
GWDG / Goettingen University Exercise 1 / 2024-04-08
AGC / Mathematic and Informatics Practical Course on High Performance Computing / WiSe 2024
Aasish Kr. Sharma 65 Minutes Total

Exercise: MPI Matrix Multiplication Benchmark

Before attempting the exercises in this document please ensure that you have read and understood the key
topics covered in tutorial.

Objective:

Benchmark the performance of matrix multiplication using MPI on an SCC cluster (your account). This
exercise will involve writing a simple MPI program, varying the number of processes, and measuring the
execution time to understand scalability.

To do this exercise you will need:

• Access to an SCC cluster with MPI installed.

• Basic knowledge of MPI programming (e.g., sending and receiving messages).

• Familiarity with compiling and running MPI programs.

• You will require python packages like MPI and numpy.

Contents

Task 1: Matrix Multiplication (20 min) 1

Task 2: Benchmarking (25 min) 2

Task 3: Analysis (20 min) 3

Task 1: Matrix Multiplication (20 min)

• Write an MPI program to perform matrix multiplication.

1. You could take help from ”Parallel Computing: Basic Principles” course by Oswald Haan on Friday
(05.04.2024).

2. a) Skeleton code for function 1 (language python):

1 def matrix_multiply(A, B):

2 return np.dot(A, B)

b) Skeleton Code for Function 2 (language python):

1 /* Main function. */

2 from mpi4py import MPI

3 import numpy as np

4

5



6 if __name__ == "__main__":

7 /* Declaring the required variables and the required MPI functions. */

8

9 # Matrix dimensions

10 N = 100

11 M = 100

12 K = 100

13

14

15 # Create random matrices A and B

16 np.random.seed(42)

17 A = np.random.rand(N, M)

18 B = np.random.rand(M, K)

19

20

21 # Your code for MPI Functions

22

23

24

25

26 # Your code for splitting matrices among processes

27

28

29

30

31 # Your code for perform local matrix multiplication

32

33

34

35

36 # Your code for gathering results

37

38

39

40

41 if rank == 0:

42 # Combine results

43 result = np.concatenate(C, axis=0)

44 print("Result Matrix (C):")

45 print(result)

46 }

47

48 /* Finally, test and compile the code. Keep the file name "mpi_matrix_multiply.py"*/

3. Compile and run the program.

– Compile the program using mpicc or mpifort, depending on your MPI compiler:

1 mpicc -o mpi_matrix_multiply mpi_matrix_multiply.py

4. Run the program with varying numbers of MPI processes using the bash script:

1 mpiexec -n <num_processes> ./mpi_matrix_multiply

5. Measure the execution time for each run using time or mpiexec’s built-in timing options.

Task 2: Benchmarking (25 min)

• Do the benchmarking using your program (known as strong and week scaling benchmark).

• Vary the number of MPI processes (-n) from 1 to a suitable maximum based on the available cores in
your cluster.

PCHPC – Exercise 1 2/3



• Record the execution time for each run.

• Plot a graph showing the scalability of the matrix multiplication with respect to the number of processes.

• X-axis: Number of MPI processes

• Y-axis: Execution time

Task 3: Analysis (20 min)

• Analysis:

– Analyze the benchmark results to understand the scalability of the matrix multiplication program.

– Look for trends in execution time as the number of processes increases.

– Identify any bottlenecks or inefficiencies in the program or the cluster configuration.

– Summarize (short-document) and complete your benchmarking analysis.

– Include all the details you argue relevant on your critical thinking.

– For convenience you could also store your records in a CSV file, with the file name ”hpctrain-
ingNN.csv”.

• Discussion:

– How does the execution time change with an increasing number of processes?

– Does the program exhibit strong or weak scaling?

– What factors might contribute to the observed scalability?

– How could the program or the cluster configuration be optimized for better performance?

Hints

• You could also create and include graphs and chart plots as felt necessary.

• Here ”NN” is your user code. You could also share your findings during the session for the feedback.

• You can modify the matrix dimensions (N, M, K) to vary the size of the matrices and observe their
impact on performance.

• We encourage you to experiment with different MPI functions, matrix sizes, and cluster configurations
to deepen your understanding of HPC benchmarking.

PCHPC – Exercise 1 3/3


	Task 1: Matrix Multiplication (20 min)
	Task 2: Benchmarking (25 min)
	Task 3: Analysis (20 min)

