
Welcome to the Practical Course on High-Performance Computing

Julian Kunkel

Photo: NVIDA

Uni Gö/GWDG

2022-04-25 Practical Course on High-Performance Computing

)



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Recording!

■ This broadcast channel will be recorded via BBB

▶ This includes your video, audio (if shared) and chat messages
▶ We can start/stop video recording if necessary

■ Recordings will be available 1-2 days later

■ We may publish selected trainings on our YouTube channel

▶ Will include video, audio if shared
▶ Feel free to use the chat in broadcast if you have questions to lectures

It won’t be rendered for the YouTube video

Julian Kunkel Practical Course on High-Performance Computing 2 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 3 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Learning Objectives of the Module

■ Construct parallel processing schemes from sequential code using MPI and OpenMP

■ Justify performance expectations for code snippets

■ Sketch a typical cluster system and the execution of an application

■ Characterize the scalability of a parallel app based on observed performance

■ Analyze the performance of a parallel application using performance analysis tools

■ Describe the development and executions models of MPI and OpenMP

■ Construct small parallel apps that demonstrate features of parallel apps

■ Demonstrate the usage of an HPC system to load existing software packages and to
execute parallel apps and workflows

■ Demonstrate the application of software engineering concepts

Role of learning objectives

■ The LOs describe what you should be able to do after completing the course

Julian Kunkel Practical Course on High-Performance Computing 4 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Organization of the Module

■ Attendees
▶ GWDG academy users

• Researchers, PhD students, users of HPC systems in the NHR and local

▶ University students
• Need to develop a software after the course to obtain their credits
• Details will be explained at the end of the week

■ Webpage https://hps.vi4io.org/teaching/summer_term_2023/pchpc provides

▶ Links to Slides, exercise sheets and more

■ Communication via two BBB channels
▶ Broadcast: you should listen to this one the whole week

• The trainer will present slides, walk through exercises, share suggestions
• Do not share video, note that we record this channel

▶ Breakout: room for group work and general support requests during sessions

■ For university attendees: may use StudIP for asynchronous communication

▶ We use it for announcements
▶ Please use it for any purpose around the topic!

Julian Kunkel Practical Course on High-Performance Computing 5 / 49

https://hps.vi4io.org/teaching/summer_term_2023/pchpc


Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Organization of the Module

■ Block course: 1 week of training (this week)

▶ Mix of lecture, hands-on tutorials and guided exercises
▶ May contain introductory and harder tasks
▶ You can take a break anytime as necessary (particularly during guided exercises)

■ Group work and community (30 min)

▶ Learning in a virtual environment is difficult, therefore, we form groups!
▶ Imagine you sit in a room with 4 people to share ideas and work together
▶ The group should stick together in a breakout room the whole week
▶ We will now organize teams of 5 attendees

1 Join the Breakout BBB session
2 Room 1-9 are reserved for GWDG-Academy attendees
3 Room 10-11 are for DLR attendees
4 Room 12+ are for University attendees
5 Join a random room with < 5 attendees - or with peers you know
6 Work on the "Welcome" groupwork (next slide)

Julian Kunkel Practical Course on High-Performance Computing 6 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Group Work: Welcome

■ Tasks:

1 Introduce yourself to your peers and describe with one sentence why you join this course
2 Have one of you share the screen of the course

■ Time: 25 min

■ Organization: breakout groups - please use your mic and chat

Julian Kunkel Practical Course on High-Performance Computing 7 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Support Structure

■ Support request takes place primarily in the Breakout BBB

▶ This channel will never be recorded
▶ Ask questions to colleagues and to us
▶ We will support your learning journey but YOU are responsible for it

■ Utilize screen sharing (similarly as we would if in the same room)

■ L1: Try to resolve issues in your breakout group with your peers

▶ Please use your microphone, share screen and work together (on issues)
▶ It is beneficial for learning

■ L2: Ask questions in the global breakout chat

▶ We have trainers that will reply to you, maybe other peers will reply too!

■ L3: If breakout chat doesn’t help, a trainer will connect to your breakout group

■ If we realize that the issue should be given to all, the trainer will use the broadcast
channel to demonstrate how the issue can be resolved

Julian Kunkel Practical Course on High-Performance Computing 8 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

A Typical Session

1 Trainer gives an introduction to the topic

▶ May include some short/small group works (for your breakout group)

2 Trainer may give a tutorial to overcome introductory obstacles

▶ Step-by-step walkthrough
▶ We provide an exercise sheet describing the steps and giving an introduction

3 Attendees work on tasks individually and in their breakout group

▶ We provide an exercise sheet
▶ Attendees should store their results (e.g. in a Git repository)

4 At the end of the session volunteers may share results on broadcast channel

Julian Kunkel Practical Course on High-Performance Computing 9 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Feedback

■ While we are experienced in training/teaching, some aspects are new to us:

▶ The block course format
▶ The online learning format
▶ The joint organization GWDG academy and University
▶ Some new material and composition too

■ Hence, there may be minor hickups in the delivery...

■ Please be open and patient with us

■ Our goal: Improving your skill with a pleasant learning journey

■ Please speak up if you are unsatisfied with some aspects

■ Feel free to share feedback (to us/me) if you see room for improvement

Julian Kunkel Practical Course on High-Performance Computing 10 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Learning Outcomes

After the session, a participant should be able to:

■ Characterize distributed, parallel computing and HPC

■ Describe how the scientific method relies on HPC

■ Sketch generic parallel/distributed system architectures

■ Sketch a simple program for vector addition using pseudocode

Julian Kunkel Practical Course on High-Performance Computing 11 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 12 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Scientific Method Start

Figure: Based on “The Scientific Method as an Ongoing Process”, ArchonMagnus
https://en.wikipedia.org/wiki/Scientific_method

Julian Kunkel Practical Course on High-Performance Computing 13 / 49

https://en.wikipedia.org/wiki/Scientific_method


Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Pillars of the Scientific Method

ScienceScience

T
he

or
y

E
xp

er
im

en
ta

tio
n

Julian Kunkel Practical Course on High-Performance Computing 14 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Pillars of Science: Modern Perspective

ScienceScience

T
he

or
y

E
xp

er
im

en
ta

tio
n

S
im

ul
at

io
n

B
ig

 D
at

a 
A

na
ly

tic
s

Julian Kunkel Practical Course on High-Performance Computing 15 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Computer-Aided Simulation

Modelling and Simulation of the world replaces traditional experiment

Computer simulation is an instrument empowering scientists with

■ arbitrary temporary and spatial resolutions

■ manipulation of arbitrary (model) parameters

■ reproducability

■ conducting experiments that are infeasible due to ethics, risks or costs

▶ Impact of explosion of nuclear power plant
▶ Impact of poison to humans
▶ Influence of brain neurons

■ Prediction of the future

▶ Weather forecast, climate
▶ COVID19 infection progression ...

Julian Kunkel Practical Course on High-Performance Computing 16 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Simulation is Compute and Memory-Intense

Examples

■ Simulation of billions of neurons requires certain memory

■ Modelling of plane engines consist of billions of "elements"

■ AI-Models compute with 1000s of GPUs

■ Deadline of simulations

▶ Weather prediction requires high resolutions but must complete faster than 24h

How can we cope with the huge demand for compute/storage resources?

■ A single PC/server/workstation is not able to solve compute task

■ We need more performance ... High performance ...

High-Performance Computation

Julian Kunkel Practical Course on High-Performance Computing 17 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Simulation is Compute and Memory-Intense

Examples

■ Simulation of billions of neurons requires certain memory

■ Modelling of plane engines consist of billions of "elements"

■ AI-Models compute with 1000s of GPUs

■ Deadline of simulations

▶ Weather prediction requires high resolutions but must complete faster than 24h

How can we cope with the huge demand for compute/storage resources?

■ A single PC/server/workstation is not able to solve compute task

■ We need more performance ... High performance ...

High-Performance Computation

Julian Kunkel Practical Course on High-Performance Computing 17 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Simulation is Compute and Memory-Intense

Examples

■ Simulation of billions of neurons requires certain memory

■ Modelling of plane engines consist of billions of "elements"

■ AI-Models compute with 1000s of GPUs

■ Deadline of simulations

▶ Weather prediction requires high resolutions but must complete faster than 24h

How can we cope with the huge demand for compute/storage resources?

■ A single PC/server/workstation is not able to solve compute task

■ We need more performance ... High performance ...

High-Performance Computation

Julian Kunkel Practical Course on High-Performance Computing 17 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Relation of the Scientific Method to Simulation

Simulation models real systems to gain new insight

■ Instrument to make observations, e.g., high-resolution and fast timescale

■ Typically used to validate/refine theories, identify new phenomen

■ Classical computational science: hard facts (based on models)

■ The frontier of science needs massive computing resources on supercomputers

■ Data-intensive sciences like climate imposes challenges to data handling, too

Julian Kunkel Practical Course on High-Performance Computing 18 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 19 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

High-Performance Computing

Definitions

■ HPC: Field providing massive compute resources for a computational task

▶ Task needs too much memory or time for a normal computer
⇒ Enabler of complex challenging simulations

■ Supercomputer: aggregates power of many compute devices

▶ In the past large monolithic computers such as the Cray
▶ Nowadays: 100-1,000s of servers that are clustered together
▶ Comparison: Car is to Formula-1 like Computer to Supercomputer

Julian Kunkel Practical Course on High-Performance Computing 20 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Introducing: One of the Fastest Supercomputers of the World

FUGAKU at RIKEN Center for Computational Science

■ Nodes/Servers: 158,978
7.6 Million CPU Cores

■ Compute Peak: 540 Petaflop/s (1015)

■ Memory: 5 Petabyte

■ Storage: 150 Petabyte HDDs

■ Energy Consumption: 30 Megawatt

■ Costs: 1 Billion (program) $

The Top500 is a list of the most performant supercomputers

Julian Kunkel Practical Course on High-Performance Computing 21 / 49

http://www.top500.org


Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Supercomputers & Data Centers

Node

Memory

Node

Memory

NVM

Central storage

Cloud

HDDArchive

...

Data center User

Internet

Credits: STFC

JASMIN Cluster at RAL / STFC
Used for data analysis of the Centre for
Environmental Data Analysis (CEDA)

Julian Kunkel Practical Course on High-Performance Computing 22 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

HPC in Göttingen

GWDG: unversity data center and providing innovative technology solutions

■ HPC sytems for local scientists, German wide and for DLR

■ Integrates research for HPC systems and services

Julian Kunkel Practical Course on High-Performance Computing 23 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 24 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Distributed Computing

Field in computer science that studies distributed systems1

Definition

■ System which components2 are located on different networked computers

■ Components communicate and coordinate actions by passing messages

■ Components interact to achieve a common goal

■ In the wider sense: autonomous processes coordinated by passing messages

Characteristics

■ Distributed memory: components have their own (private) memory

■ Concurrency of components: different components compute at the same time

■ Lack of a global clock: clocks may diverge

■ Independent failure of components, e.g., due to power outage
1https://en.wikipedia.org/wiki/Distributed_computing
2In this context, means a component from a software architecture.

Julian Kunkel Practical Course on High-Performance Computing 25 / 49

https://en.wikipedia.org/wiki/Distributed_computing


Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Example Distributed System and Distributed Program
■ A distributed program (DP) runs on a distributed system

▶ Processes are instances of one program running on one computer

■ A distributed applications/algorithm may involve various DPs/different vendors

Hardware perspective

Processor

C
o
m
p
u
te
r

Memory

Extra HW

Processor
Memory

...

Processor
Memory

...

Network(s)

C
o
m
p
u
te
r

C
o
m
p
u
te
r

Software perspective (mapped to hw)

Program 1
Process

Program 2
Process

Messages

Program 3
Process Process

Messages

Program 4
Process

Program 1,2,4
are part of one 

application

Julian Kunkel Practical Course on High-Performance Computing 26 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Example Distributed Applications and Algorithms

Applications

■ The Internet and telecommunication networks

■ Cloud computing

■ Wireless sensor networks

■ The Internet of Things (IoT) – “everything is connected to the Internet”

Algorithms (selection from real world examples)

■ Consensus: reliable agreement on a decision (malicious participants?)

■ Leader election

■ Reliable broadcast (of a message)

■ Replication

Julian Kunkel Practical Course on High-Performance Computing 27 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Cloud Computing

Definition

■ On-demand availability of computer system
resources (data storage and computing)

▶ Without direct active management by the user

■ Typically relates to distributed resources

▶ provided by data centers
▶ to many users
▶ over the Internet

■ Fog/Edge Computing: brings cloud closer to user

Examples

■ Applications: Dropbox, Google Mail, Office 365

■ Infrastructure: Amazon, Google, Microsoft, Oracle

Tablets

Desktops

Servers

Laptops

Phones

Compute
Block Storage

Network

Infrastructure

Platform

Application

NEWS

Content Communication

Object Storage

Collaboration

Identity

0

10

20

30

40
50 60

70
80

90

100

110

1202
1

123450

3
4

5
6 7 8

 
EF

Monitoring

Cloud computing

Runtime
Queue

Database

Finance

Julian Kunkel Practical Course on High-Performance Computing 28 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Challenges using Distributed Systems

■ Programming: concurrency introduces new types of programming mistakes

▶ It is difficult to think about all cases of concurrency
▶ Must coordinate between programs
▶ No global view and debugging

■ Resource sharing: system shares resources between all users

■ Scalability: system must be able to grow with the requirements

▶ numbers of users/data volume/compute demand
▶ retain performance level (response time)
▶ requires to add hardware, though

■ Fault handling: detect, mask, and recover from failures

▶ Failures are innevitable and the normal mode of operation

■ Heterogenity: system consists of different hardware/software

■ Transparency: Users do not care about how/where code/data is

■ Security: Availability of services, confidentiality of data

Julian Kunkel Practical Course on High-Performance Computing 29 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 30 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Definition: Parallel Computing

Many calculations or the execution of processes are carried out simultaneously3

Characteristics

■ Goal is to improve performance for an application

▶ Either allowing to solve problems within a deadline or increased accuracy

■ Application/System must coordinate the otherwise independent parallel processing

▶ There are various programming models for parallel applications

■ Different architectures to speed up computation: may use distributed systems

Levels of parallelism (from hardware perspective)

■ Bit-level: process multiple bits concurrently (e.g., in an ALU)

■ Instruction-level: process multiple instructions concurrently on a CPU

■ Data: run the same computation on different data

■ Task: run different computations concurrently
3https://en.wikipedia.org/wiki/Parallel_computing

Julian Kunkel Practical Course on High-Performance Computing 31 / 49

https://en.wikipedia.org/wiki/Parallel_computing


Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Bit-Level Parallelism: Vector Parallelism with SIMD

■ SIMD = Single instruction multiple data
▶ Apply the same operation on multiple data

■ Example: Vector addition: a = b + c
▶ ci = ai + bi for all vector elements i

a b c
■ AVX-512 works on 8x 64-bit elements in parallel, i.e., run same operation on all

▶ The example Xeon can do 8xFP64 FMA (a = a+ (b · c)) per cycleJulian Kunkel Practical Course on High-Performance Computing 32 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Parallel Architectures

In practice, systems are a mix of two paradigms:

Shared memory

C
o
m
p
u
te
r

Network

Processor ProcessorProcessor

Memory

■ Processors can access a joint memory

▶ Enables communication/coordination

■ Cannot be scaled up to any size

■ Very expensive to build one big system

■ Programming with OpenMP

Distributed memory systems (again!)

Processor

C
o
m
p
u
te
r

Memory

Extra HW

Processor
Memory

...

Processor
Memory

...

Network(s)

C
o
m
p
u
te
r

C
o
m
p
u
te
r

■ Processor can only see own memory

■ Performance of the network is key

■ Programming with Message Passing

Julian Kunkel Practical Course on High-Performance Computing 33 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Multicore CPU: Xeon Platinum 8280M Cascade Lake-SP

Performance

■ FLOPs: 32 · frequency · cores

▶ 28 cores, 2.7 GHz (1.8 GHz AVX512)
⇒ 2.2 TFLOPs

■ 6 Channel DDR4, max 2.933 GHz

▶ Throughput 131 GB/s

■ Power: 205 Watt

Architecture

■ Each core executes code independently
▶ Feature rich: speculative execution, ...

■ Each core has two AVX-512 units

▶ Vector parallelism on 512 bits

■ Summary: complex architecture, heavy cores, optimized for latency
Julian Kunkel Practical Course on High-Performance Computing 34 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Manycore GPU: NVIDIA A100
Accelerated computing is outside of this course, concepts are transferrable

Performance

■ FLOPs: 9.7 TFLOPs FP64

▶ 312 TFLOPs Tensor (FP16)
▶ 1.41 GHz

■ 40 GByte HBM2 memory

▶ 10 memory channels
▶ Throughput 1600 GB/sec

■ Power: 400 Watt

Architecture

■ 128 Streaming multiprocessors

▶ Each with 32 FP64 cores
⇒ 4096 cores per GPU

■ Summary: Simple cores, optimized for throughput

■ Problem: deep pipeline, higher latency, costly startup time of program
Julian Kunkel Practical Course on High-Performance Computing 35 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Parallel Programs

■ A parallel program runs on parallel hardware
In the strict sense: A parallel application coordinates concurrent processing

Schema of a multicore processor

Core
Cache

Instr. Data

M
ic
ro
p
ro
ce
s
so
r

Fast bus/Network

Core

Memory

Cache

Instr. Data

...

Memory Controller

Processor provides all levels of parallelism

■ Multiple ALU/other units

■ Pipelining of processing stages

■ SIMD: Single Instruction - Multiple Data

▶ Same operation on multiple data
▶ Instruction set: SSE, AVX

■ Multiple cores

▶ Each with own instruction pointer

■ May use (GPU) accelerators

▶ CPU in charge for processing

Julian Kunkel Practical Course on High-Performance Computing 36 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Group Work

■ Think about an application of parallel computation - describe the use case briefly

■ What computation is performed in parallel?

■ Which architecture / hardware presented would you like to use for it?

■ Time: 5 min

■ Organization: breakout groups - please use your mic or chat

Julian Kunkel Practical Course on High-Performance Computing 37 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Challenges

■ Programming: imports errors from distributed computed +

▶ Low-level APIs and code-optimization to achieve performance
▶ Performance-optimized code is difficult to maintain
▶ Expensive and challenging to debug 1’000 concurrently running processes
▶ Utilizing all compute resources efficiently (load balancing)
▶ Grand challenges are difficult to test, as nobody knows the true answer

■ Performance engineering: Optimizing code is main agenda for HPC

▶ Covered in this course

■ Scalability: stricter than distributed systems

▶ Strong-scaling: same problem, more parallelism shall improve performance
▶ Weak-scaling: data scales with processors, retain time-to-solution

■ Environment: bleeding edge and varying hardware/software systems

▶ Obscure special-purpose hardware (FPGA/ASIC Application-Specific Integrated Circuit)
▶ Limited knowledge to administrate, use, and to compare performance

Julian Kunkel Practical Course on High-Performance Computing 38 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 39 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Programming

■ Let’s investigate how to create a “parallel” program

Abstractions and examples

■ Sequential code to compute vector addition

■ Automatically parallelizable code for shared memory using OpenMP

▶ Parallelizes code based on user-provided directives

■ Manual parallelization for distributed memory using Message passing

Julian Kunkel Practical Course on High-Performance Computing 40 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Vector Addition: Sequential CPU Code

Compute function = "kernel"

1 void vecAdd(int * restrict a, int * restrict b, int * restrict c, int n){
2 for(int i=0; i < n; i++){
3 c[i] = a[i] + b[i];
4 }
5 }

Execution

1 int a[8];
2 int b[8];
3 int c[8];
4 // fill a and b somehow
5 vecAdd(a, b, c, 8);

■ Both codes may be placed in the same file ⇒ we call this a "single source"

Julian Kunkel Practical Course on High-Performance Computing 41 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Directive-Based Parallelism using OpenMP: CPU Code

Compute function = "kernel"

1 void vecAdd(int * restrict a, int * restrict b, int * restrict c, int n){
2 // A preprocessor directive telling the compiler to parallelize the for loop
3 #pragma OMP parallel for
4 for(int i=0; i < n; i++){
5 c[i] = a[i] + b[i];
6 }
7 }

Execution

■ The same code as before, just compile with -fopenmp...

1 int a[8];
2 int b[8];
3 int c[8];
4 // fill a and b with values ...
5 vecAdd(a, b, c, 8);

Julian Kunkel Practical Course on High-Performance Computing 42 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Message Passing

Definition

■ Message passing is the sending of a message to a process4

■ What: any data from the memory of the sender

■ How: Programmer explicitly requests send/recv

Content of a message

■ Header (Sender, receiver, type5)

■ Data (from memory)

Application
Process

Process

Message

Addressing

■ How to define to whom I sent, from whom to receive?

▶ Addressing via "process number": Rank 0 - (N-1)
▶ Processes are enumerated upon start

4The general definition in distributed systems is more generic
5Distinguishs different messages

Julian Kunkel Practical Course on High-Performance Computing 43 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Example Execution of an Message Processing Program

■ Processes are instances of an application
▶ Executed on differenct computers
▶ May execute the same or different code
▶ Addressing via enumeration of the processes

■ Different applications can be executed concurrently

Hardware perspective

Processor

C
o
m
p
u
te
r

Memory

Extra HW

Processor
Memory

...

Processor
Memory

...

Network(s)

C
o
m
p
u
te
r

C
o
m
p
u
te
r

Software perspective

Program 1
Process

Program 2
Process

Messages

Program 3
Process Process

Messages

Program 4
Process

Program 1,2,4
are part of one 

application

Julian Kunkel Practical Course on High-Performance Computing 44 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Programming with Message Passing
■ Code of processes of the program define how they cooperate
■ Important standard: The Message Passing Interface (MPI)

▶ MPI implementations are a library with communication functions

Single Program Multiple Data (SPMD)

■ SPMD: A single binary program created from one source code

■ Every process of a program runs on different data

■ Example message passing inside one code:

1 int Rank = getRank(); // Determine my rank
2 if(Rank == 0){
3 // Send message (18 bytes to Rank 1)
4 send(1, 18, "Hello from rank 0");
5 }else if(Rank == 1){
6 char data[100];
7 // Receive message from Rank 0
8 receive(0, 18, data);
9 printf("%s\n", data);

10 }

Julian Kunkel Practical Course on High-Performance Computing 45 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Concurrent Execution

■ Assumption: our example program is executed with two processes
▶ Instructions of both processes are executed concurrently and independent

Executed code
Prozess 0

int rang = getRank(); // returns 0
if(rang == 0){ 

send(1, 18, "Hello from rank 0");
}else...
 

}

 int rang = getRank(); // returns 1
if(rang == 0){

 }else if(rang == 1){
 char data[100];

receive(0, 18, data);
printf("%s\n", data);

 }

Message

Prozess 1

■ Semantics of message exchange is defined by operation/function
▶ Receive must block until a suitable message is received
▶ Sending might complete before message is actually received/processed

■ Program code is parallelizable if any paralell and concurrent execution path leads
to the same solution

Julian Kunkel Practical Course on High-Performance Computing 46 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Outline

1 Organization of the Module

2 Lecture

3 Scientific Method

4 High-Performance Computing

5 Distributed Computing

6 Parallel Computing

7 Programming

8 Conclusions
Julian Kunkel Practical Course on High-Performance Computing 47 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Computational Science

■ When we talked about computer-aided simulation, we meant computational science

Definitions

■ Multidiciplinary field using advanced computing capabilities to
understand and solve complex problems

▶ Typically using mathematical models and computer simulation
▶ Problems are motivated by industrial or societal challenges

■ May utilize single computer, distributed systems, or supercomputers

Examples utilizing distributed computing

■ Finding the higgs boson (CERN)

■ Bioinformatics applications, e.g., gene sequencing

Examples utilizing high-performance computing

■ Computing the weather forecast for tomorrow / next week

■ Simulating a tokamak fusion reactor
Julian Kunkel Practical Course on High-Performance Computing 48 / 49



Organization of the Module Lecture Scientific Method High-Performance Computing Distributed Computing Parallel Computing Programming Conclusions

Summary

■ HPC and supercomputers are enablers for scientific computing

■ Supercomputers are relevant for data science

■ Parallel computing is the simultaneous calculation/execution

■ Shared-memory, distributed-memory and GPU-Architectures differ

■ GPUs are accelerating CPUs for massively parallel workloads

■ Programming can be challenging

■ Programming paradigms

▶ Auto-parallelization with compiler-directives (OpenMP, shared mem)
▶ Paralellization with Message Passing (distributed computing)

■ Simple example: Vector addition

Julian Kunkel Practical Course on High-Performance Computing 49 / 49


	Organization of the Module
	Lecture
	Scientific Method
	Scientific Method

	High-Performance Computing
	Distributed Computing
	Overview
	Cloud Computing
	Challenges

	Parallel Computing
	Overview
	Architectures
	Challenges

	Programming
	Message Passing

	Conclusions
	Overview


