
SH

∞

Seminar Report

Cloud Infrastructure with Go

Valerius Mattfeld

MatrNr: 11580056

Supervisor: Jonathan Decker, M.Sc.

Georg-August-Universität Göttingen
Institute of Computer Science

April 6, 2024

Abstract
In cloud computing, even the tiniest performance bottleneck can have costly consequences.
This report explores a possible bottleneck when receiving computed functions from an
HTTP server.

This bottleneck is suspicious of causing extra latency, even for small function invoca-
tions in serverless function environments. The goal is to determine if such a bottleneck
exists and if switching out parts of an implementation helps to resolve this problem.

Invoking API endpoints, or in that case, serverless functions, are limited to their
respective web server handling the incoming invocation requests. Therefore, this part is
crucial when optimizing performance for latency.

Switching out web frameworks for known implementations of serverless functions in
the same programming language - which is Go in this report - might help to find the root
cause of the problem.

Complete HTTP roundtrips from a benchmarking server over a load balancer to a
function container were invoked on mass, with several endpoints challenging different
parts of the hardware and infrastructure. Different web frameworks behind the endpoints
were switched out and evaluated. A significant part of the request roundtrip time resides
in creating the response for the requester; this applies to almost all web frameworks tested
and all endpoints.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

✓□ Further, namely: GitHub Copilot for assistance during using and learning the
pandas python package

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables v

List of Figures v

List of Listings v

List of Abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 1
1.3 Structure . 1

2 Background 2
2.1 Serverless Functions . 2
2.2 Current Open Source FaaS frameworks . 2

3 Methodology 2
3.1 Setup of the experiment . 2

3.1.1 Machine One - Function Caller . 2
3.1.2 Machine Two - HTTP Server . 3
3.1.3 Machine Three - RPC Server . 3

3.2 Choice of web frameworks . 3
3.2.1 net/http . 3
3.2.2 Iris . 3
3.2.3 Gin . 4
3.2.4 Echo . 4
3.2.5 Fiber . 4
3.2.6 Gorilla . 4

3.3 Network architecture . 5
3.4 Criteria for measuring latency and identifying the bottleneck 6

3.4.1 Metrics . 6
3.4.2 Test Endpoints . 6

3.5 Identifying room for optimization . 7

4 Implementation 7
4.1 Experiment setup vs. Open Source FaaS frameworks 7

4.1.1 Experiment setup . 7
4.1.2 Open Source FaaS frameworks . 7
4.1.3 Comparission . 8

4.2 Initial approach for creating an artificial round-test 8
4.3 Architecture of the experiment code . 8
4.4 Reproducing the experimental setup . 9

iii

5 Benchmarking 9
5.1 Data accumulation and infrastructure . 9
5.2 Load testing . 10

5.2.1 Finding the optimal number of connections 10
5.3 Log parsing and evaluation . 10
5.4 Results . 11

5.4.1 HTTP Endpoints . 11
5.4.2 Function durations on the RPC server side 11
5.4.3 RPC Client Durations . 11
5.4.4 Function Durations for each Handler 11
5.4.5 Response Deltas . 12

6 Discussion 13

7 Conclusion 14
7.1 Future work . 14

References 15

A Code samples A1

iv

List of Tables

List of Figures
1 Basic Roundtrip . 5
2 PubSub . 8
3 Average Requests per Second for several concurrent connections 10
4 HTTP Roundtrip durations . 11
5 RPC Server Function Durations . 12
6 RPC Client Duration . 12
7 Endpoint Handler Durations . 13
8 Request Result-Receive Delta . 13
9 Plot all endpoints . A4

List of Listings
1 Core project structure . A2
2 Implementation of the /math function located in pkg/fns/math.go. This

code would reside inside the RPC server. A3
3 Ansible source structure . A3

v

List of Abbreviations
HPC High-Performance Computing

FaaS Functions-as-a-Service

RPC Remote Procedure Call

VM Virtual Machine

HTTP Hypertext Transfer Protocol

vi

Cloud Infrastructure with Go

1 Introduction
1.1 Motivation

Serverless functions, also known as Functions-as-a-Service (FaaS), are services that free
the deployer of several obligations.

Those obligations include but are not limited to, the maintenance of an application
server infrastructure, the ability to scale well with user demand, and cost-effectiveness
because the underlying hardware resources are more efficiently used.[Clo24][Inc24]

Proprietary services, like AWS Lambda1, Cloudflare Workers2, and to some extent,
Vercel Functions3, make the deployment of application code an accessible task. Further-
more, open source FaaS solutions, like nuclio[23d], give a bigger insight into how such an
architecture might look by making heavy use of Kubernetis[23c] and its benefits.

Finding performance bottlenecks in such an architecture could benefit a non-trivial
amount of users, and FaaS providers, as well as help mitigate hardware allocation ineffi-
ciency.

1.2 Goals and Contributions

This report aims to investigate a known problem, which arises in unusually high latencies
when short function executions are being sent back to the function caller; the inspiration
for this report is found in [DKK22].

The experimental infrastructure recreates a minimal functioning setup on Remote Pro-
cedure Call (RPC) handling between three Virtual Machine (VM)s, simulating a function
call in a FaaS environment, utilizing core packages and alternatives where the core logic
of bigger FaaS frameworks resides.

By substituting various prominent Go web frameworks alongside their correspond-
ing Hypertext Transfer Protocol (HTTP) implementations, which are commonly utilized
within major open FaaS frameworks, we endeavor to ascertain any discernible enhance-
ments or regressions within the latency domain.

1.3 Structure

After a brief introduction of the relevance of Go in server infrastructure code and currently
relevant Open Source FaaS frameworks in section 2 and ??, this report elaborates on
the setup of the experiment, choice of web frameworks and identifying the room for
optimization in section 3.

The report continues with the benchmarking of the experimental setup and data eval-
uation, section 5. The results and applicability for cluster environments are discussed in
section 6.

1https://aws.amazon.com/lambda/, April 6, 2024
2https://workers.cloudflare.com/, April 6, 2024
3https://vercel.com/docs/functions, April 6, 2024

Section 2 Valerius Mattfeld 1

https://aws.amazon.com/lambda/
https://workers.cloudflare.com/
https://vercel.com/docs/functions

Cloud Infrastructure with Go

2 Background
2.1 Serverless Functions

Serverless functions represent a model in which the cloud provider dynamically manages
the allocation of available hardware resources. These functions are triggered by events or
requests and execute user-provided code.

The characteristics of serverless functions are split into several key traits.
Firstly, we have the event-driven execution, which ensures the execution of a function

only when necessary, therefore, helping to ensure efficient resource allocation, [Sch+22]
Then, automatically scaling the available resources to a specific deployment allows

dynamic scaling without manual intervention, [RPT22].
Serverless functions are commonly encapsulated within container images, providing a

portable and isolated environment for execution, [Bro+23]. This also allows the functions
to be deployed in various programming languages (The right tool for the right job), [JC18].

2.2 Current Open Source FaaS frameworks

Since various Open Source FaaS frameworks utilize the advantages of Kubernetes, some
frameworks stand out the most. Those include, but are not limited to:

• knative.dev (supporting languages like Go, Elixir, Java, etc.), [23b]

• nuclio.io - With a data science focus and completely written in Go, [23d]

• openfaas.com - Also using Go, [23e]

• fission.io - Built with Go, [23a]

• openwhisk.apache.org - Implemented in Scala, [23f]

The dominance of Go in those frameworks could be explained by Kubernetes is also
written in Go,[23c] and Go’s ability to have an excellent developing experience regarding
concurrency, e.g., goroutines, and channels.

3 Methodology
3.1 Setup of the experiment

The experimental setup consists of three VMs, each inhabiting a specific role. One sim-
ulates the function caller, the second will be the load-balancer, web server, or proxy for
the actual function deployment, and the last will simulate a node responsible for the
user-provided function execution.

3.1.1 Machine One - Function Caller

To simulate a serverless function call from a user or client, the first VM is created with 2
VCPUs, 8 GB of RAM, and 40 GB of storage, running Ubuntu Linux 22.04.

The load testing software and data accumulation software reside inside this machine.

Section 3 Valerius Mattfeld 2

Cloud Infrastructure with Go

3.1.2 Machine Two - HTTP Server

Requests from machine one will be sent to this machine. Running with 4 VCPUs, 4 GB of
RAM, and 40 GB of storage on Ubuntu Linux 22.04, it will serve four Docker containers
over the host network to all machines inside the internal network.

Each Docker container hosts a different implementation of a web server written on Go
on a different port, which ranges from 5555 to 5559.

3.1.3 Machine Three - RPC Server

When a function from machine one gets called on machine two, machine two invokes an
RPC call to this machine. It is running with the same specifications as machine two, but
with the difference that only one Docker container is running here.

The implementation of the RPC server, doing the actual processing of the function
request.

Upon the respective functions’ completion, the result is sent back to machine two,
which completes the invocation for the function caller and sends the response with the
function result.

3.2 Choice of web frameworks

Traditionally, HTTP is used with some form of REST API to interact with the deployed
functions on the server cluster. In the nuclio FaaS application, an HTTP endpoint is
called a Trigger.[Sch+22]

The underlying HTTP handler of the respective implementation is the crucial part
where the bottleneck can occur.

The experimental setup implements a choice of web frameworks to test a variety of
HTTP handling implementations.

3.2.1 net/http

The Go-native net/http4 package is a built-in solution for developing HTTP clients and
servers with Go, eliminating the need for a third-party package or solution. The Go
developers maintain it and use Go-native features like goroutines and channels to ensure
concurrency in the software developers’ implementation.5 It should serve as a standard
for evaluating the performance of other web frameworks.

3.2.2 Iris

Iris6 is built on the net-http package, providing the developer an Express.js-like API. It
claims to be the fastest HTTP/2 framework compared to others mentioned in this report.7

However, since the setup is built on HTTP/1.1, we are not interested in this feature.
Iris comprises the responses by default, making the response time possibly slower.8

4https://pkg.go.dev/net/http, April 6, 2024
5https://go.dev/solutions/cloud, April 6, 2024
6https://www.iris-go.com/#features, April 6, 2024
7https://github.com/kataras/server-benchmarks#server-benchmarks, April 6, 2024
8https://www.iris-go.com/docs/#/?id=api-examples, April 6, 2024

Section 3 Valerius Mattfeld 3

https://pkg.go.dev/net/http
https://go.dev/solutions/cloud
https://www.iris-go.com/#features
https://github.com/kataras/server-benchmarks#server-benchmarks
https://www.iris-go.com/docs/#/?id=api-examples

Cloud Infrastructure with Go

3.2.3 Gin

Gin9 is a Go webserver framework that uses a custom implementation of the httprouter10

module, claiming to implement a zero-allocation router.
Their benchmarks indicate that Gin is not the fastest framework in every regard but an

allrounder for various use cases and the go-to solution for memory-efficient applications.11

3.2.4 Echo

Echo12 is a Go web framework that implements a framework-native HTTP router module
implementation. Like other web frameworks, it claims to be suitable for high-performance,
highly scalable applications.13

The maintainers advertise extendability due to several community-maintained frame-
work extensions and - like Gin - no dynamic memory allocation.14 Their benchmarks
contend that the Echo is more efficient than Gin.15

3.2.5 Fiber

Perhaps the most promising framework in this listing is Fiber.16 It uses the same under-
lying HTTP engine as nuclio, namely fasthttp, making it the best candidate to compare
other frameworks to in the reports’ use case.17

Their benchmarks indicate an unmatched performance for a production-ready library.
It comes in third place on the TechEmpower ranking18, after gnet - written explicitly for
HTTP benchmarking19 and currently unsuitable for real-world server applications and a
fasthttp fork. Moreover, Fiber claims to have the lowest request latencies among other
frameworks,20 which is a focal point in this report.

3.2.6 Gorilla

Another popular framework is Gorilla21, notably the Gorilla/mux package. It was main-
tained until 2021, and the framework found new core maintainers as of August 2023.
Since this framework’s maturity and recent updates are open questions, this report does
not benchmark it.22

9https://gin-gonic.com/
10https://github.com/julienschmidt/httprouter
11https://github.com/gin-gonic/gin/blob/master/BENCHMARKS.md
12https://echo.labstack.com/
13https://echo.labstack.com/
14https://github.com/labstack/echo?tab=readme-ov-file#feature-overview
15https://github.com/labstack/echo?tab=readme-ov-file#benchmarks
16https://gofiber.io/
17https://docs.gofiber.io/api/app#server
18https://docs.gofiber.io/extra/benchmarks/#plaintext
19https://github.com/panjf2000/gnet?tab=readme-ov-file#benchmarks-on-techempower
20https://gofiber.io
21https://github.com/gorilla/mux
22https://gorilla.github.io/blog/2023-07-17-project-status-update/

Section 3 Valerius Mattfeld 4

https://gin-gonic.com/
https://github.com/julienschmidt/httprouter
https://github.com/gin-gonic/gin/blob/master/BENCHMARKS.md
https://echo.labstack.com/
https://echo.labstack.com/
https://github.com/labstack/echo?tab=readme-ov-file#feature-overview
https://github.com/labstack/echo?tab=readme-ov-file#benchmarks
https://gofiber.io/
https://docs.gofiber.io/api/app#server
https://docs.gofiber.io/extra/benchmarks/##plaintext
https://github.com/panjf2000/gnet?tab=readme-ov-file##benchmarks-on-techempower
https://gofiber.io
https://github.com/gorilla/mux
https://gorilla.github.io/blog/2023-07-17-project-status-update/

Cloud Infrastructure with Go

3.3 Network architecture

The machines reside in an internal network inside the GWDG Cloud environment23 and
communicate with each other via their respective internal IP addresses, ensuring not only
physical proximity but also staying true to Kubernetes clusters, usually staying inside one
location.24

The roundtrip of the function invocation, as shown in Figure 1,

1. The client, which in that case is the Benchmarking Server, or VM 1, requests a
function invocation on an endpoint of the HTTP server with their respective pa-
rameters.

2. Then, the HTTP server handles the request by extracting optional function param-
eters and invoking an RPC call to the RPC server.

3. The RPC server executes the function with the given parameters.

4. The result of the invocation is sent back to the HTTP server.

5. The HTTP server builds the response object, including a status code, and optionally
parses the result in the desired format. Finally, it sends it back to the requester,
the Benchmarking Server.

Since this is a minimal and simplified version of a production-ready architecture, aspects
like security measures with firewall rules and scalability outside this schema are not con-
sidered.

Figure 1: Request roundtrip of a function invocation

23https://cloud.gwdg.de
24https://kubernetes.io/docs/setup/best-practices/multiple-zones/

Section 3 Valerius Mattfeld 5

https://cloud.gwdg.de
https://kubernetes.io/docs/setup/best-practices/multiple-zones/

Cloud Infrastructure with Go

3.4 Criteria for measuring latency and identifying the bottleneck

3.4.1 Metrics

Measuring function execution time within the infrastructure is vital to evaluating the
potential bottleneck’s performance. Therefore, several factors are assessed and logged
with critical precision.

Log Timestamps Logging each function call and vital instance of program execution
gives precise insight into how and when a function execution has occurred, making them
essential markers in identifying the duration spent at each stage.

Network Latency Time taken between the Benchmarking server and the HTTP server
will give insight into how long the roundtrip lasted.

HTTP server processing time The start of the function call, excluding constant
factors like ID generation, is measured with a start and end time, including the trip to
the RPC server and back. It is the time between step 2 and the receiving step 4, as shown
in Figure 1.

RPC server processing time The processing of the actual "user" provided function
is also measured to build suitable latency deltas.

CPU and RAM threshold Hardware allocations, which are also monitored, could be
critical to the performance impact. They directly influence the computational resources
available and can slow down function invocations’ processing times when excessive parallel
requests occur.

3.4.2 Test Endpoints

Various functions at the RPC server are implemented to simulate a real-life workload
while focusing on different aspects of a specific workload.

/empty An empty function that does nothing. It serves as a reference point for other
endpoints.

/sleep A function that waits one second and terminates.

/math The math endpoint takes a parameter n, 1 ≤ n ≤ 264− 1 (n is an unsigned 64-bit
integer) and executes a Monte Carlo algorithm to approximate π to a sample size of n.
This endpoint serves the purpose of stimulating CPU resource exhaustion.

/image The function image handles file I/O, applies transformations, and streams the
resulting binary data back to the requester.

Section 3 Valerius Mattfeld 6

Cloud Infrastructure with Go

3.5 Identifying room for optimization

As the previous papers suggest, a high-latency chokepoint between steps 4 and 5 in the
process shown in Figure 1 is possible.

The report investigates whether using different frameworks helps circumvent the prob-
lem.

The result could indicate an architectural issue if the bottleneck is confirmed and using
different web frameworks does not mitigate the problem.

4 Implementation
The experiment aims to mimic a simple serverless function invocation in its basic setup
while staying true to a real-life implementation.

In an optimal case, the infrastructure of the different applications is deployed inside one
data center in a single location. Moreover, container virtualization and communication
over a private LAN are essential.

The source code is available in the following repository: https://github.com/valerius21/
scap-2024

4.1 Experiment setup vs. Open Source FaaS frameworks

4.1.1 Experiment setup

As shown in Figure 1, the HTTP and RPC processing servers reside in separate VMs
provided by the data center. Those are the focus of the performance benchmark.

Each VM runs the Docker25 virtualization software with at least one application con-
tainer that communicates with either HTTP or TCP Websockets with each other or the
client. The Prometheus Node Exporter software26 is installed on all systems in conjunc-
tion with Grafana27 for monitoring purposes.

Additionally, the setup includes a benchmarking server, which simulates function in-
vocations from a user with minimal latency. It hosts multiple tools for benchmarking, log
accumulation, and monitoring each server.

4.1.2 Open Source FaaS frameworks

This section focuses on nuclio, a data science-focused serverless functions framework that
can run on Kubernetes or Docker Swarms.

Kubernetes clusters can be deployed on physical servers or virtual machines in the data
center. The cluster comprises a control plane (API server, scheduler, controller manager)
and worker nodes that run the containerized applications. It can run on networking
solutions that enable communication between pods and services within the cluster.

Also, one core trait of Kubernetes is its ability to auto-scale cluster-wide, horizontally
or vertically, for certain pods. A load balancer spreads incoming traffic between multiple
pods to efficiently utilize available resources.

25https://www.docker.com/
26https://prometheus.io/docs/guides/node-exporter/
27https://grafana.com/

Section 4 Valerius Mattfeld 7

https://github.com/valerius21/scap-2024
https://github.com/valerius21/scap-2024
https://www.docker.com/
https://prometheus.io/docs/guides/node-exporter/
https://grafana.com/

Cloud Infrastructure with Go

Nuclio is a scalable serverless function solution that aims to handle a significant amount
of throughput and leverages Kubernetes’ benefits.

4.1.3 Comparission

The experimental setup misses several core features, like factual load-balancing between
multiple machines and container scaling of Kubernetes/nuclio, and mimics the infrastruc-
ture of a single request flow. The structure helps to isolate the problem to a limited
number of points of failure or performance issues. The core networking and VM configu-
ration of receiving a function request on an HTTP server, which mimics a load-balancer
in a theoretical cluster, and the RPC server, which does the actual processing, is sufficient
to investigate the problem.

4.2 Initial approach for creating an artificial round-test

The initial versions of the experimental implementation used a Message Query service
with a PubSub Pattern between the HTTP and RPC servers to communicate function
invocations over Redis channels. The configuration is displayed in Figure 2.

Figure 2: Request roundtrip of a function invocation with a Redis PubSub instance

In contrast, to direct RPC invocation over TCP and the Go-native net-rpc library, the
Redis-dependent solution offers little to no benefit regarding maintainability, simplicity,
and bottleneck discovery.

Therefore, this configuration was discarded in favor of the direct approach, as shown
in Figure 1.

4.3 Architecture of the experiment code

Listing 1 shows the core architecture of the experiment software.

Section 4 Valerius Mattfeld 8

Cloud Infrastructure with Go

The entry point is found in cmd/main.go, which allows the server to run in either
load-balancer or RPC server mode. This approach has the advantage that one container,
or running executable, can be deployed on both configuration-critical machines, HTTP
and RPC, as shown in Figure 1.

The repository defines a pkg directory, which houses the fns and webserver packages.
fns include the pure implementations of the user-simulated-deployed business logic in

their respective files. Each filename corresponds to the endpoints mentioned in section
3.4.2.

The webserver packages have implementations for each tested webserver framework.
The command-line flag used when executing the entry point determines which server is
run.

Each server (re-)uses an RPC client implementation corresponding to the RPC servers’
endpoints. Both, the RPC server and RPC client code are located in pkg/fns/srpc.

4.4 Reproducing the experimental setup

Reproducing the setup involves using Ansible28. Three Ubuntu VMs on separate IPs
and their discoverability to each other are required. Details on how and when which
Ansible-Playbook needs to run are found in the ansible/README.md file, see listing 3.

The experiment involved more software installed on the machines than shown in the
repository29. This software includes logging and monitoring services, which are left out of
the repository code on purpose because the repository code aims to provide a barebones
starter and the source for the webserver code used.

The data accumulation process and configuration are elaborated in section 5.

5 Benchmarking
This section starts with the data accumulation process and follows with a description of
the load-testing process. We briefly explore the optimal number of concurrent connections
and continue to the log-processing section. After that, we explore the heart of this report
- the benchmarking results. We examine each part of the testing infrastructure in terms
of their durations and look at the resulting time deltas, where the possible bottleneck
could occur.

5.1 Data accumulation and infrastructure

In the early stages of developing the testing software, benchmarks caused the docker
containers to fully occupy the host machine’s disk space with logs.

This problem was circumvented using a Docker logging driver, Loki30, which is com-
patible with the Grafana dashboard. Loki’s integration allowed a deep and detailed ex-
ploration and querying of the logs in specific timeframes with optional filters.

The Loki server and Grafana are running on the benchmarking server. This reduces
the performing VMs, HTTP, and RPC to one purpose only—running the testing software.

28https://www.ansible.com/
29https://github.com/valerius21/scap-2024
30https://grafana.com/docs/loki/latest/

Section 5 Valerius Mattfeld 9

https://www.ansible.com/
https://github.com/valerius21/scap-2024
https://grafana.com/docs/loki/latest/

Cloud Infrastructure with Go

The logs were extracted mainly through the logcli tool, developed by the Loki and
Grafana maintainers.31

5.2 Load testing

Upon discovering that this tool, like its alternatives, e.g., bombardier32, cannot save
detailed timestamps, a custom solution, a simple benchmarking tool testing the test
infrastructure, was written and used. It is available under the following repository:
https://github.com/valerius21/yabt.

The produced logs are part of the dataset in section 5.4.

5.2.1 Finding the optimal number of connections

One fundamental question is how many concurrent connections the test infrastructure
can handle. Too many connections could stall the response time. Therefore, this number
is of moderate importance.

The benchmark tool was tested on each framework’s empty endpoint, and Figure 3
shows the average of the requests per second corresponding to the number of connections.

The resulting plot, shown in figure 3, indicates no significant benefit to using more
than 150 concurrent connections, the number used in benchmarking.

Figure 3: Average Requests per Second for a number concurrent connections for each
frameworks /empty endpoint.

5.3 Log parsing and evaluation

With the focus on performance and avoiding skewing the performance measurements, a
parameter parsing from search query parameters was omitted.

Therefore, only the relation to a specific framework and the considered endpoint were
measured without relating every request to a specific roundtrip. That would require the
client to generate the request or roundtrip ID and the respective receiving HTTP server
to implement the ID-parsing from the search query parameters, as mentioned above.

31https://github.com/grafana/loki
32https://github.com/codesenberg/bombardier

Section 5 Valerius Mattfeld 10

https://github.com/valerius21/yabt
https://github.com/grafana/loki
https://github.com/codesenberg/bombardier

Cloud Infrastructure with Go

5.4 Results

This section will cover the results of section 4’s benchmarks mentioned above.
Firstly, we will look at the whole roundtrip for each endpoint for every framework,

which was measured by the HTTP benchmarking tools. We follow up with the durations
for each framework’s HTTP handlers and its nested RPC client performance. Lastly, we
will examine each function’s performance on the RPC server.

5.4.1 HTTP Endpoints

Each server’s HTTP endpoint was called 100,000 times, except for the image endpoint,
which was called 1000 times to avoid throttling.

In sum, the benchmarking software produced 1505000 requests. The boxplot’s outliers
are omitted because they make the plot harder to read. See Figure 4.

Figure 4: An overview of the complete roundtrip durations of the HTTP requests per
framework per endpoint. N = 1505000. Each endpoint per framework was called 100000
times except image, which was called 1000 times.

5.4.2 Function durations on the RPC server side

Similar to the HTTP duration measurement in section 5.4.1, the plot in Figure 5 shows
the distribution of function execution duration time on the RPC server side. Referencing
Figure 1, this would correspond to step 3.

The number of function executions applies 1:1 to the ones from Figure 4.

5.4.3 RPC Client Durations

Figure 6 shows the durations for each RPC client’s performance for each endpoint except
the /image endpoint. The data for the image endpoint is incomplete and, therefore,
omitted in this section.

In Figure 1, the RPC client covers the sending step 2 and receiving step 4.

5.4.4 Function Durations for each Handler

Each incoming function invocation request from the benchmarking server or user is saved
inside this metric until the RPC server receives the function results.

Section 5 Valerius Mattfeld 11

Cloud Infrastructure with Go

Figure 5: Function execution time after RPC invocation until completion. Each endpoint
per framework has been called 10000 times, except /image, which was called 1000 times.

Figure 6: Corresponding to Figure 1 this duration covers the sending of step 2 and the
receiving of step 4; framework independent.

Figure 7 displays the performance in terms of duration for each endpoint categorized
by the underlying web framework.

In reference to Figure 1 this would correspond from receiving step 1 to sending step 5.

5.4.5 Response Deltas

Since we are interested in a possible bottleneck occurring between receiving step 4 and
sending step 5, we group the requests by their corresponding invocation ID inside the
HTTP to RPC route, map the nearest HTTP request invocation time to that request,
and subtract the duration of the HTTP endpoint invocation duration from the HTTP
duration.

Figure 8 displays the delta distribution respective to their corresponding framework
and endpoint. The complete relation is found in Figure 9. Both plots are cleaned from
outliers.

Section 6 Valerius Mattfeld 12

Cloud Infrastructure with Go

Figure 7: Each endpoints implementation in each framework’s duration times.

Figure 8: Delta distribution for each framework for each endpoint.

6 Discussion
Looking at Figure 9, it immediately becomes clear that the delta occupies at least one-
third of the whole function roundtrip for small workloads. Even more interesting is that
the image endpoint exceeds two-thirds of the delta time, confirming a bottleneck in this
area of the testing infrastructure.

A possible explanation for this behavior could be that HTTP servers, especially those
focusing on bandwidth efficiency, compress their information before sending it back to the
client. Iris indirectly indicates this, allowing the developer to specify which compression
algorithm to use.33

Additionally, some requests may include JSON parsing, which can also add to the
overhead.

The web framework data shows minimal differences between each framework’s perfor-
mance and its endpoint implementations. Gin seems to perform the worst in terms of
speed and consistency. Compared to the other frameworks regarding Fiber, a performance
boost did not notably occur.

33https://www.iris-go.com/docs/#/?id=api-examples

Section 6 Valerius Mattfeld 13

https://www.iris-go.com/docs/#/?id=api-examples

Cloud Infrastructure with Go

7 Conclusion
For this report, a minimal test infrastructure was created and tested with a selection of the
most popular Go web frameworks acting as a load balancer in a quasi-FaaS application.
The benchmarking confirmed a bottleneck between receiving a function result and sending
it back in an HTTP response to the requester. The data indicates that this insight applies
across multiple frameworks and endpoints, independent of their work and information size.

7.1 Future work

It would be interesting to see if the occurrence of the bottleneck is a Go-specific phe-
nomenon or a language-independent issue in that use case.

Also interesting would be a non-HTTP or TCP-based load-balancing act, which han-
dles uncompressed information throughput to confirm this problem and possibly mitigate
this bottleneck.

Section 7 Valerius Mattfeld 14

Cloud Infrastructure with Go

References
[23a] “Fission/Fission: Fast and Simple Serverless Functions for Kubernetes”. In:

(2023). url: https://github.com/fission/fission (visited on 05/31/2023).

[23b] “Knative Documentation”. In: (May 2023). url: https : / / github . com /
knative/docs (visited on 05/31/2023).

[23c] “Kubernetes - GitHub Repository”. In: (May 2023). url: https://github.
com/kubernetes/kubernetes (visited on 05/31/2023).

[23d] “Nuclio - "Serverless" for Real-Time Events and Data Processing”. In: (May
2023). url: https://github.com/nuclio/nuclio (visited on 05/31/2023).

[23e] “Openfaas/Faas: OpenFaaS - Serverless Functions Made Simple”. In: (2023).
url: https://github.com/openfaas/faas (visited on 05/31/2023).

[23f] “OpenWhisk”. In: (May 2023). url: https://github.com/apache/openwhisk
(visited on 05/31/2023).

[Bro+23] Marc Brooker et al. On-demand Container Loading in AWS Lambda. 2023.
arXiv: 2305.13162 [cs.DC].

[Clo24] Cloudflare. “Why use serverless computing?” In: (2024). url: https://www.
cloudflare.com/learning/serverless/why-use-serverless/ (visited on
04/04/2024).

[DKK22] Jonathan Decker, Piotr Kasprzak, and Julian Martin Kunkel. “Performance
Evaluation of Open-Source Serverless Platforms for Kubernetes”. In: Algo-
rithms 15.7 (2022). issn: 1999-4893. doi: 10.3390/a15070234. url: https:
//www.mdpi.com/1999-4893/15/7/234.

[Inc24] Amazon Inc. “AWS Lambda Features”. In: (2024). url: https://aws.amazon.
com/lambda/features/ (visited on 04/04/2024).

[JC18] David Jackson and Gary Clynch. “An Investigation of the Impact of Lan-
guage Runtime on the Performance and Cost of Serverless Functions”. In: 2018
IEEE/ACM International Conference on Utility and Cloud Computing Com-
panion (UCC Companion). 2018, pp. 154–160. doi: 10.1109/UCC-Companion.
2018.00050.

[RPT22] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. “IceBreaker: Warm-
ing Serverless Functions Better with Heterogeneity”. In: Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’22. Lausanne, Switzerland: As-
sociation for Computing Machinery, 2022, pp. 753–767. isbn: 9781450392051.
doi: 10.1145/3503222.3507750. url: https://doi.org/10.1145/3503222.
3507750.

[Sch+22] David Schall et al. “Lukewarm Serverless Functions: Characterization and Op-
timization”. In: Proceedings of the 49th Annual International Symposium on
Computer Architecture. ISCA ’22. New York, New York: Association for Com-
puting Machinery, 2022, pp. 757–770. isbn: 9781450386104. doi: 10.1145/
3470496.3527390. url: https://doi.org/10.1145/3470496.3527390.

Section Valerius Mattfeld 15

https://github.com/fission/fission
https://github.com/knative/docs
https://github.com/knative/docs
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/nuclio/nuclio
https://github.com/openfaas/faas
https://github.com/apache/openwhisk
https://arxiv.org/abs/2305.13162
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://doi.org/10.3390/a15070234
https://www.mdpi.com/1999-4893/15/7/234
https://www.mdpi.com/1999-4893/15/7/234
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3470496.3527390

Cloud Infrastructure with Go

A Code samples

Section A Valerius Mattfeld A1

Cloud Infrastructure with Go

...
...

cmd

main.go

pkg
...

fns
srpc

rpc_client.go

rpc_server.go

empty.go

math.go

image_transform.go

sleeper.go

...

webserver

echo.go

fiber.go

gin.go

iris.go

net_http.go

...

Listing 1: Core project structure

Section A Valerius Mattfeld A2

Cloud Infrastructure with Go

1 package fns
2 // ...
3 func estimatePi(n int64) float64 {
4 // ...
5 // Code for approximating pi
6 // ...
7 return pi
8 }
9

10 func Math(points int64) (RPCResponse, error) {
11 return RPCResponse{FN: fmt.Sprintf("%.5f", estimatePi(points))}, nil
12 }

Listing 2: Implementation of the /math function located in pkg/fns/math.go. This code
would reside inside the RPC server.

...

ansible

playbooks
...

README.md

inventory.ansible.yml

...

Listing 3: Ansible source structure

Section A Valerius Mattfeld A3

Cloud Infrastructure with Go

Figure 9: The complete roundtrip duration for each endpoint on each framework. It
displays the bottleneck position on a relative scale.

Section A Valerius Mattfeld A4

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Goals and Contributions
	Structure

	Background
	Serverless Functions
	Current Open Source FaaS frameworks

	Methodology
	Setup of the experiment
	Machine One - Function Caller
	Machine Two - HTTP Server
	Machine Three - RPC Server

	Choice of web frameworks
	net/http
	Iris
	Gin
	Echo
	Fiber
	Gorilla

	Network architecture
	Criteria for measuring latency and identifying the bottleneck
	Metrics
	Test Endpoints

	Identifying room for optimization

	Implementation
	Experiment setup vs. Open Source FaaS frameworks
	Experiment setup
	Open Source FaaS frameworks
	Comparission

	Initial approach for creating an artificial round-test
	Architecture of the experiment code
	Reproducing the experimental setup

	Benchmarking
	Data accumulation and infrastructure
	Load testing
	Finding the optimal number of connections

	Log parsing and evaluation
	Results
	HTTP Endpoints
	Function durations on the RPC server side
	RPC Client Durations
	Function Durations for each Handler
	Response Deltas

	Discussion
	Conclusion
	Future work

	References
	Code samples

