process O copies data to all processes

Point-to-point message passing:

if ((me == 0) {
for (ip=1;ip<np;ip++) {
MPI_Send(&val, 1, MPI INT, ip,

}

else

destlnatlon/

4

source

{

0,

com)}

"\

tag

7~

MPI Recv(&val, 1, MPI INT, 0, O, com,
MPI STATUS IGNORE) ;

Collective:
MPI Bcast(&val, 1, MPI Type int, 0, com);

April 2024

source

Parallel Programming with MPI

no tag

Characeristics of Collective Operations

* All processes of a communicator must participate, i.e. must call the collective
routine.

On a given communicator, the n-th collective call must match on all
processes of the communicator. Therefore, no tags needed for collective
operations.

If one or more processes of a communicator do not participate in a given
collective operation, the program will hang.

rank 0 /“ -—

rank 1 I

rank 2 I I

rank 3 I ‘ \\\\‘//}

1stcall 2"dcall 3¥d9call

* In MPI-1.0 — MPI-2.2, all collective operations are blocking.
* Non-blocking versions since MPI-3.0.
* buffers on all processes must have exactly the same size.

April 2024 Parallel Programming with MPI

Basic Types of Collective Operations

N\ L N\ L

broadcast scatter

NN\ NN L

15 L11]

gather

April 2024 Parallel Programming with MPI

Classification of Collective Operations

MPI_BARRIER:
MPI_BCAST:
MPI_GATHER:
MPI_SCATTER:
MPI_ALLGATHER:

MPI_ALLTOALL:
MPI_REDUCE:

MPI_ALLREDUCE:

MPI_REDUCE_SCATTER:

MPI_SCAN, MPI_EXSCAN:

Synchronisation

Send from one process to all processes
gather data from all processes on one process
scatter data from one process to all processes

gather data from all processes, broadcast them
to all processes

exchange data between all processes

reduction over all processes, result goes to
one process

reduction over all processes, result is
broadcasted to all processes

reduction over all processes, result is
scattered to all processes

process i receives result from reduction over
processes with j<= i, j<i

one — all all > one all = all

April 2024 Parallel Programming with MPI

Data Flow in Collective Communication

data —
A

0

broadcast

—

<«—— Processes

—>
<

April 2024 Parallel Programming with MPI

Aol Bo| Co|Pol| Eo| Fo
Aol Bo| 0| Po| Eol Fo
As| Bs| C5|Ds| Es] Fs

s
Vs
-
G
-
Q
=
4
)

Parallel Programming with MPI

allgather
alltoall

complete

exchange

o| o] ol o] o
< |mjJO |O |W

Aol Asl AL Agl ALl Ac
Colc4lcalcslCylcs
Fol F1l1 F2| F3| F4| Fs

sossaoold ——

Kollektive Operationen

April 2024

Collective Operations are Blocking

process0 process1l process 2 process 3

April 2024 Parallel Programming with MPI

MPI_BARRIER: Synchronisation

C: MPI Barrier(MPI_Comm comm)

FORTRAN: MPI_BARRIER(comm, ierror)
INTEGER comm, ierror

mpidpy: comm.Barrier ()

 MPI_BARRIER is usually not needed, because synchronization
will be effected by other MPI routines

 MPI_BARRIER is useful for debugging and timing purposes

April 2024 Parallel Programming with MPI

MPI_BCAST: Broadcast from root

C: MPI Bcast(void *buf, int count, MPI_ Type datatype
, int root, MPI Comm comm)

FORTRAN: MPI BCAST(buf, count, datatype, root, comm, ierror)
<type>buf (*) , INTEGER count, datatype, root, comm, ierror

mp|4py robj = comm.bcast(sobj, root= 0)
comm.Bcast (ar, root= 0)

* All processes must supply the same values for root and comm

* data size = count * size (datatype)
must be the same on all processes

before MPI_BCAST after MPI_BCAST
buf buf

process 0

process 1 (root) -

process 2

April 2024 Parallel Programming with MPI

MPI_SCATTER: Scatter from root

C: MPI Scatter(void *sbuf, int scount, MPI Type stype
, void *rbuf, int rcount, MPI Type rtype
, int root, MPI Comm comm)
FORTRAN: MPI SCATTER(sbuf, scount, stype, rbuf, rcount, rtype

, root, comm, ierror)
<type>sbuf (*), rbuf (*)

INTEGER scount, stype, rcount, rtype, comm, ierror

robj = comm.scatter (sendobj = sobj, recvobj=None, root= 0)
comm. Scatter (sar, rar, root= 0)

before MPI_SCATTER after MPI_SCATTER

rbuf sbuf rbuf

process 0

process 1 (rOOt)'_ t

process 2

April 2024 Parallel Programming with MPI

Restrictions for Arguments in MPI_SCATTER

All processes must supply the same values for root and comm

r data size = rcount*size (rtype) on all processes
must be equal to

s_data size = scount*size (stype) onprocessroot

sbuf is ignored an all non-root processes

The total size of data scattered from process root is
nproc * s data size

April 2024 Parallel Programming with MPI

MPI_GATHER: Gather to root

C: MPI Gather(void *sbuf, int scount, MPI_ Type stype
, void *rbuf, int rcount, MPI Type rtype
, int root, MPI Comm comm)
Fortran: MPI GATHER(sbuf, scount, stype, rbuf, rcount, rtype
, root, comm, ierror)
<type>sbuf (*), rbuf (*)
INTEGER scount, stype, rcount, rtype, comm, ierror
n1ph4py: robj = comm.gather (sendobj = sobj, recvobj=None, root= 0)
comm.Gather (sar, rar, root= 0)

before MPI_GATHER after MPI_GATHER

sbuf rbuf sbuf rbuf

process 0 -

process 1 (root)|

process 2

April 2024 Parallel Programming with MPI

Restrictions for Arguments in MPI_GATHER

All processes must supply the same values for root and comm

s _data size scount*size (stype) on all processes
must be equal to

r data_size rcount*size (rtype) on process root

rbuf is ignored an all non-root processes

The total size of data gathered on process root is
nproc * r data size

April 2024 Parallel Programming with MPI

Other Collective Communication Routines

e MPI_ALLGATHER similar to MPI_GATHER,
» but all processes receive the result vector
» therefore no root argument
« MPI_ALLTOALL
» each process sends messages to all processes
e MPI_GATHERV, SCATTERV, ALLGATHERV, ALLTOALLV
» collective communication routines with variable data layouts

» The counts of elements is different for each process,

» different displacements of the element to be scattered from
the send buffer resp. different displacements of the elements
to be gathered in the receive buffer can be prescribed

» ldentical array of counts and array of displacements must be
given as arguments in the call on all processes

April 2024 Parallel Programming with MPI

MPI_GATHERYV : Gather to root

C: MPI Gatherv(void *sbuf, int scount, MPI Type stype

, void *rbuf, int *rcounts, int *displs, MPI Type rtype
, int root, MPI Comm comm)

Fortran: MPI GATHERV(sbuf, scount, stype

, rbuf, rcounts, displs, rtype, root, comm, ierr)
<type>sbuf (*), rbuf (*)

INTEGER scount, stype, rcounts(*), dipls(*), rtype, comm, ierr

Mpidpy: comm.Gatherv(sar, rar, root= 0)
rar = [recvdata, rcounts,dspls,dtype]

before MPI_GATHERV after MPI_GATHERV

sbuf rbuf sbuf rbuf

Task O -

(]
Task 1 (root) - - [-:-
Task 2 D

April 2024 Parallel Programming with MPI

Restrictions for Arguments in MPI_GATHERV

* The number of bytes in sbuf send from task i, determined by
scount * size (stype),
must be equal to the number of bytes received in the i-th block in rbuf on

root, determined by
rcounts (i) * size(rtype)

 The data block sbuf from task i will be stored in rbuf on root
with displacement of displs(i) elements of type rtype from address rbuf.

* rbuf, rcounts, displs will beignored on all non-root tasks .

April 2024 Parallel Programming with MPI

MPI_SCATTERV : Scatter from root

C: MPI Scatterv(void *sbuf, int *scounts, int *displs, MPI Type stype

, void *rbuf, int rcount, MPI Type rtype
, int root, MPI Comm comm)

Fortran: MPI SCATTERV(sbuf, scounts, displs, stype

, rbuf, rcount, rtype, root, comm, ierr)
<type>sbuf (*), rbuf (*)

INTEGER scounts(*), dipls(*), stype, rcount, rtype, comm, ierr

mMpidpy: comm.Scatterv(sar, rar, root= 0)
sar = [senddata,scounts,dspls,dtype]

before MPI_SCATTERV after MPI_SCATTERV

sbuf rbuf sbuf rbuf

Task O

]
Task 1 (root) [-:- [-:- -
[]

Task 2

April 2024 Parallel Programming with MPI

Restrictions for Arguments in MPI_SCATTERV

 The number of bytes in rbuf received on task i, determined by
rcount * size(rtype),
must be equal to the number of bytes sent from the i-th block in sbuf on

root, determined by
scounts (i) * size(stype)

* The i-th data block in sbuf has scounts (i) elements of type stype,
is located at a distance of scounts (i) elements from the start address of

sbuf and
will be stored in the receive buffer rbuf on process i as rcount elements of

type rtype

* sbuf, scounts, displs will be ignored on all non-root tasks .

April 2024 Parallel Programming with MPI

In Place Variants

* In place variant of MPI_GATHER
» The value MPI_IN_PLACE can be provided as argument
for sbuf in the root process, if the root data to be
gathered are already on their place in rbuf of the root
* In place variant of MPI_ALLGATHER
» The value MPI_IN_PLACE can be provided as argument
for sbuf in all processes, if the data to be gathered from
the processes are already on their place in the rbuf of
this process.

April 2024 Parallel Programming with MPI

MPI_GATHER: mit MPI_IN_PLACE auf root

non-root-Task

MPI_GATHER(sendbuf, sendcount, sendtype,
, root, comm)

root-Task

MP1_GATHER(MPI_IN_PLACE, , recvbuf, recvcount,
recvtype, root, comm)

Vor MPI_GATHER Nach MPI_GATHER

sendbuf recvbuf sendbuf recvbuf

Task 0 - -
Task 1 (root) - _:

Task 2

April 2024 Parallel Programming with MPI

MPI_ALLGATHER mit MPI_IN_PLACE

MPI_ALLGATHER(MPI_IN_PLACE, ,
recvbuf, recvcount,recvtype, comm)

Vor MPI_ALLGATHER Nach MPI_ALLGATHER

sendbuf recvbuf sendbuf recvbuf

Task 0] - I
Task 1 B N
26

Task 2

April 2024 Parallel Programming with MPI

Global Reduction

An example:

Add the results local_res computed in each of 3 tasks to a total result:
total_res =local res 0+ local res 1+ local res 2

INTEGER loc res, total res, all res(3)

I Gather local results into the array all_res on the root process with MPI_GATHER
MPI GATHER(loc_res, 1, MPI INTEGER

, all res, 1, MPI INTEGER
, root , comm, ierror)

! Add the elements of all res on the root process
if (myid.eq.root) then

total res = all res(1l)+all res(2)+all res(3)
end if

April 2024 Parallel Programming with MPI

Global Reduction with MPI_REDUCE

INTEGER loc res, total res

call MPI REDUCE(loc res, total res, 1, MPI INTEGER
, MPI SUM
, root , comm, ierror)

April 2024 Parallel Programming with MPI

Global Reduction Operations

To perform a global reduce operation across data on all processes of a
communicator:

redo= d0odlod2od3o..
— di = data in process ranki
e single variable, or
e vector, i.e. di = (dil,di2,di3,...)
— 0 = associative operation

If di are vectors, the result of the reduce operation also is a vector:
redo=(d0lodllod2l1od3lo0...,

d02o0dl20d220d32o0...,
d030dl30d230d330...,
L)

— Examples:

e global sum or product

e global maximum or minimum
e global user-defined operation

April 2024

Parallel Programming with MPI

Predefined Reduction Operations

Name Meaning

(fortran,c) (mpidpy)

MPI_MAX MPI.MAX maximum

MPI_MIN MPI.MIN minimum

MPI_SUM MPI.SUM sum

MPI_PROD MPI.PROD product

MPI_LAND MPI.LAND logical and

MPI_BAND MPI.BAND bit-wise and

MPI_LOR MPI.LOR logical or

MPI_BOR MPI.BOR bit-wise or

MPI_LXOR MPI.LXOR logical exclusive or (xor)
MPI_BXOR MPI.BXOR bit-wise exclusive or (xor)
MPI_MAXLOC MPI.MAXLOC max value and location
MPI_MINLOC MPI.MINLOC min value and location

April 2024 Parallel Programming with MPI

Reduction Operations

C: MPI Reduce(void *sbuf, void *rbuf, int count
, MPI Dataype datatype, MPI Op op
, int root, MPI Comm comm)
FORTRAN: MPI REDUCE(sbuf, rbuf, count, datatype, op, root

,comm, ierror)
<type> sbuf (*), rbuf (*)

INTEGER count, datatype, op, root, comm, ierror

n1ph1py: comm.Reduce (sbuf, rbuf, op=oper root= 0)

* All processes must supply the same values for count, root, comm
and datatype

sbuf

Task 0 AO !Al

Task 1 (root) AO!A1 AD op AO op IAl op Alop

Task 2 |

April 2024 Parallel Programming with MPI

Variants of Reduction Operations

MPI|_ALLREDUCE
» returns the result in all processes
» no root argument
MP|_REDUCE_SCATTER_BLOCK and MPI_REDUCE_SCATTER
» result vector of the reduction operation is scattered to the processes into
the result buffers
MPI_SCAN
» result at process with rankii :
=reduction of sbuf-values from rank O to rank i

MPI_EXSCAN
» result at process with rank i :
=reduction of sbuf-values from rank O to rank i-1

April 2024 Parallel Programming with MPI

Reduction Operations
MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

Task 0

Task 1
Task 2

April 2024

sendbuf

AO!A1

A0jA1

recvbuf

AO op AO op

[A1 op A1 op

AO op AO op

|A1 op Al op

AO op AO op

|A1 op Al op

Parallel Programming with MPI

Reduction Operations

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype,
op, comm)

sendbuf starting address of send buffer (choice)

recvbuf starting address of receive buffer (choice)

recvcounts non-negative integer array (of length group size)
specifying the number of elements of the result
distributed to each process.

datatype data type of elements of send and receive buffers
(handle)

op operation (handle)

comm communicator (handle)

April 2024 Parallel Programming with MPI

Reduction Operations

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype,
op, comm)

Example: recvcounts(0) = 2, recvcounts(1) = 1, recvcounts(2) =3

op = MPI_MAX

The number of elements in sendbuf to be reduced over

nproc tasks is
recvcount(0)+ . . . +recvcount(nproc-1)

sendbuf recvbuf
Max(A0, A0,~0) [Max(A1, A1,

Task 0| [Ao0la1]azlas]aalas

Max(A2, A2,/)|

Task 1| [A0]a1la2|as]aalas

Task 2 NI) Max(A3, A3,)| Max(A4, A4,/4) [Max(AS, AS,

April 2024 Parallel Programming with MPI 35

Reduction Operations

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount,

datatype, op, comm)
z.B. recvcount = 2, op = MPl_MAX

The number of elements in sendbuf to be reduced over

nproc tasks is
nproc*recvcount

sendbuf recvbufbuf
Max(A0, A0,~0) [Max(A1, A1,

Task 0 aolai]azlas|aalas

)l\/lax(A3, A3,

Task 1 A0 a1laz]az]aalas Max(A2, A2,

Task 2 NI S Max(A4, A4,7/) Max(A5, A5,

April 2024 Parallel Programming with MPI

Reduction Operations
MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

Task 0

Task 1
Task 2

April 2024

sendbuf

AO!A1

A0jA1

recvbufbuf

AO

| A1

AO op AO

|A1 op Al

AO op AO op

|A1 op Al op

Parallel Programming with MPI

Reduction Operations
MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

Task 0

Task 1
Task 2

April 2024

sendbuf

AO!A1

A0jA1

recvbufbuf

AO [A1

AO op A0 [A1 0p A1

Parallel Programming with MPI

