GWDG Exercise 1 / April 20, 2023

AG-C Practical Course High-Performance Computing / SoSe 2023
Christian Boehme 55 Minutes Total
Contents

Task 1: Some QC vector math (5 min) 1
Task 2: Introduction to Qiskit: Entanglement (10 min) 1
Task 3: Modifying entanglement (10 min) 3
Optional Task 4: Extending entanglement (10 min) 3
Task 5: Implementing Deutsch’s algorithm (30 min) 3
Optional Task 6: Extend Deutsch to Deutsch-Josza (30 min) 4
Optional Task 7: Run your circuit on a real device (X min) 4

Task 1: Some QC vector math (5 min)

1. Check that X [1) = |0)

2. Check that H|1) = - (_11> =L |0)— L1

Hints

0 1 1 Ox1+1x0 0
¢ Remember: X\O>:<1 0> <O>:<1x1+0x0>:<1):|1>
e Remember

mo= (1 4) ()= (1) = [(0) + ()] - o -san

Task 2: Introduction to Qiskit: Entanglement (10 min)

1. Login at https://jupyter-hpc.gwdg.de/hub/login
Spawn a new server with the option GWDG HPC with own container
Use /scratch/users/tmeisel/ISC_23/qiskit.sif as container path (see figure 1)

Upload the two Jupyter notebooks (.ipynb) from the exercises folder

ook

Examine and runpcpc_qc_exc_1-4.ipynb
e [s the probability distribution as you expected?

e Can you write the corresponding superposition in terms of basis states |00), ...

https://jupyter-hpc.gwdg.de/hub/login

Spawner Options

Select a job profile:

GWDG HPC with own Container v

Set your own Singularity container location (allowed characters: [a-zA-Z.~-])

/scratch/users/tmeisel/ISC_23/qiskit.sif

Set the duration (in hours):

2

Set the number of cores:
4

Set the amount of memory (in GB):
32

Jupyter Notebook's Home directory

$HOME/jupyterhub-gwdg

Documentation

Figure 1: Spawner options.

6. Entangle the two Qubits, but put the control Qubit in |1) state before applying the H gate
(see figure 2 for where to make changes)

e le., implement:

@ XA A——

a - D A
. /
c: =5 : -

e Think about the result: Is it what you expected? Why or why not?

Create a Quantum Circuit. This needs to be extended to (4,4) for exercise 4.
: circuit = QuantumCircuit(2,2)
Put some gates into the next code cell. Examples are:
X/NOT gate on qubit 0:
circuit.x(0)
Hadamard gate on qubit 0:
circuit.h(e)

Controlled NOT / CNOT gate with qubit @ as control and qubit 1 as target:
circuit.cnot(0,1)

: circuit.h(@) #Hadamard gate on qbit @
circuit.h(1)

Map the quantum measurement to the classical bits. This needs also to be extended for exercise 4.

: circuit.measure([0,11,[0,1])

Figure 2: Cells to be changed in exercises 1-4.

PCHPC - Exercise 1 2/4

Task 3: Modifying entanglement (10 min)

1. There exists an entangled state where 2 Qubits are always in different states after measurement:

I~)
S <

Implement the Quantum circuit producing that state

Optional Task 4: Extending entanglement (10 min)

This is a difficult additional task that will support your understanding in the topic.

1. Consider this maximally entangled state of 4 Qubits:

§

Implement the Quantum circuit producing that state

e For this you need to extend the Quantum circuit to 4 Qubits:
circuit = QuantumCircuit(4)

Hints

Task 3: You need one additional gate

Task 4: Start with entangling 2 Qubits

Task 4: The first three Qubits are now in state \/Li |000) + \/Li |011)

Task 4: Switch |011) to |111) but not |000) to |100). What gate does this?

Task 5: Implementing Deutsch’s algorithm (30 min)

1. Open and examine pcpc_qc_exc_5-7.ipynb
2. Remember Deutsch’s algorithm:

e Prepare the input (0) Qubit in \/ii(|0) +[1)) state

Prepare the output (1) Qubit in \%(]0) —|1)) state

Apply the oracle

Apply the Hadamard gate to Qubit 0 and 1 each

Measure: If |10), the function is constant, else it is balanced

PCHPC - Exercise 1

3/4

3. Implement pre- and postprocessing as described
4. Implement at least one constant and one balanced oracle
e Constant oracles are constant |0) and constant |1)

e Balanced oracles are identity and negate

Optional Task 6: Extend Deutsch to Deutsch-Josza (30 min)

This is a difficult additional task that will support your understanding in the topic.

1. Use 3 (or more) instead of 1 input Qubits (44+ Qubits in total)
Prepare the input and output Qubit states as before

You can reuse your constant oracle

Ll

Implement at least one balanced oracle
e This should output |0) for half of the possible inputs, |1) for the other half
e Can you implement a random set of balanced oracles?

5. Implement postprocessing and measuring as before

(=)

. You should measure [1000...) for constant (and something else for balanced)

Optional Task 7: Run your circuit on a real device (X min)

This is a difficult additional task that will support your understanding in the topic.

1. The code for this is in pcpc_qc_exc_5-7.ipynb
2. You need an account from https://quantum-computing.ibm.com/
3. Retrieve your token from the account and insert in (and uncomment) the according line in the notebook

4. After the first run, the token line can be commented

PCHPC — Exercise 1 4/4

https://quantum-computing.ibm.com/

	Task 1: Some QC vector math (5 min)
	Task 2: Introduction to Qiskit: Entanglement (10 min)
	Task 3: Modifying entanglement (10 min)
	Optional Task 4: redExtending entanglement (10 min)
	Task 5: Implementing Deutsch's algorithm (30 min)
	Optional Task 6: redExtend Deutsch to Deutsch-Josza (30 min)
	Optional Task 7: redRun your circuit on a real device (X min)

