
OpenMP

Parallelism within nodes

Julian Kunkel

University Göttingen/GWDG

2023.04.20 PCHPC

SH

∞

julian.kunkel@gwdg.de

)

julian.kunkel@gwdg.de

Overview Threads Communication OpenMP Directives Parallelization Exercise

Learning Objectives

■ Describe the features of OpenMP and it’s parallelization strategy

■ Create simple programs in C that demonstrate OpenMP features

■ Parallelize smaller sections of existing code using OpenMP

Julian Kunkel PCHPC 2 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Table of contents

1 Overview

2 Threads

3 Communication

4 OpenMP Directives

5 Parallelization

6 Exercise

Julian Kunkel PCHPC 3 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Motivation

■ Problems exist where Shared-Memory is required or beneficial

■ Development of dedicated share-memory architectures is still ongoing

■ Number of processor for such systems continuously increases

■ But hardware specific code is not portable

■ MPI might be too difficult

Julian Kunkel PCHPC 4 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMP
Open Specifications for Multi Processing

■ Consists of

▶ Specification of pragmas (Hints) for the compiler describing
parallelizable sections

▶ Lightweight API to inquire and control parallelization
▶ Compiler extension that translates code into parallelized

(multi-threaded) version

■ Therefore, a bit different everywhere

■ Specified for Fortran and C

▶ Also works with C++

Julian Kunkel PCHPC 5 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMP
Not a Magic Spell

■ Meant for Shared Memory Systems

■ Can be combined with MPI

■ Does no magic! You have to

▶ Sync IO access on your own
▶ Lock memory on your own
▶ Avoid deadlocks on your own

■ Latest specification:
OpenMP 5.2 from 09.11.21

Julian Kunkel PCHPC 6 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Open MP Components

■ The C-API consists of 3 parts

▶ Compiler Directives
#pragma omp parallel default(shared) private(beta,pi)

▶ A Library
#include <omp.h>
int omp_get_num_threads(void)

▶ Environmental Variables
export OMP_NUM_THREADS=8

■ Compile with:

▶ gcc -fopenmp foobar.c
▶ icc -no-multibyte-chars -qopenmp foobar.c

Julian Kunkel PCHPC 7 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Hello World
hello-openmp.c

#include <omp.h>

main () {
#pragma omp parallel
printf("Hello World");

}

Output

$./hello-openmp

Hello World
Hello World
Hello World
Hello World

Julian Kunkel PCHPC 8 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Fork-Join Model

■ Start with a single thread

▶ Master thread
▶ or thread 0

■ More threads created at runtime

■ Barrier at the end of parallel region

▶ Additional threads are closed
▶ Master thread continues

Julian Kunkel PCHPC 9 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Work Sharing I

■ Single Instruction Multiple Data (SIMD)

■ Example:

▶ Add fixed number to vector

■ Easy to parallelize

Julian Kunkel PCHPC 10 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Work Sharing II

■ Multiple Instructions Multiple Data (MIMD)

■ Different tasks (and code!) for different threads in
the parallel section

■ Hard to parallelize

Julian Kunkel PCHPC 11 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Communication and Data Space I

■ Communication via Shared Variables

■ Master thread

▶ Execution context during entire runtime

■ Worker threads

▶ Execution context only during parallel regions

Julian Kunkel PCHPC 12 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Communication and Data Space II

■ Variables are categorized in

▶ Shared
▶ Private

■ Default is Shared

▶ Good practice to always specify

■ Simplifies coding special attributes

▶ e.g., Reduction

Julian Kunkel PCHPC 13 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Communication and Data Space III

■ Shared variables

▶ All thread access same memory address
▶ Common way to communicate

■ Private variables

▶ One copy for each thread
▶ Value undefined at beginning and end of parallel region

Julian Kunkel PCHPC 14 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Synchronization

When using shared variables

■ Avoid concurrent writes!

■ One thread might read while another writes

■ State at end of parallel region unclear

■ Memory cache can be used to avoid conflicts

▶ Flush-directive synchronizes memory

Julian Kunkel PCHPC 15 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Multiple Threads Example
thread-number.c

#include <omp.h>
main () {

int nthreads, tid;
/* do something in parallel: */
#pragma omp parallel private(tid)
{

/* Obtain and print thread id */ tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
/* Only master thread does this */ if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master thread and terminate */

}

Julian Kunkel PCHPC 16 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Omp Directives Example
omp-directives.c

/* Some initializations */
for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i)
{
#pragma omp for schedule(dynamic)
for (i=0; i < N; i++) { c[i] = a[i] + b[i]; }

} /* end of parallel section */

/* only the master does printf */
#pragma omp master
{
for(i=0;i<N;i++) {printf("c[%d] = %f\n",i,c[i]);}

}

Julian Kunkel PCHPC 17 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Omp Directives

■ schedule - defines how to distribute tasks
Scheduler: static/dynamic/guided/runtime/auto

■ nowait - Do not synchronize threads afterward (e.g., flush)

■ ordered - Iterations must be done in same order as in serial
omp-ordered.c

#pragma omp parallel for ordered
for (i=0; i < N; i++){

// do heavy stuff

#pragma omp ordered
c[i] = a[i] + b[i];

// more heavy stuff
} /* end of parallel section */

Julian Kunkel PCHPC 18 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMp Directives

■ Parallization
▶ for
▶ parallel
▶ sections
▶ single
▶ task
▶ ...

■ Synchronization
▶ barrier
▶ critical
▶ master
▶ atomic
▶ ...

■ Data space
▶ threadprivate

Julian Kunkel PCHPC 19 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Directives Syntax

C/C++

#pragma omp directive [clause [[,] clause ...] ...]
//Structured Block

Fortran

!$OMP directive [clause[[,] clause ...] ...]
! Structured Block

!$OMP END

Julian Kunkel PCHPC 20 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Important Clauses for Data Space
#pragma omp parallel ...

■ private (var1,var2,var3)
■ shared (var1,var2,var3)
■ default (shared/none)

▶ private is not allowed here!
■ reduction (operator:var1)

▶ var1 is (implicitly) thread private and aggregated via operator at the end

omp-clauses.c

#pragma omp parallel default(shared) private(i) reduction(+:result)
{
#pragma omp for schedule(static,chunk)
for (i=0; i < n; i++)

result = result + (a[i] * b[i]);
} // end omp parallel
printf("Final result= %f\n",result);

Julian Kunkel PCHPC 21 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Undefined Variables

■ private variables

▶ Undefined at start and end of parallel region

■ firstprivate(list of variables)

▶ Initializes private variables with value prior to region

Julian Kunkel PCHPC 22 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Important Library Functions

■ omp_in_parallel()

■ omp_get_num_threads()

■ omp_get_thread_num()

■ omp_set_num_threads()

■ omp_get_num_procs()

■ omp_get_wtime()

■ omp_get_wtick()

■ omp_ini_lock()

■ omp_set_lock()

■ omp_unset_lock()

■ omp_test_lock()

■ omp_destroy_lock()

Julian Kunkel PCHPC 23 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Time Measurement
double omp_get_wtime(void);
■ Returns time in seconds since a fixed arbitrary time in the past
■ Temporal resolution may be limited due to OS architecture
■ Elapsed time calculated as difference between two calls

timing.c

#pragma omp parallel
{
// ...
#pragma omp single nowait
start = omp_get_wtime();
// ... code of interest
#pragma omp single nowait
end = omp_get_wtime();
// ...

} // end of parallel section
printf("time in seconds: %lf\n", end - start);

Julian Kunkel PCHPC 24 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMP Loop Parallelization I

■ Strength of OpenMP!

■ Each thread handles a subset of iterations

■ Should be SIMD - Beware of dependencies

■ Clauses: Schedule, Order, ...
C

#pragma omp for (+clauses)
for(...)

■ Only affects directly subsequent for loop

Julian Kunkel PCHPC 25 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMP Loop Parallelization II

■ omp parallel - Create parallel section
■ omp for - Use existing threads to process loop

▶ Must be in omp parallel region
▶ Only affects the very next for loop

■ omp parallel for - Both in one line

C

#pragma omp parallel for collapse(3) // collapse will flatten multiple loops
for(int l=0; l<10; ++l) {

/* no code allowed here */
for(int j=0; j<4; ++j) {

/* no code allowed here */
for(int k=0; k<5; ++k){
foo[l][j][k] = 0;

} } }

Julian Kunkel PCHPC 26 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

OpenMP Loop Parallelization III

■ omp parallel for ordered

▶ Threads process for loop iterations ordered as if sequentially

■ omp parallel for schedule

▶ Hint how iterations should be distributed among threads
▶ static - Same chunk size
▶ dynamic - Give out chunks on request (controlled with chunk)
▶ guided - Chunk size decreases with iterations
▶ runtime - Using environmental variables
▶ auto - Let compiler and runtime decide

Julian Kunkel PCHPC 27 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Loop Scheduling
Thread id

Iteration number
Julian Kunkel PCHPC 28 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Parallel Sections

■ Useful for MIMD operations

■ omp parallel sections - to start several regions

▶ Otherwise omp section for each region

■ Each section is executed by one thread!

■ Good for small tasks

■ Order of execution is not defined

Julian Kunkel PCHPC 29 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Parallel Sections Example
parallel-sections.c

for (i=0; i < N; i++) {
a[i] = i * 1.5; b[i] = i + 22.35;

}
#pragma omp parallel shared(a,b,c,d) private(i)
{
#pragma omp sections // you might use "nowait"
{
#pragma omp section
for (i=0; i < N; i++)

c[i] = a[i] + b[i];
#pragma omp section
for (i=0; i < N; i++)

d[i] = a[i] * b[i];
} /* end of sections */

} /* end of parallel section */

Julian Kunkel PCHPC 30 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Important Directives

#pragma omp directive

■ master - Only executed by master thread

■ critical - Only one thread allowed at a time

■ barrier - Wait for all threads to reach this point

■ flush - Synchronize shared memory of all threads

▶ Implicitly done at barrier, for, critical, parallel ...

Julian Kunkel PCHPC 31 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Other Workload Distribution

■ omp single - Only one thread executes block, used in parallel section

▶ Useful for I/O operations

■ omp critical - Only one tread at a time executes block

▶ Useful to avoid data races

■ nowait - Allow threads to pass by without waiting on each other

Julian Kunkel PCHPC 32 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Code within/without Parallel Sections I
parallel-1.c

int my_start, my_end;

void work(){ /* my_start and my_end are undefined */
printf("My subarray is from %d to %d\n", my_start, my_end);

}
int main(int argc, char* argv[]){
#pragma omp parallel private(my_start, my_end)

{
/* get subarray indices */
my_start = get_my_start(omp_get_thread_num(), omp_get_num_threads());
my_end = get_my_end(omp_get_thread_num(), omp_get_num_threads());
work();

}
}

Julian Kunkel PCHPC 33 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Code within/without Parallel Sections II
Solution 1: Variables as parameters

parallel-2.c

int my_start, my_end;

void work(int my_start, int my_end){
printf("My subarray is from %d to %d\n", my_start, my_end);

}
int main(int argc, char* argv[]){

#pragma omp parallel private(my_start, my_end)
{
/* get subarray indices */
my_start = get_my_start(omp_get_thread_num(), omp_get_num_threads());
my_end = get_my_end(omp_get_thread_num(), omp_get_num_threads());
work(my_start, my_end);

}
}

Julian Kunkel PCHPC 34 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Code within/without Parallel Sections III
Solution 2: Using omp threadprivate

parallel-3.c

int my_start, my_end;
#pragma omp threadprivate(my_start, my_end)
void work(){
printf("My subarray is from %d to %d\n", my_start, my_end);

}
int main(int argc, char* argv[]){

#pragma omp parallel
{
/* get subarray indices */
my_start = get_my_start(omp_get_thread_num(), omp_get_num_threads());
my_end = get_my_end(omp_get_thread_num(), omp_get_num_threads());
work();

}
}

Julian Kunkel PCHPC 35 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

Exercise

■ Simple to more complex tasks

■ Use the online OpenMP specification!

■ Questions without coding are to test your understanding

■ Use OpenMP for more problems

▶ e.g., Calculate 𝜋

Julian Kunkel PCHPC 36 / 36

Overview Threads Communication OpenMP Directives Parallelization Exercise

References

■ https://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html

■ https://www.openmp.org/spec-html/5.2/openmp.html

■ https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

■ https://gcc.gnu.org/wiki/Graphite/Parallelization
https://hpc-tutorials.llnl.gov/openmp/

Julian Kunkel PCHPC 37 / 36

https://sourceware.org/gdb/current/onlinedocs/gdb/Threads.html
https://www.openmp.org/spec-html/5.2/openmp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/wiki/Graphite/Parallelization
https://hpc-tutorials.llnl.gov/openmp/

	Overview
	Threads
	Communication
	OpenMP Directives
	Parallelization
	Exercise

