

Zoya Masih Supervisor: Prof. J. Kunkel

Analyzing I/O performance when using DASK for ML

Out-of-Core ML

Table of contents

- 1 An Introduction to Out -of-Core ML
- 2 An introduction to Dask
- 3 The project

Table of Contents

1 An Introduction to Out -of-Core ML

2 An introduction to Dask

3 The project

What is Out-of-Core Machine Learning

- Out-of-Core algorithms process too large data sets
 - ▶ i.e., the data that can't fit into the main memory
- Analyzing social media data is an example
 - ▶ To detect trends, and understand customer preferences
- Training a big model like ChatGPT is another example

Motivation

- When a cluster runs out of memory, it can lead to various issues and errors:
 - Slowdowns
 - System instability
 - ▶ Crashes, or failure to allocate memory for new processes or tasks.
- This impacts the performance, reliability, and job executions of the cluster
- Out-of-core ML:
 - leverages disk-based storage and streaming algorithms,
 - enables scalable and parallel processing

How Out-of-Core ML works

- The ability to learn incrementally (online learning) is key to out-of-core ML
- In traditional ML, the training model has access to the whole data set
- The model learns from all training data at once
 - ▶ The process may iterate for several epochs

How Out-of-Core ML works

- In incremental learning, models learn from new info in real-time or on-the-fly
- The model starts learning with a small subset which fits into RAM
- When new data becomes available, the model is updated
 - while preserving its existing knowledge

Table of Contents

1 An Introduction to Out -of-Core MI

2 An introduction to Dask

3 The project

What is Dask

- A library for parallel computing in Python.
- It can be used on a workstation or a huge cluster

What is Dask

- Parallelize any Python code, letting you scale any function
- Makes it easy to scale the Python libraries

Figure: https://www.dask.org/

Dask General Code Example

Numpy and Dask arrays

```
import numpy as np
x = np.ones(15)
x
```

Dask General Code Example

Numpy and Dask arrays

```
import numpy as np
x = np.ones(15)
x
```

```
import dask as da
x = da.array.ones(15,chunks=(5,))
x
```

 Array
 Chunk

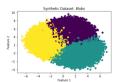
 Bytes
 120 B
 40 B

 Shape
 (15,)
 (5,)

 Count
 3 Tasks
 3 Chunks

float64 numpy.ndarray

Dask for ML


- Dask also provides strong tools for out-of-core ML
- Dask-ML provides scalable machine learning in Python using Dask
 - ▶ Beside ML libraries like Scikit-Learn, XGBoost, etc.

```
from dask_ml.xgboost import XGBRegressor

est = XGBRegressor(...)
est.fit(train, train_labels)
```

Dask-ML Code Example

Algorithms implemented in Dask-ML work well on larger than memory datasets, stored in a dask array or dataframe.

Table of Contents

1 An Introduction to Out -of-Core MI

- 2 An introduction to Dask
- 3 The project

Project plans

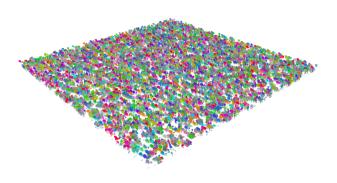
Developing a model to predict the species of trees in a forest

Project plans

- Developing a model to predict the species of trees in a forest
- Regarding the IO-intensive nature of the job, I run the ML pipeline on SCC.
 - ► To evaluate the IO performance

Project plans

- Developing a model to predict the species of trees in a forest
- Regarding the IO-intensive nature of the job, I run the ML pipeline on SCC.
 - ▶ To evaluate the IO performance
- Additional jobs that are desirable to be accomplished:
 - Develop a more robust and accurate model
 - ▶ Testing different configurations to identify how to optimize I/O there


The first step: Data Preprocessing

- The forest dataset has been sourced from a GWDG GitLab repository
 - ▶ Belonging to Ali Doost Hosseini
 - https://gitlab-ce.gwdg.de/adoosth/synforest/-/tree/main

The first step: Data Preprocessing

- The forest dataset has been sourced from a GWDG GitLab repository
 - ▶ Belonging to Ali Doost Hosseini
 - https://gitlab-ce.gwdg.de/adoosth/synforest/-/tree/main
- SynForest is a tool that generates realistic large-scale point clouds of forests
 - ▶ By simulating the Lidar scanning process
 - from a stationary or moving platform
 - ▶ By Capturing the shape and structure of realistic tree models.
- Lidar: Light Detection and Ranging
 - ▶ Uses light (pulsed laser) to measure variable distances to the Earth

The laz file

Preprocessing

- We needed to fit the created forests to the ML model requirements
 - ▶ The forest was including just one type of tree
 - ▶ The created laz file doesn't include the tree's data
 - We added a CSV file, including the tree attributes

Loading data

```
import dask.dataframe as dd
import laspy

las = laspy.read('/home/zoya/forest1.laz')
df = dd.read_csv('/home/zoya/forest1.csv')

print(len(las.points))
#output: 5544915
```

Dask dataframes

first tree, diameter: 0.285 first tree, height: 24.50475 first tree, species: PicAbi

first tree, ID: 0

Merging the files

```
The laz file:
     Х
                   id
        y12
   x11
              z13
   x12
        y22
              z23
   x13
        y23
              z33
   x14
        y24
              z34
   x15
        y25
              z35
                    0
```

The CSV file:
 d h s id
 d d1 h1 s1 0
 d d2 h2 s2 1
 d3 h3 s3 2

The laz		file:		
	X	Υ	Z	id
0	×11	y12	z13	1
1	x12	y22	z23	1
2	x13	y23	z33	Θ
3	×14	y24	z34	2
4	x15	y25	z35	0

Th	e	CS	V fi	le:	
		d	h	S	id
0	C	11	h1	s1	0
1	C	12	h2	s2	1
2	(13	h3	53	2

	X	Υ	Z	d	h	s
0	x11	y12	z13	d2	h2	s2
1	x12	y22	z23	d2	h2	s2
2	x13	y23	z33	d1	h1	s1
3	x15	y25	z35	d1	h1	s1
4	x14	y24	z34	d3	h3	s3

References

- https://www.analyticsvidhya.com/blog/2022/09/ out-of-core-ml-an-efficient-technique-to-handle-large-data/
- https://subscription.packtpub.com/book/web-development/ 9781785887215/2/ch02lvl1sec12/out-of-core-learning
- https://medium.com/productive-data-science/ out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
- http://ml.dask.org/index.html https://medium.com/
 when-i-work-data/processing-data-with-dask-47e4233cf165
 https://scikit-learn.org/0.15/modules/scaling_strategies.html