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• Synchronization
How to synchronize

• Broadcast
An example to distribute input data

• Gathering
Ways to combine local data of different sizes 

• Reduction
Example: Monitor progress of processes

Accumulate data from all processes

Outline
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( Source code in :   mpiexercises/[f,c,py]/MPI-coll )

call MPI_BARRIER(comm,ierr)

MPI_Barrier(comm)

Comm.Barrier

Determine the time needed for  synchronization for different number 
of processes  (use synch.f (make synch), synch.py)

Exercise 1: Synchronization

Parallel Programming with MPI 3April 2024

http://www.gwdg.de/~ohaan/ParKurs_2013/synch.f.txt
http://www.gwdg.de/~ohaan/ParKurs_python/synch.py.txt


Program your own barrier using point-to-point communication: 
( complete the program synch_s.(f,c,py] )

all tasks except task 0 send a message to task 0
task 0 sends a message to all other tasks

p0

P1

p2

Exercise 1: Synchronization
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If you have tried hard to perform the required exercises
and the programs still don‘t work, you are allowed to look
into the directories

~ohaan/mpisolutions/f

~ohaan/mpisolutions/c

~ohaan/mpisolutions/py

where you will find the completed programs for some exercises

Solution for Exercises
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Exercise 1: Synchronization
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Sequential Synchronization (t~ np)

Partially Parallel  Synchronization (t~𝑙𝑛 (np))

Example implementation in program synch_casc.f (valid only for np =2k )



Modify program  bcast (distribution of input value n from process 0 
to all other processes)  by using the broadcast function instead of the 
sequential send and receive operations

C:   
MPI_Bcast( void *buf, int count,

MPI_Type datatype, int root, MPI_Comm comm )

Fortran:  
MPI_BCAST( buf, count, datatype, root, comm, ierror )

<type>buf(*), INTEGER count, datatype, root, comm, 

ierror

mpi4py:  
robj = comm.bcast(sobj, root= 0)

comm.Bcast(ar, root= 0)

Exercise 2: Broadcast

April 2024 Parallel Programming with MPI 7



Exercise 3: Gather Data(1)

Task 0

v_glb

Task 1 Task 2

v_lcl
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v_glb is a vector with n elements in np intervals
vector of interval sizes:   counts(0),...,counts(np-1)
vector of start indices :   dspls(0),...,dspls(np)

0 1 2 n

proc.0 proc.1 proc. np-1

dspls(0) dspls(1)

= =

dspls(np-1)

=

dspls(np)

=
Exercise 3: Gather Data(2)

Length of local vectors on process ip : 
counts(ip) = dspls(ip+1)-dspls(ip), ip=0,np-1

Length of global vector :
n = dspls(np)

April 2024



Parallel Programming with MPI 10

Example:
Length of local vector on process ip is ip+3:

dspls(0) = 0

do ip = 1 , np

dspls(ip) = dspls(ip-1)+ 3 +(ip-1)

counts(ip-1) = dspls(ip) - dspls(ip-1)

end do

nglb = dspls(np)

Initialize the local vectors (such that v_glb(i) = i):
do i = 0 , counts(myid)-1

v_lcl(i) = dspls(myid)+i

end do

Exercise 3: Gather Data(3)
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Exercise 3: Gather Data(4)
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Solution 1: gather with SEND / RECV
( program collect_sendrecv)

Every process sends its local vector to all other processes:
nlcl = counts(myid)

do ip = 0,np-1

call MPI_SEND(v_lcl,nlcl,type,ip ...

Every process stores local vectors from  other processes at the 
appropriate location in the global vector:

do ip = 0,np-1

nrecv = counts(ip)

call MPI_RECV(v_glb(dspls(ip)),nrecv,type,ip ...



Exercise 3: Gather Data(5)
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Solution 2:  with BCAST
(complete program collect_bcast)

Every process copies its v_lcl to its  v_glb:
nlcl = counts(myid)

do i = 1 , nlcl

v_glb(dspls(myid)+i) = v_lcl(i)

Every process broadcasts this part of v_glb

Syntax for broadcast:
MPI_BCAST( buffer, count, datatype, root, comm )
comm.Bcast(buf, root = root)



Exercise 3: Gather Data(6)
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Solution 3:  with GATHERV (Fortran, C)
(complete program collect_gather)

Gather local Data v_lcl of all processes in v_glb in process 0:

call MPI_GATHERV( v_lcl, counts(myid), sendtype, 

v_glb, counts, dspls, recvtype, 0, comm, ierr )

BCAST v_glb from process 0 to all processes
call MPI_BCAST(v_glb,nglb,type,0,comm, ierr )

Combine the two steps with: MPI_ALLGATHERV



Exercise 3: Gather Data(7)
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Solution 3:  with GATHERV  (mpi4py)
(complete program collect_gather)

Gather local Data v_lcl of all processes in v_glb in process 0:
comm.Gatherv( sendbuf, recvbuf, root=0)

where:
sendbuf = v_lcl

recvbuf =[v_glb,counts,dspls[0:nproc],MPI.DOUBLE]

BCAST v_glb from process 0 to all processes
comm.Bcast(v_glb, root=0)

Alternatively : Combine the two steps with: MPI_ALLGATHERV



Signaling an error in one process to all other processes

• Look at the program errexit.f, errexit.py ,

find out its behaviour

• Combine MPI_REDUCE + MPI_BCAST to
MPI_ALLREDUCE

Syntax: 

MPI_ALLREDUCE( sendbuf, recvbuf, count, datatype, op,  comm)
recvbuf= comm.reduce(sendobj = sendbuf, recvobj=None, op=op)

Exercise 4: Monitoring Program Execution
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• Generate a program to distribute the summation of integers 
from 1 to N.  

• Hint: Calculate partial sums on every process and combine 
them to the total result with MPI_REDUCE using the operation 
MPI_SUM

• Modify the sequential code in

• intsum.[f,c,py]

Syntax of MPI_REDUCE
call MPI_REDUCE(suml,sum,1,MPI_INTEGER, MPI_SUM,

:                0,MPI_COMM_WORLD, ierr )

sum = comm.reduce(suml,op=MPI.SUM,root=0)

comm.Reduce(suml,sum,op=MPI.SUM,root=0)

Exercise 5: Reduce:  MPI_SUM
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Modify step 7 in program piapp_mpi (add up all local res to the total 
results pia on process 0 )  by using the reduce function instead of 
the sequential send and receive operations

C:   
MPI_Reduce( void *sendbuf, void *recvbuf, int count,

MPI_Type datatype, MPI_Op op, int root,

MPI_Comm comm )

Fortran:  
MPI_REDUCE( sendbuf, recvbuf, count, datatype, op, 

root, comm, ierror )

<type>sendbuf(*), recvbuf

INTEGER count, datatype, op, root, comm, ierror

mpi4py:  
rbuf = comm.reduce(sbuf,op=oper root= 0)

Exercise 6: Reduce
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