

Christian Boehme

Quantum Computing (for the curious)

Learning Objectives

- Formulate small Quantum algorithms as Quantum circuits
- Implement small Quantum circuits with Qiskit
- Understand and implement Deutsch's algorithm

Table of contents

- 1 What is Quantum Computing?
- 2 Small Quantum Circuits with Qiskit
- 3 Deutsch's algorithm
- 4 Implementing Deutsch's algorithm
- 5 Further resources

What is Quantum Computing?

"Quantum computation ... will be the first technology that allows ... distributing components of a complex task among vast numbers of parallel universes, and then sharing the results."

- David Deutsch, The fabric of reality: the science of parallel universes (1997)

Deutsch, The Fabric of Reality

Again: What is Quantum Computing?

- A QC utilizes quantum mechanics to solve complex problems
- QC may be superior to classical computing in
 - Simulating Quantum systems (highly probable)
 - Combinatorial optimization problems (probable)
 - Cryptography / prime factorization (probable)
 - Machine learning and other fields (unknown)

State of Quantum Computing

- Noisy, intermediate-size Quantum era (NISQ)
- Quantum Computers with hundreds of Qubits
- High error rate (noise) due to external influences and imperfect control
- Full error tolerance in NISQ era unachievable due to overhead
- Real world Quantum advantage requires thousands or millions of Qubits
- Great time to do basic research
 - ... if interested in algorithms and/or Quantum mechanics
 - Availability of accessible frameworks and learning material

The Qubit

- The smallest unit of information in QC is the Qubit
- Qubits are represented as two-dimensional vectors \vec{q}
- Two states of the Qubit form its **Computational Basis**: $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

I Computations with these states are similar to classic computing

Gates: Operations on Qubits

- Operations on Qubits are called gates (cf. logic gates in classical computing)
- Gates are linear transformations of the state vector of a Qubit, i.e. matrices
- E.g., see the NOT or X gate in action:

$$\blacksquare X |0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \times 1 + 1 \times 0 \\ 1 \times 1 + 0 \times 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

a $X \ket{1} = \ket{0}$ (see exercise)

Implementing Deutsch's algorithm $_{\odot\odot}$

Quantum Circuits and Measurement

Quantum Circuits are one way to represent quantum computations

- Qubits are measured in the computational basis
- **The result is either** $|0\rangle$ or $|1\rangle$ and is stored in a classical bit

Implementing Deutsch's algorithm

Superposition and the Hadamard gate

Say "hello" to the **Hadamard** or **H** gate:

After the H gate the Qubit's state is a linear combination of basis states

This is called superposition

The H gate is it's own inverse, applying it to $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ yields $|0\rangle$

Applying H to
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 yields $|1\rangle$

Implementing Deutsch's algorithm

Further resources

Superposition measurement

In a superposition $a\ket{0}+b\ket{1}$, $a,b\in\mathbb{C}$

- \blacktriangleright the probability to measure Qubit state |0
 angle equals $|a|^2$
- \blacktriangleright the probability to measure Qubit state |1
 angle equals $|b|^2$
- This also means $|a|^2 + |b|^2 = 1$
- (This is Schrödinger's cat: We are officially Quantum now!)

Multiple Qubit states

Qubit states are combined by tensor product, i.e. for two Qubits:

$$|a\rangle \otimes |b\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \otimes \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{pmatrix}$$

= $a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$
= Measuring 2 Qubits results in probabilities
 $|a_0 b_0|^2 + |a_0 b_1|^2 + |a_1 b_0|^2 + |a_1 b_1|^2 = 1$
= For example: $|0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle$

Can be extended to n Qubits: |q₁ > 8 |q₂ > ... 8 |q_n
 Grows exponentially, only 30+ Qubits can be simulated classically

Christian Boehme

The CNOT gate

The **CNOT** or **XOR** gate is a 2 Qubit gate:

$$q_0: - q_1: -$$

• (Note Qiskit's Qubit order: $|q_1q_0\rangle$)

Or, as a matrix:

$$egin{pmatrix} 1&0&0&0\ 0&0&0&1\ 0&0&1&0\ 0&1&0&0 \end{pmatrix} egin{pmatrix} a_{00}\ a_{01}\ a_{10}\ a_{10}\ a_{11} \end{pmatrix} = egin{pmatrix} a_{00}\ a_{11}\ a_{10}\ a_{01} \end{pmatrix}$$

2 Qubit gates have two outputs, as Quantum gates need to be reversible

Entanglement

Consider the following circuit:

- Each Qubit is equally likely to be measured as |0
 angle and as |1
 angle
- However, both Qubits will always be in the **same** state after measurement

This is called entanglement

- Einstein's spooky action at a distance: More Quantum weirdness!
- What happens: $CNOT(I \otimes H) |00\rangle = CNOT[\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)] = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Introduction to Qiskit: Entanglement

- Login at https://jupyter-hpc.gwdg.de/hub/login
- Upload the two Jupyter notebooks (.ipynb) from the exercises folder
- Run pcpc_qc_exc_1-4.ipynb
 - Is the probability distribution as you expected?
 - \blacktriangleright Can you write the corresponding superposition in terms of basis states $|00\rangle$, ...
- Entangle the two Qubits, but put the control Qubit in $|1\rangle$ state before applying the H gate
 - I.e., implement:

Think about the result: Is it what you expected? Why or why not?

Modifying entanglement

There exists an entangled state where 2 Qubits are always in different states after measurement:

- Implement the Quantum circuit producing that state
- Hint: You need one additional gate

Optional: Extending entanglement

Consider this maximally entangled state of 4 Qubits:

- Implement the Quantum circuit producing that state
- For this you need to extend the Quantum circuit to 4 Qubits: circuit = QuantumCircuit(4)
- Hint 1: Start with entangling 2 Qubits
- Hint 2: The first three Qubits are now in state $\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|011\rangle$
- Hint 3: Switch $|011\rangle$ to $|111\rangle$ but **not** $|000\rangle$ to $|100\rangle$. What gate does this?

Deutsch's problem

- Consider an unknown function of a one bit input x
- The output f(x) could either be **constant** 0 or 1 or depend on x (**balanced**)
- Two tests required classically to determine balanced vs. constant
- Quantum circuit for the problem:

Remember: Quantum gates must be reversible

Quantum solution part 1: Phase kickback

- Our U(f) gate transforms $|x\rangle |y\rangle$ to $|x\rangle |y \oplus f(x)\rangle$ (\oplus : plus, then modulo 2)
- Let's "cheat": Instead of using $|0\rangle$ for $|y\rangle$ we use $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- Then, if we apply our gate U(f): $U(f) |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ $= |x\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |1 \oplus f(x)\rangle)$ $= (-1)^{f(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

Now we have encoded information in the sign (or **phase**) of the input Qubit!

This is called **phase kickback** and is used in many Quantum algorithms

Quantum solution part 2: Input superposition

- We will now use the function information encoded in the phase
- We initialize $|x\rangle$ as superposition of both possible values: $|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- We can ignore the output Qubit and get, after applying U(f): $(-1)^{f(x)} \ket{x} = rac{1}{\sqrt{2}} ((-1)^{f(\ket{0})} \ket{0} + (-1)^{f(\ket{1})} \ket{1})$
- That means constant functions result in $|q_0\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- Balanced functions result in $|q_0\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- (Note that multiplying a Oubit state globally by -1 does not change it)
- **Use the H gate and measure to get** $|0\rangle$ for constant and $|1\rangle$ for balanced
- We have solved Deutsch's problem in one try!
- Deutsch-losza extends this to input length n: One try vs. worst case $2^{n-1} + 1$

Implementing Deutsch's algorithm

- Deutsch's algorithm:
 - Prepare the input (0) Qubit in $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state
 - Prepare the output (1) Qubit in $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ state
 - Apply the oracle
 - Apply the Hadamard gate to Qubit 0 and 1 each
 - Measure: If |10>, the function is constant, else it is balanced
- Please implement this in debase.py
- Implement pre- and postprocessing as described
- Implement at least one constant and one balanced oracle
- lacksquare Constant oracles are constant |0
 angle and constant |1
 angle
- Balanced oracles are identity and negate

Optional: Extend Deutsch to Deutsch-Josza

- We will not cover the math here (but it's very similar to Deutsch)
- Tasks:
 - Use 3 instead of 1 input Qubits (4 Qubits in total)
 - Prepare the input and output Qubit states as before
 - You can reuse your constant oracle
 - Implement at least one balanced oracle
 - \blacktriangleright This should output $|0\rangle$ for half of the possible inputs, $|1\rangle$ for the other half
 - > Extension (harder): Can you implement a random set of balanced oracles?
 - Implement postprocessing and measuring as before
 - > You should measure $|1000\rangle$ for constant (and something else for balanced)

Further resources

- Recap linear algebra: Essence of linear algebra on YouTube
- Deutsch's algorithm explained using a state machine: Quantum Computing for Computer Scientists on YouTube
- Introduction for self study:

Quantum computing for the very curious

- Everything on Qiskit, lots of tutorials: https://qiskit.org/
- Good textbooks:
 - ▶ Hidary, Quantum Computing: An Applied Approach
 - Homeister, Quantum Computing verstehen : Grundlagen Anwendungen -Perspektiven
- Brief overview of the field (link to arxiv.org): Quantum Computing in the NISQ era and beyond, John Preskill

What is Quantum Computing?

Small Quantum Circuits with Qiskit

Deutsch's algorithm $\circ\circ\circ\circ$

Implementing Deutsch's algorithm $\circ \circ$

Further resources

Questions?

Credit: IBM

References

Deutsch, David. The Fabric of Reality. Allan Lane, 1997.

Hidary, J.D. Quantum Computing: An Applied Approach. Springer International Publishing, 2019. ISBN: 9783030239213. URL: https://books.google.de/books?id=nkKoxQEACAAJ.
Homeister, Matthias. Quantum Computing verstehen : Grundlagen - Anwendungen - Perspektiven. 4. Auflage. 2017. ISBN: 978-3-658-10455-9 (Online). DOI: 10.1007/978-3-658-10455-9. URL: http://www.springerlink.com/content/978-3-658-10455-9.