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Abstract
This report aims to assess the performance of a computing cluster when executing Dask-
ML, a robust machine learning framework, with a specific focus on several key performance
metrics. The investigation concentrates on execution time, CPU utilization, bandwidth
between workers, bytes stored in memory, and memory usage. Dask-ML, known for its
distributed computing capabilities and integration with popular libraries like Scikit-learn,
is well-suited for handling extensive datasets and complex machine learning models.

Additionally, this study evaluates the I/O performance associated with reading LAZ files,
a compressed variant of LAS files commonly employed in LiDAR data processing, on
the computing cluster. The results underscore the system’s scalability in response to
varying input LAZ file sizes. Furthermore, this report delves into the challenges associated
with efficient LAZ file processing, emphasizing the use of memory-efficient techniques
employing the Laspy library.
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Analyzing IO performance when using Dask-ML

1 Introduction
This report reviews both theoretical explorations and practical efforts related to the course
titled: ’Seminar with Practical: Scalable Computing Systems and Applications in AI,
Big Data and HPC’.The main goal of this project is analyzing I/O performance during
execution of a ML pipeline on GWDG’s scientific supercomputer cluster. The source
codes are available in the GWDG’s repository.

1.1 Motivation

In the context of contemporary computing, the effective handling and enhancement of
Input/Output (I/O) processes play a vital role. This function cannot be accomplished
unless there is a thorough and efficient analysis of I/O patterns and behavior. Such
analysis can help us in upholding the system’s efficiency, scalability, dependability, and
overall well-being. Also, in the case of performance obstacles, it facilitates the detection
and resolution of the issues, and aids in fine-tuning resource utilization, and guarantees
a seamless and prompt user interaction. This importance grows when confronting the
difficulties presented by Big Data, supercomputing, and parallel/distributed computing
models.

This is well known that large-scale data is being produced constantly, and nonstop. This
has forced analysts to face analyzing huge data that can not fit into the memory. Obvi-
ously, this large-scale data can not be processed by regular ML techniques and algorithms.
In such a scenario, other options are subsampling, Cloud Computing, and out-of-core ma-
chine learning. In the last option, the data is loaded from a secondary storage device
in mini-batches such that the batches can fit into the main memory. The next step is
extracting features from that data to be used as the ML model’s input. In the last step,
the model is trained incrementally. In incremental learning, models learn from new in-
formation in real time or on-the-fly. The model starts learning with the mini-batch and
when new data becomes available, the model gets updated, while preserving its existing
knowledge[STA23].

Not all ML algorithms support out-of-core ML. One, among the ones with this capability,
is Dask-ML that is a library built on top of Dask framework. Dask, itself is a library for
parallel computing in Python. Dask-ML provides machine learning algorithms and tools
that are designed to work efficiently with large datasets using Dask’s parallel computing
capabilities[Wan+20].

1.2 Background

The main concepts and tools which are used in the current project, are briefly explained
in this section. To ensure that there is no distortion, most of the Dask information and
the information on LAZ files, given in this section are from the official websites [Das] and
[LAZ].
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1.2.1 Dask Library

Dask is a flexible library for parallel computing in Python. This library is used by the
world’s largest banks, national labs, retailers, technology companies, and government
agencies. It is used in highly secure environments. The most common problem that Dask
solves is connecting Python analysts to distributed hardware, particularly for data science
and machine learning workloads. Dask, provided in 2015, is a relatively thin wrapper on
top of NumPy, Pandas, Jupyter, Scikit-Learn libraries. All these, have made Dask trusted
and simple to use.
Dask usually communicates over TCP, using msgpack for small administrative messages,
and its own protocol for efficiently passing around large data. The scheduler and each
worker host their own TCP server, making Dask a distributed peer-to-peer network that
uses point-to-point communication.
Some Dask deployments have been on around 1000 multicore machines, perhaps 20,000
cores in total, although most institutional-level problems (1-100 TB) are well solved by
deployments of 10–50 nodes.
Technically, each task (an individual Python function call) in Dask has an overhead of
around 200 microseconds. So if these tasks take 1 second each, then Dask can saturate
around 5000 cores before scheduling overhead dominates costs. As workloads reach this
limit, they are encouraged to use larger chunk sizes to compensate.
Dask is resilient to the failure of worker nodes. It knows how it came to any result and
can replay the necessary work on other machines if one goes down. If Dask’s centralized
scheduler goes down, then resubmission of the computation will be needed.
Dask supports most formats that NumPy and Pandas support, however, not all formats
are well-suited for parallel access. The following formats are usually fine to be used by
Dask.

• Tabular: Parquet, ORC, CSV, Line Delimited JSON, Avro, text

• Arrays: HDF5, NetCDF, Zarr, GRIB

1.2.2 Dask-ML

Dask-ML provides scalable machine learning in Python using Dask alongside popular
machine learning libraries like Scikit-Learn, XGBoost, and others. Although there are
technics like sampling for scaling an ML model, Dask-ML is a powerful tool in scaling
data size and model size. It is particularly well-suited for scenarios in which we are
working with massive datasets or training complex machine learning models, and we need
to efficiently leverage distributed computing capabilities.

1.2.3 LAZ File Format

In this experience, LAZ files are used as input. In the following, a brief introduction
about this file format is provided. LAS and LAZ are popular vector formats for storing
LiDAR data as point clouds. They’re widely embraced in the surveying industry due
to their compatibility with numerous software tools, making them essential for LiDAR
data storage and sharing. LAS, short for LIDAR Aerial Survey, is a prevalent binary
format for 3D LiDAR point cloud data. Developed by ASPRS in 2003, it’s the industry
standard. LAS files comprise LiDAR points with attributes like X, Y, and Z coordinates,
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intensity values, return numbers, and classification codes. This format is adaptable,
allowing users to include specific attributes as needed. LAS is known for its extensibility,
enabling the addition of new attributes. It also includes vital metadata like projection
information and survey timestamps. LAZ, or LASzip, is a compressed variant of LAS,
designed to reduce file size. Created in 2007 as open-source software, it compresses LAS
files, often reducing their size by up to 90%, without data loss. Both LAS and LAZ
formats excel in interoperability with various LiDAR software tools, simplifying data
analysis and visualization. Their standardized nature ensures efficient data sharing and
processing across diverse applications without the need for custom software development
or data conversion. This interoperability streamlines workflows and facilitates analysis
with different tools, regardless of the data’s source or processing software.

1.3 Report Outline and Goals

In spite of great capabilities of Dask, using this tool has been neglected in many ML
projects. In the current project, I embarked on the task of running an out-of-core machine
learning pipeline on the GWDG’s SCC and accordingly assessed its I/O performance
within this environment.
My primary objective was to evaluate the I/O performance of the cluster, when executing
an IO-intensive job. In this path, I tried to gain an understanding of Dask and leverage
it to develop an ML pipeline as the job.
The outline of the report is structured as follows. Section two delves into the details of
how the ML pipeline is implemented using Dask. The software packages and hardware
modules employed are also discussed in this section. Section 3 presents information about
the pre-processing and trainig of the model, and in section 4 empirical results obtained
from running the job are presented. Finally, in section 5 the report is concluded.

2 Methodology
In this chapter some details about the setup of this experiment, and data resource are
provided.

2.1 Data Collection

In this project, a machine learning pipeline is developed, that aims at predicting tree
species within a forest environment. Input data collection process involves sourcing forest
datasets and information from a reputable source, primarily the GWDG GitLab repository
[Hos].
The forest dataset used in this project is generated by SynForest, a tool designed for
the creation of large-scale, realistic point clouds representing forested areas. SynForest
achieves this by simulating a Light Detection and Ranging (LiDAR) scanning process
from either a stationary or moving platform. This simulation method employs pulsed
laser technology to accurately measure variable distances to the Earth’s surface.
For this project, each execution of the ’run.py’ script with the specified configuration
results in the creation of a LAZ file and a CSV file, from a RES file. These files serve as
the primary input data for our machine learning model.

Section 2 Zoya Masih 3



Analyzing IO performance when using Dask-ML

Figure 1: A LAZ file, showing a forest

2.2 Experimental Setup

In this section, a brief overview of the experimental setup used in the project is provided.

2.2.1 Hardware Environment

This experiment was conducted on the scientific computing cluster of GWDG. The key
components of the hardware environment are as follows. The cluster is powered by In-
tel(R) Xeon(R) Silver 4214 CPUs with 48 CPU cores, supporting virtualization (VT-x)
and organized into two NUMA nodes for efficient memory management. Memory (RAM)
capacity is 187 GB (23 GB in use, 131 GB available), with 10 GB allocated for shared
memory and a 32GB buffer/cache[GWD].

2.2.2 Software Environment

The software environment for this project is based on Scientific Linux 7.9, Dask version
2023.2.0, and the execution environment is JupyterHub.
In the cluster setup, a Dask cluster consisting of 4 worker nodes is used, each equipped
with 3 cores, to distribute the computational workload.

2.3 Metrics and Measurements

The metrics which are considered here are Bandwidth workers, Bytes stored, CPU uti-
lization, memory utilized, and execution time of the modelling.

3 Implementation
At the very beginning, a Dask client for distributed computing is initialized to enhance
scalability[Bas].
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Analyzing IO performance when using Dask-ML

Figure 2: A Miniature Forest’s Input File

3.1 Preprocessing

The primary input dataset, generated by SynForest is in the LAZ file format, in which
all the features are providing technical information related to LIDAR data, besides coor-
dination of the forest’s points. To align the machine learning pipeline more closely with
tree-related attributes, a CSV file is also generated by SynForest, with minor modifica-
tions. This CSV file consists of ’height’ and ’diameter’ of the trees, in addition to the
specie of the trees.
The main objective was to create a model capable of predicting the species of trees based
on the geographic coordinates, diameter, and height of the trees that the point is located
on.
The first challenge in this step, was to load the datasets properly. Each input com-
pressed LAZ file is corresponding to a forest and is around 2 GiB, and the uncompressed
file is around 10 GiB. Although this is not a big dataset, regular data loading using
laspy.read("/file/path") did not work properly for more than 2 files. As there is no native
support for LAZ files in Dask, an efficient reading and processing method was applied.
In this method, smaller and more manageable pieces were loaded, rather than loading
the entire file into memory at once, to prevent memory issues. For the sake of lack of
references that address this issue, the corresponding code snippet was recorded in Listing
2.
Subsequently, Dask dataframes were created from both the CSV and LAZ files. The next
step involved merging these two Dask dataframes to create the final dataset, which would
serve as the input for the machine learning model. The only remaining pre-processing
step was encoding the tree species into integer values for compatibility with our model.
To achieve this, the ’LabelEncoder’ from the ’dask_ml’ library was employed. Before
starting the main implementation, to clarify what is happening in this experiment, a
miniature forest is provided in this section, that shows how the files are processed.
For the sake of clarity, a tiny forest is provided here, that consists of 5 points which are
located on 3 trees. Figure 2 shows that what corresponding LAZ file and CSV file look
like, in a real scale forest. In this figure, diameter, height, and species of the trees are
demonstrated. The attribute id shows the number of the tree. The merged file also is
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1 import dask
2 import dask.delayed
3 import dask.dataframe as dd
4 import laspy
5 from functools import partial
6 filename = "\Path\to\laz\file"
7 @dask.delayed
8 def offset_ reader(filename, offset, npoints):
9 with open(filename, "rb") as fid:

10 reader = laspy.LasReader(fid)
11 reader.seek(offset)
12 data = reader.read_ points(npoints).array
13 return pd.DataFrame(data)
14 def partitions(filename, npartitions=100):
15 with open(filename, "rb") as fid:
16 reader = laspy.LasReader(fid)
17 npoints = reader.header.point_ count
18 batchsize = round(npoints/npartitions/10)*10
19 batches = list(range(0, npoints, batchsize))
20 # include the last hanging strip
21 batches.append(npoints - batches[-1])
22 pairs =[(batch_index, batchsize) for batch_index in batches]
23 lazy_ load = []
24 for pos, points in pairs:
25 lazy_func = offset_reader(filename, pos, points)
26 lazy_ load.append(lazy_func)
27 return lazy_ load
28 def dask_reader(filename, npartitions=100):
29 with open(filename, "rb") as fid:
30 reader = laspy.LasReader(fid)
31 dtype = reader.header.point_ format.dtype()
32 meta = pd.DataFrame(np.empty(0, dtype=dtype))
33 return dd.from_delayed(partitions(filename, npartitions), meta=meta)}
34

Listing 1: Loading LAZ Files
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shown in figure 3 that gives a better understanding of the input file used in the predicting
model.

Figure 3: The Model’s Input File

3.2 Training and Testing

In this section, an overview of the model training and evaluation process is provided.
The beginning point is splitting the dataset into training and testing sets with proportion
80-20.
Next, the features were standardized by using StandardScaler, that prepares the data for
model training. The XGBRegressor model was employed and fit to the scaled training
data for this task [XGB].
To evaluate the model, K-Fold Cross-Validation was performed. The results are visualized
by using a confusion matrix, where class labels are defined and displayed for clarity.

4 Results and Analysis
To conduct an evaluation and gain insights into the system’s behavior, the code was
executed using varying input scenarios consisting of 1, 2, 3, 4, and 5 dense forest LAZ
files. These LAZ input files, each approximately 2GB in size, undergo significant expansion
to approximately 10GB when uncompressed. This deliberate selection of input variations
was intended to provide a rigorous assessment of system performance and scalability.

4.1 I/O Performance Comparison

In this section, a detailed analysis of the results is provided. At the end of the section the
results are also included in a table.

4.1.1 Time

Increasing the size of the initial LAZ input file from 2 to 10 GB (LAS file 10 to 50),
increases the execution time significantly from 1034 to 5147 seconds, and the growth is
almost linear. In the figure 4 the changes are shown.
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Figure 4: Execution Time Changes

4.1.2 CPU Utilizing Percentage

This factor did not change significantly during different experiments, and remained almost
constant around 25 percent, during the modelling.

4.1.3 Bandwidth Workers

Bandwidth, in the Dask dashboard, refers to the rate at which data is transferred between
workers. The histogram 5 taken from the dashboard, is related to the experiment with 3
initial LAZ files and displays the distribution of bandwidth across workers. The changes
for this factor are also not so distinctive.

+

Figure 5: Bandwidth Workers

4.1.4 Bytes Stored

This critical metric provides insights into how much data is actively cached in memory,
helping to manage memory resources effectively and optimizes the performance of the
Dask workflows. Figure 6 demonstrates that the amount of data actively cached in mem-
ory is changing almost linearly as compared to the changing in the size of the initial input
LAZ file, when running the modelling task. Figure 7 also is a screenshot of this metric,
in the experiment with 4 initial files as input.

Figure 6: Cache Change
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Figure 7: Bytes Stored

4.1.5 Memory

In the Dask dashboard, the Memory graph provides information about the memory usage
and management of the Dask cluster. In this graph, the x-axis represents time, and
the y-axis represents memory usage, It shows how much memory is currently being used
by workers and tasks at different points in time. Figure 8 shows the Memory graph of
running the code with 4 files. In other words, during the modelling task, memory usage
increased to 59.8 GiB, in this experiment.
The memory used, increased from 7 GiB to 56.7 GiB during the 5 experiments.

Figure 8: Memory Usage

4.2 The Results

In table 4.2, all the results of the 5 experiments are shown. As expected, the execution
time and active data stored on cache memory has increased in proportion to input data
growth, and both of them has increased linearly. The rate at which data is transferred
between workers has fluctuated among different runs.

Initial LAZ file Bandwidth Bytes Stored Memory Execution Time
2GB 114 28 GiB 7.09 1034 s
4GB 156 55.57 GiB 23 2069 s
6GB 160 82.24 GiB 32.19 3523 s
8GB 163 109 GiB 45.62 4144 s
10GB 136.53 136.53 GiB 56.72 5147 s

Table 1: The effects of initial LAZ file’s size
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Figure 9: Reading Time

4.3 IO Evaluation

The provided results, are related to modelling a ML for predicting the species of trees
in a forest. As these results, to a great extent, are effected by computation jobs, in this
section the results on reading multiple LAZ files are provided. Figure 9 shows how the
execution time changes while we increase the number of LAZ files. Once again here it is
notified that each LAZ file is round 2 GB and the uncompressed LAS file of it is around
10 GB.
The laspy library employs a memory-efficient approach where it defers loading complete
files into memory until necessary. LAS files are memory-mapped, which means that virtual
memory is allocated to access the data as needed. This can justify the memory usage
pattern that we observe, in which 9 GB for reading one file, 17 GB for reading two files,
and no further increase for more than two files are seen.
Indeed, for reading one and two input files, the outputs of loading 2 are as follows.
peak memory: 9991.87 MiB, increment: 9863.65 MiB and
peak memory: 17691.36 MiB, increment: 17532.84 MiB.

1 def Multiple_ReadOnce(file_paths):
2 for file in file_paths:
3 las_file = laspy.read(file)
4 points = las_file.points
5 filenames = [
6 "/scratch/users/zmasih/Seminar/LAZ_files/file* ]
7 Multiple_Read(file_paths)

Listing 2: Reading multiple LAZ files

5 Conclusion
5.1 Summary

In this study, an analysis of the I/O performance of Dask-ML was conducted, when dealing
with geospatial data stored in LAZ files. Dask-ML is a powerful tool for handling large
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Analyzing IO performance when using Dask-ML

datasets and complex machine-learning tasks, especially when leveraged in distributed
computing environments. Understanding its I/O performance characteristics is essential
for optimizing workflows in such scenarios.
The findings demonstrate that Dask-ML exhibits linear scalability in terms of execution
time and active data storage as the size of the initial input LAZ files increases. CPU
utilization remained consistent at around 25%, indicating efficient resource utilization.
Bandwidth between workers displayed some variability but generally maintained adequate
communication.
Efficiently reading and processing LAZ files posed a unique challenge, which is addressed
using memory-mapped access and deferred loading techniques. The results illustrate that
memory usage scaled moderately, reflecting the memory-efficient approach.

5.2 Outlook

Although the focus in this project is on the performance evaluation, it could be very
beneficial if the ML pipeline and modelling gets more accurate and robust. The execution
time in this code is so high and need to be optimized. Overall, the project has the
potential to be continued and updated in some aspects

• The model needs to be more accurate

• The performance can be analyzed while changing Batch size and the number of
workers.

• Partial loading of LAZ files, specifically when using Dask
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In this appendix some extra screenshots from Dask dashboard are provided. In the first
figure, some pages of the dashboard is demonstrated. The central component of the

Figure 10: Dashboard while modelling

"Graph" page in Dask dashboard (the figure below), is a graphical representation of the
Dask computation. This graph shows the tasks and their dependencies in the compu-
tation, allowing to visualize how data flows through the computation. It allows to see
the structure of the computation, understand how tasks are scheduled, and identify any
performance bottlenecks.

Figure 11: Page Graph in the dashboard
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