
GWDG – Kurs
Parallel Programming with MPI

Collective Operations
Exercises

Oswald Haan
ohaan@gwdg.de

• Synchronization
How to synchronize

• Broadcast
An example to distribute input data

• Gathering
Ways to combine local data of different sizes

• Reduction
Example: Monitor progress of processes

Accumulate data from all processes

Outline

Parallel Programming with MPI 2April 2024

(Source code in : mpiexercises/[f,c,py]/MPI-coll)

call MPI_BARRIER(comm,ierr)

MPI_Barrier(comm)

Comm.Barrier

Determine the time needed for synchronization for different number
of processes (use synch.f (make synch), synch.py)

Exercise 1: Synchronization

Parallel Programming with MPI 3April 2024

http://www.gwdg.de/~ohaan/ParKurs_2013/synch.f.txt
http://www.gwdg.de/~ohaan/ParKurs_python/synch.py.txt

Program your own barrier using point-to-point communication:
(complete the program synch_s.(f,c,py])

all tasks except task 0 send a message to task 0
task 0 sends a message to all other tasks

p0

P1

p2

Exercise 1: Synchronization

Parallel Programming with MPI 4April 2024

R1

S0

S0

R0

R2 S1 S2

R0

possible pattern for process execution times

p0

p1

p2

If you have tried hard to perform the required exercises
and the programs still don‘t work, you are allowed to look
into the directories

~ohaan/mpisolutions/f

~ohaan/mpisolutions/c

~ohaan/mpisolutions/py

where you will find the completed programs for some exercises

Solution for Exercises

April 2024 Parallel Programming with MPI 5

Exercise 1: Synchronization

Parallel Programming with MPI 6April 2024

Sequential Synchronization (t~ np)

Partially Parallel Synchronization (t~𝑙𝑛 (np))

Example implementation in program synch_casc.f (valid only for np =2k)

Modify program bcast (distribution of input value n from process 0
to all other processes) by using the broadcast function instead of the
sequential send and receive operations

C:
MPI_Bcast(void *buf, int count,

MPI_Type datatype, int root, MPI_Comm comm)

Fortran:
MPI_BCAST(buf, count, datatype, root, comm, ierror)

<type>buf(*), INTEGER count, datatype, root, comm,

ierror

mpi4py:
robj = comm.bcast(sobj, root= 0)

comm.Bcast(ar, root= 0)

Exercise 2: Broadcast

April 2024 Parallel Programming with MPI 7

Exercise 3: Gather Data(1)

Task 0

v_glb

Task 1 Task 2

v_lcl

April 2024 Parallel Programming with MPI 8

Parallel Programming with MPI 9

v_glb is a vector with n elements in np intervals
vector of interval sizes: counts(0),...,counts(np-1)
vector of start indices : dspls(0),...,dspls(np)

0 1 2 n

proc.0 proc.1 proc. np-1

dspls(0) dspls(1)

= =

dspls(np-1)

=

dspls(np)

=
Exercise 3: Gather Data(2)

Length of local vectors on process ip :
counts(ip) = dspls(ip+1)-dspls(ip), ip=0,np-1

Length of global vector :
n = dspls(np)

April 2024

Parallel Programming with MPI 10

Example:
Length of local vector on process ip is ip+3:

dspls(0) = 0

do ip = 1 , np

dspls(ip) = dspls(ip-1)+ 3 +(ip-1)

counts(ip-1) = dspls(ip) - dspls(ip-1)

end do

nglb = dspls(np)

Initialize the local vectors (such that v_glb(i) = i):
do i = 0 , counts(myid)-1

v_lcl(i) = dspls(myid)+i

end do

Exercise 3: Gather Data(3)

April 2024

Exercise 3: Gather Data(4)

Parallel Programming with MPI 11April 2024

Solution 1: gather with SEND / RECV
(program collect_sendrecv)

Every process sends its local vector to all other processes:
nlcl = counts(myid)

do ip = 0,np-1

call MPI_SEND(v_lcl,nlcl,type,ip ...

Every process stores local vectors from other processes at the
appropriate location in the global vector:

do ip = 0,np-1

nrecv = counts(ip)

call MPI_RECV(v_glb(dspls(ip)),nrecv,type,ip ...

Exercise 3: Gather Data(5)

Parallel Programming with MPI 12April 2024

Solution 2: with BCAST
(complete program collect_bcast)

Every process copies its v_lcl to its v_glb:
nlcl = counts(myid)

do i = 1 , nlcl

v_glb(dspls(myid)+i) = v_lcl(i)

Every process broadcasts this part of v_glb

Syntax for broadcast:
MPI_BCAST(buffer, count, datatype, root, comm)
comm.Bcast(buf, root = root)

Exercise 3: Gather Data(6)

Parallel Programming with MPI 13April 2024

Solution 3: with GATHERV (Fortran, C)
(complete program collect_gather)

Gather local Data v_lcl of all processes in v_glb in process 0:

call MPI_GATHERV(v_lcl, counts(myid), sendtype,

v_glb, counts, dspls, recvtype, 0, comm, ierr)

BCAST v_glb from process 0 to all processes
call MPI_BCAST(v_glb,nglb,type,0,comm, ierr)

Combine the two steps with: MPI_ALLGATHERV

Exercise 3: Gather Data(7)

Parallel Programming with MPI 14April 2024

Solution 3: with GATHERV (mpi4py)
(complete program collect_gather)

Gather local Data v_lcl of all processes in v_glb in process 0:
comm.Gatherv(sendbuf, recvbuf, root=0)

where:
sendbuf = v_lcl

recvbuf =[v_glb,counts,dspls[0:nproc],MPI.DOUBLE]

BCAST v_glb from process 0 to all processes
comm.Bcast(v_glb, root=0)

Alternatively : Combine the two steps with: MPI_ALLGATHERV

Signaling an error in one process to all other processes

• Look at the program errexit.f, errexit.py ,

find out its behaviour

• Combine MPI_REDUCE + MPI_BCAST to
MPI_ALLREDUCE

Syntax:

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)
recvbuf= comm.reduce(sendobj = sendbuf, recvobj=None, op=op)

Exercise 4: Monitoring Program Execution

Parallel Programming with MPI 15April 2024

A0 op A0 op A0 A1 op A1 op A1

Task 0

Task 1

Task 2

sendbuf recvbufbuf

A0 A1

A0 A1

A0 A1

A0 op A0 op A0 A1 op A1 op A1

A0 op A0 op A0 A1 op A1 op A1

• Generate a program to distribute the summation of integers
from 1 to N.

• Hint: Calculate partial sums on every process and combine
them to the total result with MPI_REDUCE using the operation
MPI_SUM

• Modify the sequential code in

• intsum.[f,c,py]

Syntax of MPI_REDUCE
call MPI_REDUCE(suml,sum,1,MPI_INTEGER, MPI_SUM,

: 0,MPI_COMM_WORLD, ierr)

sum = comm.reduce(suml,op=MPI.SUM,root=0)

comm.Reduce(suml,sum,op=MPI.SUM,root=0)

Exercise 5: Reduce: MPI_SUM

Parallel Programming with MPI 16April 2024

Modify step 7 in program piapp_mpi (add up all local res to the total
results pia on process 0) by using the reduce function instead of
the sequential send and receive operations

C:
MPI_Reduce(void *sendbuf, void *recvbuf, int count,

MPI_Type datatype, MPI_Op op, int root,

MPI_Comm comm)

Fortran:
MPI_REDUCE(sendbuf, recvbuf, count, datatype, op,

root, comm, ierror)

<type>sendbuf(*), recvbuf

INTEGER count, datatype, op, root, comm, ierror

mpi4py:
rbuf = comm.reduce(sbuf,op=oper root= 0)

Exercise 6: Reduce

April 2024 Parallel Programming with MPI 17

