
Result Presentation: Cloud Infrastructure with Go

Overhead Management in Invocations of
Serverless Functions for Small Workloads

Valerius Mattfeld

Institute for Computer Science

April 6, 2024 University of Göttingen

SH

∞

https://valerius.me/

)

https://valerius.me/


Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Table of contents

1 Serverless Functions

2 The Problem

3 Related Work and Sources

4 Setup and Benchmarking

5 Results

6 Interpretation

Valerius Mattfeld University of Göttingen 2 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

About Serverless Functions I

■ Serverless functions are only executed when they are needed, in response
to specific events or triggers. Schall et al., “Lukewarm Serverless Functions:
Characterization and Optimization”

■ The cloud provider automatically scales the resources up or down based on
demand; infrastructure is provided. Roy, Patel, and Tiwari, “IceBreaker:
Warming Serverless Functions Better with Heterogeneity”

■ Cost-Effective: Only resources during the execution are billed Roy, Patel,
and Tiwari, “IceBreaker: Warming Serverless Functions Better with
Heterogeneity”

Valerius Mattfeld University of Göttingen 3 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

About Serverless Functions II

■ Typically, functions reside within container images. (Brooker et al.,
On-demand Container Loading in AWS Lambda)

■ Functions can be implemented using a wide range of programming
languages. (Jackson and Clynch, “An Investigation of the Impact of
Language Runtime on the Performance and Cost of Serverless Functions”)

Valerius Mattfeld University of Göttingen 4 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Self-hostable Platforms for Serverless Functions

■ Kubernetes (written in Go) will be the base-platform for this topic.
(“Kubernetes - GitHub Repository”)

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.), “Knative
Documentation”

▶ nuclio.io (completely written in Go), “Nuclio - "Serverless" for Real-Time Events
and Data Processing”

▶ openfaas.com (also using Go), “Openfaas/Faas: OpenFaaS - Serverless
Functions Made Simple”

▶ fission.io (built with Go), “Fission/Fission: Fast and Simple Serverless Functions
for Kubernetes”

▶ openwhisk.apache.org (implemented in Scala), “OpenWhisk”

Valerius Mattfeld University of Göttingen 5 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Serverless Functions on HPC I

■ Serverless computing is gaining interest in the field of scientific computing
for High-Performance Cluster (HPC) applications. (Malawski and Balis,
“Serverless Computing for Scientific Applications”)

■ However, Function-as-a-Service (FaaS) platforms often impose restrictions
on available hardware resources. (Decker, Kasprzak, and Kunkel,
“Performance Evaluation of Open-Source Serverless Platforms for
Kubernetes”)

■ On the other hand, serverless architecture offers a more granular and
efficient approach to resource reservations. Qu, Calheiros, and Buyya, “A
Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using
Heterogeneous Spot Instances”

Valerius Mattfeld University of Göttingen 6 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Serverless Functions on HPC II

■ Core Question: Can serverless open-source software (OSS) in Go meet the
performance requirements of High-Performance Computing (HPC),

■ The particular area of focus of this project lies in optimizing the I/O of
function invocations for small workloads (Decker, The Potential of
Serverless Kubernetes-Based FaaS Platforms for Scientific Computing
Workloads and Decker, Kasprzak, and Kunkel, “Performance Evaluation of
Open-Source Serverless Platforms for Kubernetes”)

Valerius Mattfeld University of Göttingen 7 / 22

deckerperformance2022



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Related Work

Decker, Kasprzak, and Kunkel, “Performance Evaluation of
Open-Source Serverless Platforms for Kubernetes”

■ Testing open-source platforms OpenFaaS and Nuclio on top of Kubernetes

■ Serverless platforms - not an alternative for classic HPC:

▶ Problematic parallelization of I/O
▶ User unawareness of available hardware resources
▶ Platform provider unawareness of user function resource requirements
▶ Possible vendor lock-in

Valerius Mattfeld University of Göttingen 8 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Setup

■ The environment setup will use OpenStack GWDG VMs, as well as locally

■ VMs exist in one location, Göttingen

■ VM constellation

▶ Message Service and Load Tester instance (HTTP Handler instance)
▶ Node instance, which will host a function (RPC Server instance)
▶ Emitter instance, which hosts the load-balancer

■ A test PNG file is deployed on the first VM.

■ The environment is reset after each benchmark

Valerius Mattfeld University of Göttingen 9 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Software

■ One executable is able to be a Node or Emmitter

■ Executables are wrapped in Docker containers.

■ Emitter-Node-Communication is done via TCP

■ The message service communicates inputs and results on separate
channels

■ A load-tester (
) is deployed and sends HTTP requests to each implemented endpoint

Valerius Mattfeld University of Göttingen 10 / 22

“valerius21/yabt”



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Web Frameworks

■ net/http: The standard library

■ Gin: The most popular repository

■ Echo: Barebones Web Framework for Go

■ Iris: Ergonomic Web Framework for Go

■ Fiber: Express-inspired, ergonomic implementation of fastHTTP, which is
used in nuclio.io

Valerius Mattfeld University of Göttingen 11 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Endpoints

■ Empty Endpoint: Function is empty

■ Math Endpoint: Approximates Pi with the Monte-Carlo method

■ Sleeper Endpoint: Blocks the invocation for one second

■ I/O Endpoint: Applies image transformations and read-write operations on
the Node VM

Valerius Mattfeld University of Göttingen 12 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Load Testing

■ Tool: “valerius21/yabt”

■ Configuration:

▶ Each endpoint is tested separately for every framework
▶ Each endpoint is tested 100.000 times
▶ Exception: /image with 1.000 times
▶ Image used for the image endpoint is in the repository,

https://github.com/valerius21/scap-2024
▶ N=1000 for the Math Endpoint

Valerius Mattfeld University of Göttingen 13 / 22

https://github.com/valerius21/scap-2024


Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Pure Executions (ns)

■ Empty function: 80 ns on average

■ Math (n=1000) function: 110 ns on average

■ Sleep Function: 20 ns (delta to 1 sec) on average

■ Image Function: 1sec on average

Valerius Mattfeld University of Göttingen 14 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

TCP Executions (ns)

Valerius Mattfeld University of Göttingen 15 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

In-Handler Executions (ns)

Valerius Mattfeld University of Göttingen 16 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Request Roundtrip (ns)

Valerius Mattfeld University of Göttingen 17 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Performance Impressions

■ the TCP / message communications take up a lot of time

■ the handler performances vary vastly depending on the task

■ in overall performances, Iris and net/http fall back

Valerius Mattfeld University of Göttingen 18 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Bottleneck location

Valerius Mattfeld University of Göttingen 19 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Average Delta per Endpoint I

Valerius Mattfeld University of Göttingen 20 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Average Delta per Endpoint II

Valerius Mattfeld University of Göttingen 21 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

Conclusion

■ Almost all frameworks perform similarly

■ Gin has the worst performance on average (in-handler)

■ net/rpc is used to parse function requests

■ the bottleneck occupies one to two-thirds of the roundtrip time

Valerius Mattfeld University of Göttingen 22 / 22



Serverless Functions The Problem Related Work and Sources Setup and Benchmarking Results Interpretation

References
Brooker, Marc et al. On-demand Container Loading in AWS Lambda. 2023. arXiv: 2305.13162 [cs.DC].
Decker, Jonathan. The Potential of Serverless Kubernetes-Based FaaS Platforms for Scientific Computing

Workloads. Version V1. 2022. DOI: 10.25625/6GSJSE. URL: https://doi.org/10.25625/6GSJSE.
Decker, Jonathan, Piotr Kasprzak, and Julian Martin Kunkel. “Performance Evaluation of Open-Source

Serverless Platforms for Kubernetes”. In: Algorithms 15.7 (2022). ISSN: 1999-4893. DOI:
10.3390/a15070234. URL: https://www.mdpi.com/1999-4893/15/7/234.

“Fission/Fission: Fast and Simple Serverless Functions for Kubernetes”. In: (2023). URL:
https://github.com/fission/fission (visited on 05/31/2023).

Jackson, David and Gary Clynch. “An Investigation of the Impact of Language Runtime on the Performance and
Cost of Serverless Functions”. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). 2018, pp. 154–160. DOI: 10.1109/UCC-Companion.2018.00050.

“Knative Documentation”. In: (May 2023). URL: https://github.com/knative/docs (visited on 05/31/2023).
“Kubernetes - GitHub Repository”. In: (May 2023). URL: https://github.com/kubernetes/kubernetes

(visited on 05/31/2023).
Malawski, Maciej and Bartosz Balis. “Serverless Computing for Scientific Applications”. In: IEEE Internet

Computing 26.4 (2022), pp. 53–58. DOI: 10.1109/MIC.2022.3168810.
“Nuclio - "Serverless" for Real-Time Events and Data Processing”. In: (May 2023). URL:

https://github.com/nuclio/nuclio (visited on 05/31/2023).
“Openfaas/Faas: OpenFaaS - Serverless Functions Made Simple”. In: (2023). URL:

https://github.com/openfaas/faas (visited on 05/31/2023).
“OpenWhisk”. In: (May 2023). URL: https://github.com/apache/openwhisk (visited on 05/31/2023).
Qu, Chenhao, Rodrigo Calheiros, and Rajkumar Buyya. “A Reliable and Cost-Efficient Auto-Scaling System for

Web Applications Using Heterogeneous Spot Instances”. In: Journal of Network and Computer Applications
65 (Mar. 2016), pp. 167–180. DOI: 10.1016/j.jnca.2016.03.001.

Roy, Rohan Basu, Tirthak Patel, and Devesh Tiwari. “IceBreaker: Warming Serverless Functions Better with
Heterogeneity”. In: Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’22. Lausanne, Switzerland: Association for
Computing Machinery, 2022, pp. 753–767. ISBN: 9781450392051. DOI: 10.1145/3503222.3507750. URL:
https://doi.org/10.1145/3503222.3507750.

Schall, David et al. “Lukewarm Serverless Functions: Characterization and Optimization”. In: Proceedings of
the 49th Annual International Symposium on Computer Architecture. ISCA ’22. New York, New York:
Association for Computing Machinery, 2022, pp. 757–770. ISBN: 9781450386104. DOI:
10.1145/3470496.3527390. URL: https://doi.org/10.1145/3470496.3527390.

“valerius21/yabt”. In: (2024). URL: https://github.com/valerius21/yabt (visited on 04/06/2024).

Valerius Mattfeld University of Göttingen 23 / 22

https://arxiv.org/abs/2305.13162
https://doi.org/10.25625/6GSJSE
https://doi.org/10.25625/6GSJSE
https://doi.org/10.3390/a15070234
https://www.mdpi.com/1999-4893/15/7/234
https://github.com/fission/fission
https://doi.org/10.1109/UCC-Companion.2018.00050
https://github.com/knative/docs
https://github.com/kubernetes/kubernetes
https://doi.org/10.1109/MIC.2022.3168810
https://github.com/nuclio/nuclio
https://github.com/openfaas/faas
https://github.com/apache/openwhisk
https://doi.org/10.1016/j.jnca.2016.03.001
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3470496.3527390
https://github.com/valerius21/yabt

	Serverless Functions
	The Problem
	Related Work and Sources
	Setup and Benchmarking
	Results
	Interpretation

