GWDG – Kurs Parallel Programming with MPI

Parallel Computing: Basic Principles

Oswald Haan

ohaan@gwdg.de

Parallel Computing

Wikipedia:

"Parallel computing is a type of computation in which many calculations or the execution of processes are carried out simultaneously"

Why How

Overview

- Why
 - Evolution of Computing Power
- How
 - Hardware Parallelism
 - Data Dependency
 - Programming Models
 - Parallel Efficiency

Demand for more Computing Power

- Simulating complex systems in different areas at all scales: cosmology, climate, engineering, drugdesign, biochemistry, elementary particles, . . .
- Analysing huge datasets from experiments and observations: particle physics, genomes, internet, . . .
- Artificial Intelligence training and using AI systems, . . .

Delivering more Computing Power

computing power of a computing system is defined as

r [flop/s, Kilo-, Mega-, Giga-, Tera-, Peta, Exa-flop/s] = maximal number of floating point operations per second delivererable by the system

r depends on computer system parameters:

N: number of computing elements in the system

n: number of circuits involved in one floating point operation

 τ : cycle time of a circuit in the system

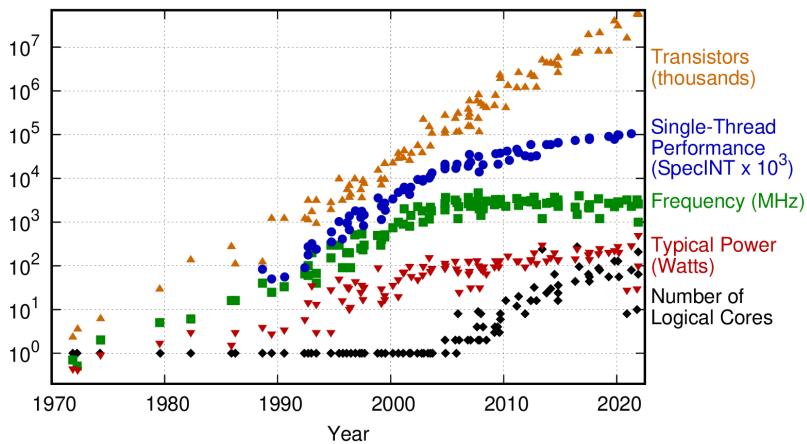
 $f = \tau^{-1}$: frequency or clock rate of the system

$$r = N \times n^{-1} \times f$$
more computing elements higher frequency

more computing power

Evolution of Microprocessors

50 Years of Microprocessor Trend Data

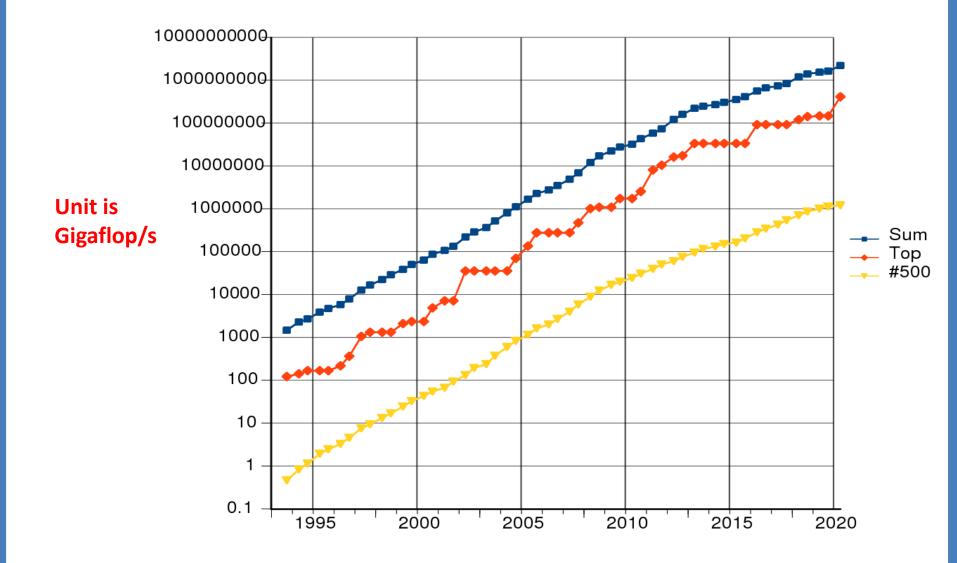


Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

(Not-)Moore's Law

- Moore's Law (Intel co-founder Gordon E. Moore, 1965): The number of transistors on integrated circuits doubles approximately every two years (or every 18 months).
- Not-Moore's Law is that clock rates do, too
- Moore's Law holds (and will for some time)
- Not-Moore's Law held until ≈ 2003, then broke down

Computing Power of TOP500 Supercomputers



Conclusion from the Why of Parallel Computing

Single compute nodes have O(10) computing elements

Compute clusters have O(1 000 000) computing elements

Using the computing power of nodes and clusters for complex simulations and for analysing large datasets is possible, and requires

Parallel computing

Faster Problem Solving with Parallel Computing?

If hardware supports simultaneous execution of several independend operations

If problem can be decomposed into independend pieces

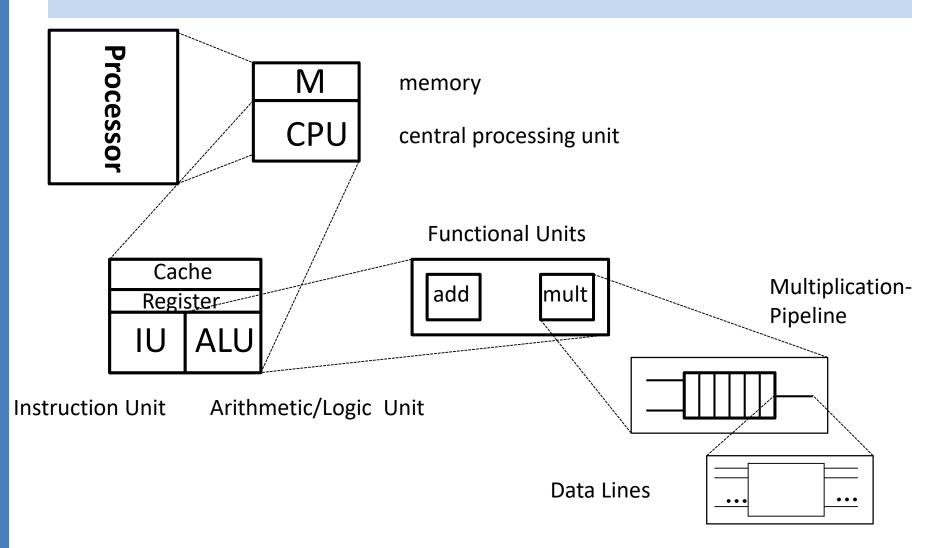
If software maps parallel algorithm to parallel hardware

If resulting application solves the problem faster

Overview

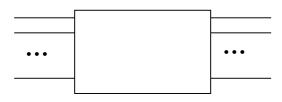
- Why
 - Evolution of Computing Power
- How
 - Hardware Parallelism
 - Data Dependency
 - Programming Models
 - Parallel Efficiency

Components of a Processor

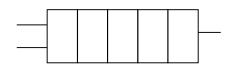


Parallelism in Hardware Components

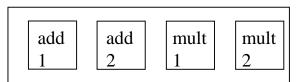
parallel bit-processing (64bit-architecture)



parallel segments in arithmetic pipelines (assembly line processing)



parallel functional units (superscalar architectur)

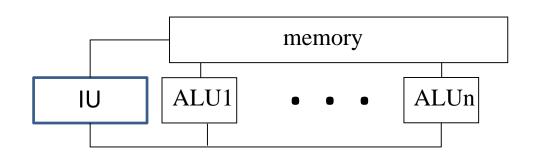


Maximal 4 double precision floatingpoint operations per cycle time: 10 GigaFlop/s for2,5 GHz cycle frequency

Parallelism with Multiple Computing Elements

SIMD (Single Instruction Stream-Multiple Data Streams)

parallel functional units (graphics processor)



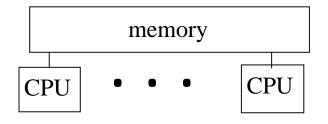
Parallelism with Multiple Computing Elements

MIMD (Multiple Instruction Streams-Multiple Data Streams)

parallel CPUs

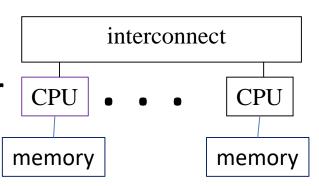
shared memory multiprocessor

e.g. multi-core processor

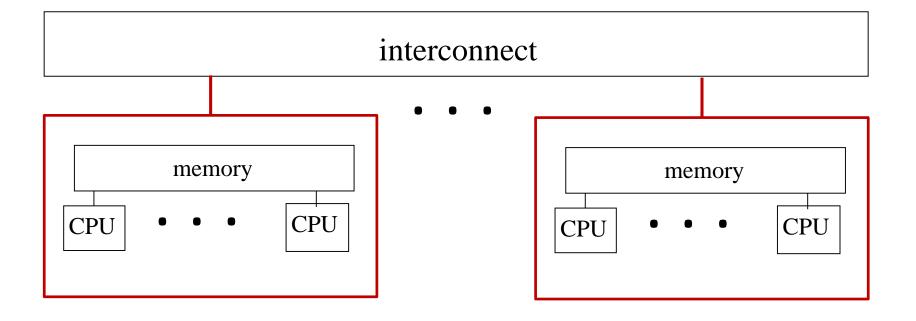


parallel processors

distributed memory multicomputer
e.g. cluster of single-core processors



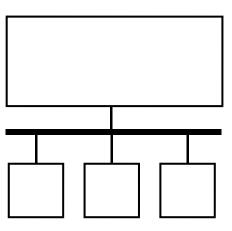
Hybrid-Systems: Cluster of Shared-Memory Nodes



Connection in Shared Memory Systems

Bus

- Serial memory access
- non-scalable
- low latency



Switch

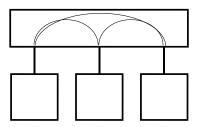
(Hypertransport, Quick Path)

- parallel memory access possible (for advantageous data layout)
- scalable
- Larger latency

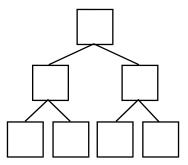


Connection in Systems with distributed memory

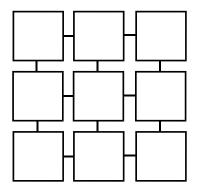
• Switch



Tree



• 2d Lattice



Parameters of Network-Connections

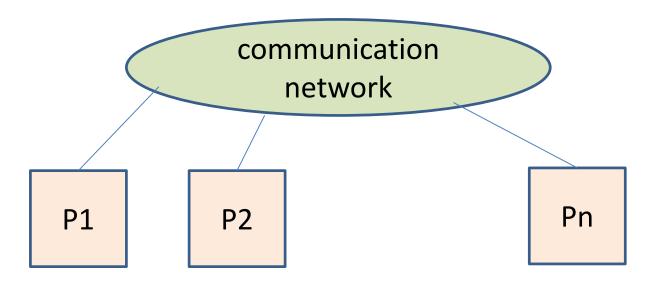
- latency t_{lat} arrival time of the first bit
- bandwidth c
 rate of data transfer
- effective bandwidth

$$c_{eff} = c \cdot \frac{1}{1 + \frac{t_{lat} \cdot c}{n_{dat}}}$$

bisection width

minimal number of connections between two equally sized parts of the network

Relevance of Network Parameters



Every processor has computing power r network has latency t_{lat} und bandwidth c

 $t_{lat} \cdot r$ number of flops, which could be executed during latency

 $64 \cdot r/c$ number of flops, which could be executed during transfer of 8 Bytes (floating point number)

Typical Network Parameters

	Latency $t_{lat}[\mu \sec]$	Bandwidth $c [Gbit/s]$	Computing Power $r[GFlop/s]$	$t_{lat} \cdot r$	64·r/c
Intel Broadwell			1 core:		
Single Node	0,23	64	8,8	2 024	9
Intel Cascade Lake			1 core:		
Single Node	0,34	75	9,2	3 032	11
Intel Broadwell			24 cores:		
Infiniband FDR	1,3	50	211	274 300	270
Intel Cascade Lake			96 cores:		
Intel Omni-Path	1,2	90	883	1 060 000	628

The future was (always) massively parallel

Connection Machine CM-1 (1983)

12-D Hypercube

65536 1-bit cores (AND, OR, NOT)

Rmax: 20 GFLOP/s

Today's notebook PC

TOP500(2019) #1: Summit (Oak Ridge National Laboratory)

9216 IBM Power 9 (22 cores each)

27648 NVIDIA GPUs (Volta GV100)

Rmax: 146 PetaFlop/s

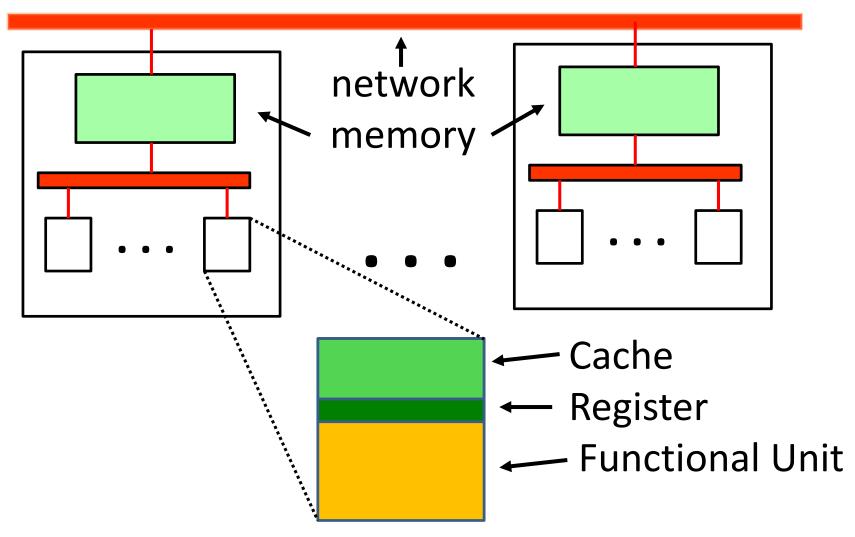
TOP500(2020) #1: FUGAKU

(RIKEN Center for Computational Science (R-CCS) in Kobe, Japan)

158,976 nodes ARM A64FX v8.2-A (48 cores each)

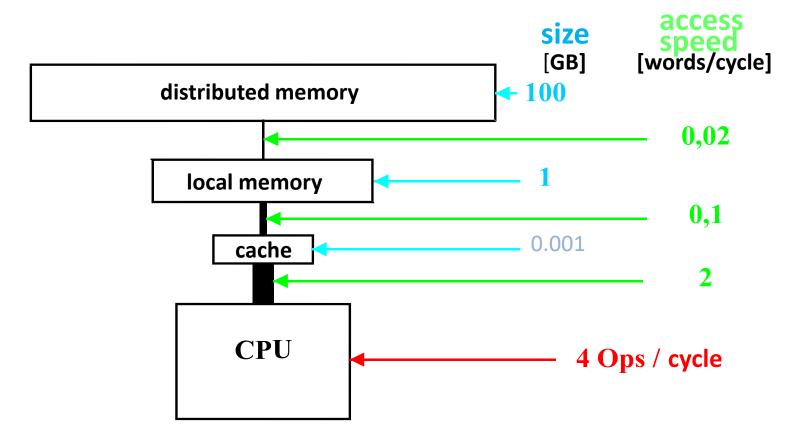
Rmax: 416 PetaFlop/s

Memory-Hierarchy in Parallel Computers



Speed of Memory Accesses

Memory Hierarchy



Golden Rule for Data Access

The maximal computing power of a parallel system

R_{max} = clockrate * #CPUs * #Operatations per CPU

can be realized exclusively for operating on data in cache.

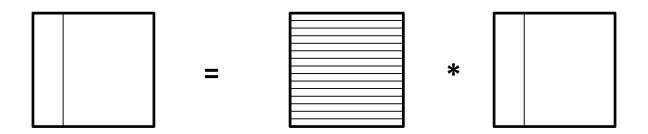
In all other cases: memory bandwidth limits the usable computing power

Memory Access Patterns for Matrix Multiplication

$$a_{ij} = \sum_{k=1}^{n} b_{ik} c_{kj}$$
, $i, j = 1, ..., n$

$$N_{op} = 2n^3$$

Multiplication Column by Column



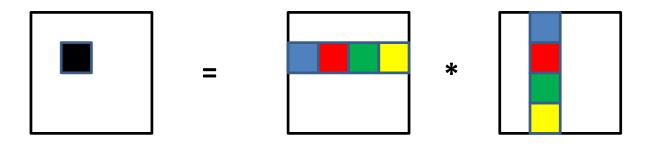
Calculation of one column:

 $2n^2$ operations n^2 data to be read from memory

If n^2 x size of numbers > Cachesize slowing down due to Golden Rule

Multiplication Block by Block

block-size bsz^2



Computing a block multiplication $a_{ij}^{(b)}$:

$$N_{op} = 2bsz^3 \quad N_{in} = 2bsz^2$$

 $2bsz^2$ < Cachesize obeys Golden Rule

Parallel Algorithms

Identify data dependencies

vector addition:
$$c(i) = a(i) + b(i)$$
, $i = 1$, 4
 $c(1) = a(1) + b(1)$ $c(2) = a(2) + b(2)$ $c(3) = a(3) + b(3)$ $c(4) = a(4) + b(4)$
sum of vector elements $s = a(1) + a(2) + a(3) + a(4)$
 $s1 = a(1) + a(2)$ $s2 = a(3) + a(4)$
 $s = s1 + s2$
generating random numbers $z(i) = a*z(i-1)$ mod m, $i = 1$, 4
 $z(1) = a*z(0)$ mod m
 $z(2) = a*z(1)$ mod m
 $z(3) = a*z(2)$ mod m

 $z(4) = a*z(3) \mod m$

Types of Parallel Algorithms

- embarrassingly parallel
 Simultaneous execution of independent tasks using multiple processes
- simulation of extended domains
 Splitting a domain into subdomains, wich are mapped to different processes.
 Every process simulates the degrees of freedom in its
 - Every process simulates the degrees of freedom in its subdomain. Communication of boundaries.
- Algorithms for data fields (e.g. matrices):
 Partitioning the fields into subfields, which are mapped to different processes.
 - Every process manipulates data from its subfield, using data communicated from other subfields

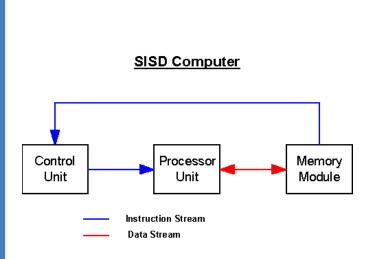
Flynn-Taxonomie (1966)

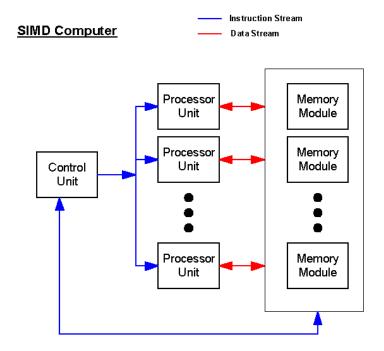
SISD

Single Instruction Stream
Single Data Stream
(Von Neumann architecture (1945),
-stored program computer)

SIMD

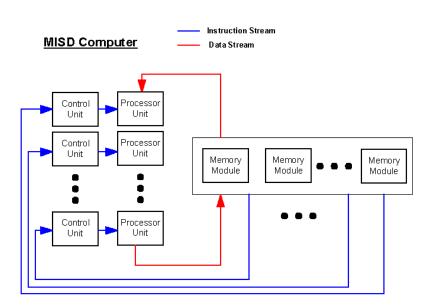
Single Instruction Stream Multiple Data Streams



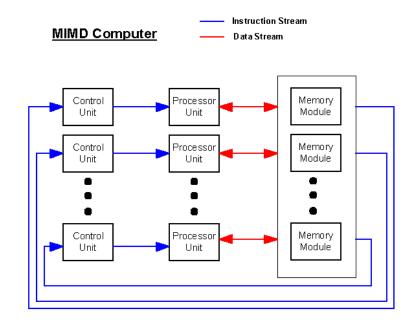


Flynn-Taxonomie (1966)

MISD
Multiple Instruction Streams
Single Data Stream



MIMD
Multiple Instruction Streams
Multiple Data Streams

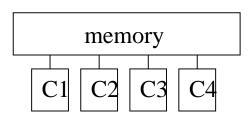


Programming Models for MIMD

Modelling the coordination of **parallel instruction streams** and **parallel data streams** has to respect the memory organization of the computing system

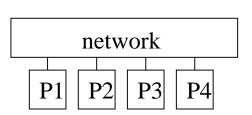
Shared Memory:

- Distribution of instructions to cpus
- Synchronization of accesses to data



Distributed Memory:

- Distribution of instructions to processors,
- Distribution of data to local memories
- Communication of data between local memories



Two different programming models for parallel processing :

- shared memory
- message passing

Comparison to programming model for sequential processing

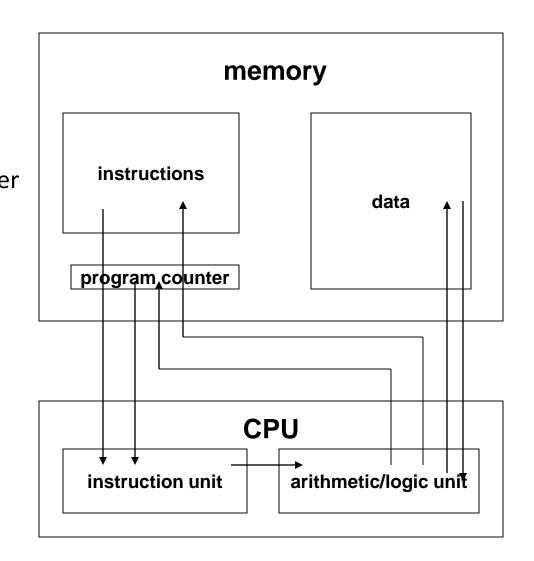
Von Neumann

Programming Model: Sequential (von Neumann)

objects: data, instructions, program counter

instructions: opcode op1, op2,...,re1,re2

order: sequential



Programming Model: Shared Memory

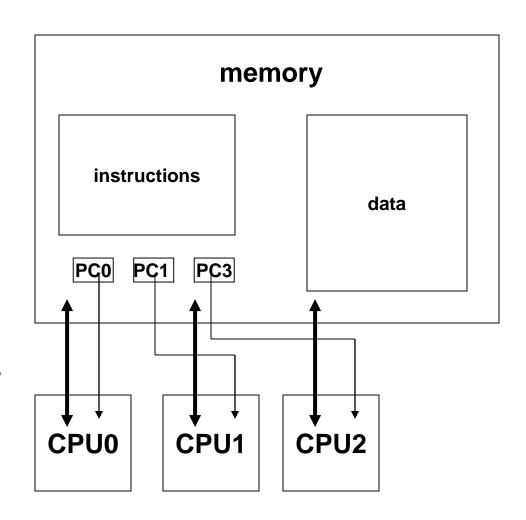
multiple instruction streams (threads)

objects: global data, instructions, lokal PCs, thread-ID

instructions: opcode op1, op2,...,re1,re2 atomic (uninterruptable) ops.

parallelism: mapping instructions to streams

synchronization: CREW (concurrent read, exclusive write)



Programming Model: Message Passing

Multiple processors connected to a communication network

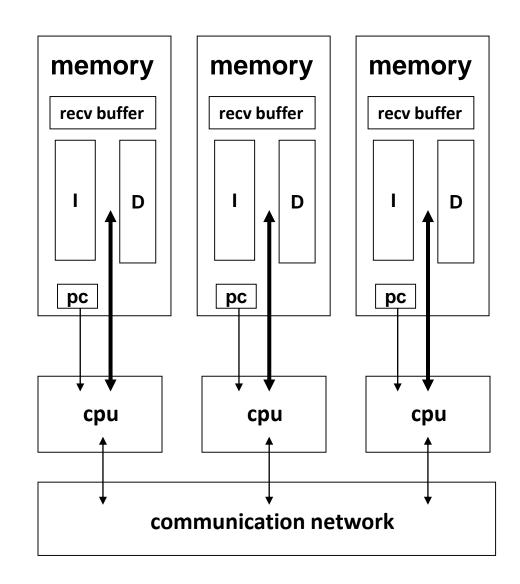
objects:

local data + instructions, local program counters (pc) unique task identification (tid)

operations:

opcode (op1, op2,...,re1,re2)
send(ad,n,tid), recv(ad,n,tid)

synchronization: recv is blocking



Languages for Parallel Programming

Use of established programmimg languages to control execution within individual threads or tasks:

Fortran 77, Fortran 90, ..., C, C++, Python, ...

 Shared Memory Programming Model: creation and coordination of threads

POSIX Threads Library
OpenMP (Open Multi Processing)

Message Passing Programming Model:

creation and coordination of tasks communication between tasks:

MPI (Message Passing Library)

• SIMD Programming Model (Graphics Processors):

CUDA (Compute Unified Device Architecture)

Efficiency of Parallel Computers

Unit of computing power:

[flop/s] floating point operations per second

maximal power
$$r_{max} = p \cdot n_{fl} \cdot \tau^{\text{-1}}$$

p number of processors (=Cores)

 n_{fl} number of functional units per processor

au cycle time for one segment of pipeline

 $f = \tau^{-1}$ frequency (cycle rate) of processor

GWDG's amp-Cluster (Intel Cascade Lake Platinum 9242)

$$p = 92 * 96 = 8832, n_{fl} = 32, s = 2,3 \ \mathrm{GHz}$$

 $r_{max} = 650 \text{ Teraflop/s}$

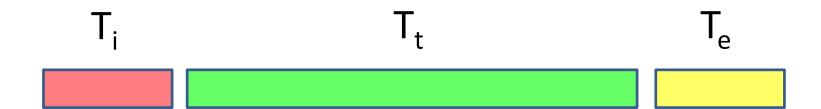
Efficiency in Realistic Applications

- Reduction of parallel efficiency
 - 1. Sequential parts of application
 - 2. Load imbalance
 - 3. Communication of data
 - 4. Synchronization
- Reduktion of single processor efficiency
 - 1. Memory accesses
 - 2. Pipeline disruption
 - 3. Unused parallel pipelines

Sequential Parts

Phases of an application:

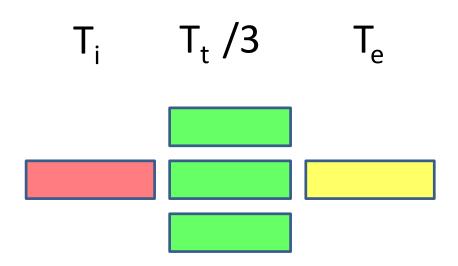
data initialization data transformation extraction of results



Execution time:

$$T = T_i + T_t + T_e$$

Parallel Execution with Sequential Parts



Execution time:

$$T = T_i + T_t / 3 + T_e$$

Amdahl's Law

 N_s sequential und N_p parallel ops: $N = N_s + N_p$

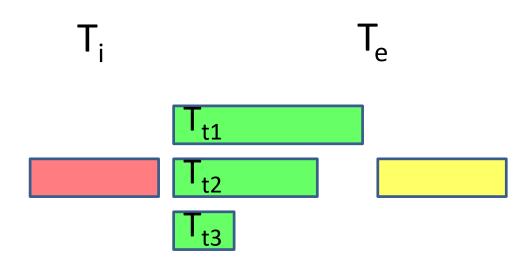
Execution time on p prozessors:

$$T_p = \tau \cdot \left(N_s + \frac{N_p}{p}\right) = \tau \cdot N\left(\sigma + \frac{\pi}{p}\right)$$
 Speed Up:
$$S = \frac{T_1}{T_p} = p \cdot \frac{1}{1 + (p-1) \cdot \sigma} \xrightarrow{p \to \infty} \frac{1}{\sigma}$$
 Efficiency:
$$e = \frac{s}{p} = \frac{1}{1 + (p-1) \cdot \sigma}$$

 $\sigma_{1/2}$: sequential part leading to 50% efficiency (e=0.5)

$$\sigma_{\frac{1}{2}} = \frac{1}{p-1}$$
 for $p = 8832$: $\sigma_{\frac{1}{2}} \approx 0,00011$

Parallel Execution with Load imbalance



Execution time:

$$T = T_i + T_{t1} + T_e$$

Generalization: Load Imbalance

process $i, i = 1, \dots, p$ executes N_i operations,

$$N_p = \sum_{i=1}^p N_i$$

average load per processor

 $N_{av} = \frac{N_p}{p}$

maximal deviation

$$\Delta = \max_{i} N_i - N_{av} = \delta \cdot N_p$$

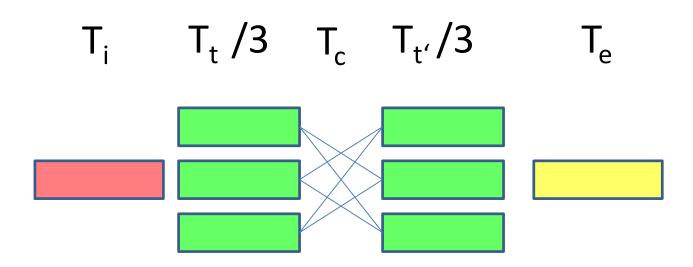
execution time

$$T_p = \tau \cdot (N_S + \max N_i) = \tau N \left(\sigma + \delta + \frac{\pi}{p}\right)$$

efficiency

$$e = \frac{T_1}{pT_p} = \frac{1}{1 + (p-1)\sigma + p\delta}$$

Parallel Execution with Communication



Execution time:

$$T = T_i + T_e + T_c + (T_t + T_{t'})/3$$

T_c may depend on the number of parallel processes

Synchronization

Coordination of different prozesses:

Waiting for completion of all partial results

Sequential synchronization
$$t_{sync} = p \cdot t_{lat}$$

Cascade synchronization
$$t_{sync} = \ln(p) \cdot t_{lat}$$

Parallel granularity n_g : number of parallel operations between synchronization points

Condition for high effiziency: $r^{-1} \cdot n_g/p \gg t_{sync}$

Example: Matrix-Vector-Multiplication

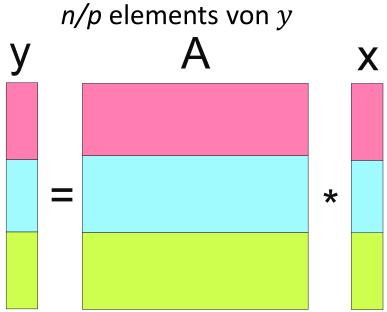
$$y = A \cdot x$$
 $y_i = \sum_j A_{ij} \cdot x_j$, $i = 1, \dots, n$

distribution of data and work:

every of *p* processors has

n/p elements from x and n/p rows from A,

every of p prozessors calculates



Matrix-Vector-Multiplication

Every processor calculates n/p elements of y, executing $2 \cdot n^2/p$ operations

Every processor receives n/p elements of x from each of (p-1) remaining processors

$$T_p = r^{-1} \cdot 2 \cdot \frac{n^2}{p} + (p-1) \cdot (t_{lat} + c^{-1} \cdot n/p)$$

$$e = \frac{T_1}{p \cdot T_p} = \frac{1}{1 + p \cdot \frac{(p-1)}{2n^2} \cdot r \cdot t_{lat} + \frac{p-1}{2n} \cdot r/c}$$

Matrix-Vector-Multiplication

Conditions for good efficiency:

•
$$p \cdot \frac{(p-1)}{2n^2} \cdot r \cdot tlat < 1$$

•
$$\frac{p-1}{n} \cdot \frac{r}{c} < 1$$

gwdg-Cluster:

•
$$r \cdot tlat = 1060000$$

•
$$\frac{r}{c} = 628$$

$$\Rightarrow \frac{n}{p} > 728$$

$$\Rightarrow \frac{n}{p} > 628$$