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About Serverless Functions I

■ Serverless functions are only executed when they are needed, in response
to specific events or triggers. Schall et al., “Lukewarm Serverless Functions:
Characterization and Optimization”

■ The cloud provider automatically scales the resources up or down based on
demand; infrastructure is provided. Roy, Patel, and Tiwari, “IceBreaker:
Warming Serverless Functions Better with Heterogeneity”

■ Cost-Effective: Only resources during the execution are billed Roy, Patel,
and Tiwari, “IceBreaker: Warming Serverless Functions Better with
Heterogeneity”
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About Serverless Functions II

■ Typically, functions reside within container images. (Brooker et al.,
On-demand Container Loading in AWS Lambda)

■ Functions can be implemented using a wide range of programming
languages. (Jackson and Clynch, “An Investigation of the Impact of
Language Runtime on the Performance and Cost of Serverless Functions”)

Valerius Mattfeld University of Göttingen 4 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Self-hostable Platforms for Serverless Functions

■ Kubernetes (written in Go) will be the base-platform for this topic.
(“Kubernetes - GitHub Repository”)

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.), “Knative
Documentation”

▶ nuclio.io (completely written in Go), “Nuclio - "Serverless" for Real-Time Events
and Data Processing”

▶ openfaas.com (also using Go), “Openfaas/Faas: OpenFaaS - Serverless
Functions Made Simple”

▶ fission.io (built with Go), “Fission/Fission: Fast and Simple Serverless Functions
for Kubernetes”

▶ openwhisk.apache.org (implemented in Scala), “OpenWhisk”
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Serverless Functions on HPC I

■ Serverless computing is gaining interest in the field of scientific computing
for High-Performance Cluster (HPC) applications. (Malawski and Balis,
“Serverless Computing for Scientific Applications”)

■ However, Function-as-a-Service (FaaS) platforms often impose restrictions
on available hardware resources. (Decker, Kasprzak, and Kunkel,
“Performance Evaluation of Open-Source Serverless Platforms for
Kubernetes”)

■ On the other hand, serverless architecture offers a more granular and
efficient approach to resource reservations. Qu, Calheiros, and Buyya, “A
Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using
Heterogeneous Spot Instances”
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Serverless Functions on HPC II

■ Core Question: Can serverless open-source software (OSS) in Go meet the
performance requirements of High-Performance Computing (HPC),

■ The particular area of focus of this project lies in optimizing the I/O of
function invocations for small workloads (Decker, The Potential of
Serverless Kubernetes-Based FaaS Platforms for Scientific Computing
Workloads and Decker, Kasprzak, and Kunkel, “Performance Evaluation of
Open-Source Serverless Platforms for Kubernetes”)
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Related Work

Decker, Kasprzak, and Kunkel, “Performance Evaluation of
Open-Source Serverless Platforms for Kubernetes”

■ Testing open-source platforms OpenFaaS and Nuclio on top of Kubernetes

■ Serverless platforms - not an alternative for classic HPC:

▶ Problematic parallelization of I/O
▶ User unawareness of available hardware resources
▶ Platform provider unawareness of user function resource requirements
▶ Possible vendor lock-in
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Setup

■ The environment setup will use OpenStack GWDG VMs, as well as locally

■ VMs exist in one location, Göttingen

■ VM constellation

▶ Message Service and Load Tester instance (HTTP Handler instance)
▶ Node instance, which will host a function (RPC Server instance)
▶ Emitter instance, which hosts the load-balancer

■ A test PNG file is deployed on the first VM.

■ The environment is reset after each benchmark
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Software

■ One executable is able to be a Node or Emmitter

■ Executables are wrapped in Docker containers.

■ Emitter-Node-Communication is done via TCP

■ The message service communicates inputs and results on separate
channels

■ A load-tester (
) is deployed and sends HTTP requests to each implemented endpoint
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Web Frameworks

■ net/http: The standard library

■ Gin: The most popular repository

■ Echo: Barebones Web Framework for Go

■ Iris: Ergonomic Web Framework for Go

■ Fiber: Express-inspired, ergonomic implementation of fastHTTP, which is
used in nuclio.io
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Endpoints

■ Empty Endpoint: Function is empty

■ Math Endpoint: Approximates Pi with the Monte-Carlo method

■ Sleeper Endpoint: Blocks the invocation for one second

■ I/O Endpoint: Applies image transformations and read-write operations on
the Node VM
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Load Testing

■ Tool: “valerius21/yabt”

■ Configuration:

▶ Each endpoint is tested separately for every framework
▶ Each endpoint is tested 100.000 times
▶ Exception: /image with 1.000 times
▶ Image used for the image endpoint is in the repository,

https://github.com/valerius21/scap-2024
▶ N=1000 for the Math Endpoint
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Pure Executions (ns)

■ Empty function: 80 ns on average

■ Math (n=1000) function: 110 ns on average

■ Sleep Function: 20 ns (delta to 1 sec) on average

■ Image Function: 1sec on average
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TCP Executions (ns)
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In-Handler Executions (ns)
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Request Roundtrip (ns)
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Performance Impressions

■ the TCP / message communications take up a lot of time

■ the handler performances vary vastly depending on the task

■ in overall performances, Iris and net/http fall back
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Bottleneck location
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Average Delta per Endpoint I
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Average Delta per Endpoint II
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Conclusion

■ Almost all frameworks perform similarly

■ Gin has the worst performance on average (in-handler)

■ net/rpc is used to parse function requests

■ the bottleneck occupies one to two-thirds of the roundtrip time
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