GWDG — Kurs
Parallel Programming with MPI

Point-to-Point Communication

Oswald Haan
ohaan@gwdg.de

Message Passing

Basic mechanism of the message passing programming model:
Transfer a message between two processes in two steps:

1. On the source process: Sending the message from memory
to the destination process

On the destination process: Receiving the message from the
source process to memory

step 1: send

/ ‘ system ?uﬁer |

memory /" memory
IZ/ step 2: receive<

source process destination process

April 2023 Parallel Programming with MPI

MPI Setup for Message Passing

MPI_COMM WORLD

@ src = 2
dst =1
tag =11 MPI_RECV

g =

MPI_SEND

April 2023 Parallel Programming with MPI

MPI specification: Message Content

A MPI message contains:
a number of elements of the same datatype.

MPI datatypes:

— basic datatype
basic C types are different from basic Fortran types

— derived datatypes
derived datatypes can be built up from basic or
recursively from derived datatypes.

— datatype handles are used to describe
the data layout of a datatype in memory.

April 2023 Parallel Programming with MPI

Basic MPI-Datatypes: Fortran

MPI datatype Fortran datatype

MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER
MPI_COMPLEX COMPLEX

April 2023 Parallel Programming with MPI

Basic MPI Datatypes: C

MPI datatype

MPI_INT

MPI_LONG

MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_CHAR
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED SHORT
MPI_UNSIGNED CHAR

April 2023

C datatype

signed int

signed long int
float

double

long double

char

unsigned int
unsigned long int
unsigned short int
unsigned char

Parallel Programming with MPI

Basic MPI-datatypes: mpi4py

MPI datatype correspond to C datatype

MPI.INT signed int
MPI.LONG signed long int
MPI.FLOAT float
MPI.DOUBLE double
MPI.LONG_DOUBLE long double
MPI.CHAR char

April 2023 Parallel Programming with MPI

MPI specification: Message Envelope

Each MPI message content is accompanied by a message
envelope, which contains additional information necessary
or useful for the data transfer:

 the communicator, to which source and destination
processes belong,

the ranks of source and destination processes in this
communicator,

an identifier (tag), which can be used to differentiate
between messages.

The message tag must be specified by the user as an integer

in the range [0, UB], where the value of the implementation dependent
upper bound UB is equal to the MPI constant MPI_TAG_UB.

The MPI standard requires UB to be at least 32767.

April 2023 Parallel Programming with MPI

Blocking Send Operation: MPI_SEND

int MPI Send(void *buf, int count,
MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

Fortran:
MPI SEND (buf, count, datatype, dest, tag,
comm, ilierr)
<type> buf (*)
INTEGER count, datatype, dest, tag, comm, ierr

April 2023 Parallel Programming with MPI

Blocking Send Operation: MPI_SEND

mpidpy:
comm. send (obj, dest, tag = 0)

obj :Python object; dest, tag:integer

comm. Send (ar, dest, tag = 0)
ar :NumPyarray; dest, tag:integer

April 2023 Parallel Programming with MPI

Blocking Receive Operation: MPl_RECV

int MPI Recv(void *buf, int count,
MPI Datatype datatype,
int src, int tag, MPI Comm comm,

)

Fortran:

MPI RECV (buf, count, datatype, src, tag,
comm, , lerr)

<type> buf (*)
INTEGER count, datatype, src, tag, comm, ierr

April 2023 Parallel Programming with MPI

Blocking Receive Operation: MPl_RECV

mpidpy:.
obj = comm.recv(buf=None, source= ANY SOURCE,

tag= ANY TAG, status=None)
obj :pythonobject, source, tag: integer

comm.Recv (ar, source= ANY SOURCE,
tag= ANY TAG, status=None)

ar :numpy array; dest, tag:integer

April 2023 Parallel Programming with MPI

MPI_RECV Restriction

The size of data to be recieved must be equal or greater than the
size of the pending message:

recvcount*size (recvtype) must be equal or greater than
sendcount*size (sendtype)

otherwise the program stops with an error

April 2023 Parallel Programming with MPI

»Wild Cards” for MPI RECV

MPI_RECV copies a pending message into the memory of the
calling process, starting at address buf --
if the source and tag attributes of the message envelope

conform with the source and tag arguments
in the call to MPI_RECV.

With “wild card” arguments for source and/or for tag a pending

message will be received irrespective of its attributed source
and/or tag values.

C, Fortran: MPI_ANY SOURCE, MPI ANY TAG
mpi4py MPI.ANY SOURCE, MPI.ANY TAG

April 2023 Parallel Programming with MPI

The status argument in MPI_RECV

The actual source and tag of the received message, and its actual
size can be retrieved from the data-structure status returned as

an argument in the call to MPI_RECV.

If the information from status is not needed, the argument can be
ignored, saving memory space for this data structure and the
processing cost to produce its content.

C, Fortran: use MPI STATUS IGNORE
as status argument

mpidpy: use status = None
or omitthe status argument

April 2023 Parallel Programming with MPI

Retrieving Message Properties
from the Status Argument stat

C Fortran

type of MPI_Status stat integer

stat

stat (MPI_STATUS SIZE)

source stat.MPI_SOURCE stat (MPI_SOURCE)

tag

stat.MPI_TAG stat (MPI_TAG)

stat.MPI_ERROR stat (MPI_ERROR)

MPI Get count call MPI GET COUNT
(&stat,datatype, &count) (stat,datatype,count,ierr)

April 2023 Parallel Programming with MPI

mpi4py

stat = MPI.Status|()

stat.Get_source()
stat.Get_tag()
stat.Get_error()

stat.Get_elements
(datatype)

stat.Get_size()

Probing a Message before Receiving it

The properties of a pending message can be retrieved with the MPI_PROBE
routine before actually copying the message to memory with MPI1_RECV.

C:
MPI Probe (source, tag, comm, &status);
Fortran:

call MPI PROBE (source, tag, comm,
status, 1ierr)

mpidpy:
res = comm.Probe (source=ANY SOURCE, tag=ANY TAG,
status=None)

res : Literal (True)
source and tag can be wild cards!
Probing the information in status can be used to

= adjust the count of elements to be received to the size of the message
= select messages from particular sources / with particular tags .

April 2023 Parallel Programming with MPI

Semantics of Blocking Point-to-Point Communication

A call to MPI_SEND is blocking:

= |t completes, if the message data from the send buffer are copied to another
location and therefore the send buffer can be safely reused.
— ltislocal, if the message data are copied to a temporary buffer in the source or

destination process: it can complete before a matching MPI_RECV has been called
in the destination process.

— Itis non-local, if the message data are copied directly to the receive buffer of a
matching MPI_RECV call: it can complete only after a matching MPI_RECV has
been called in the destination process.

* The choice between buffered and direct sending the message with MPI_SEND
is implementation dependent

A call to MPI_RECV is blocking:
= |t completes, if the data from a matching message are completely copied into
the receive buffer.

— Itis always non-local : it can complete only after a matching MPI_SEND has been
called in the source process.

April 2023 Parallel Programming with MPI

Explicit Modi for blocking Send

MPI provides three additional send routines with prescribed behavior:

Buffered Send: MPI_BSEND(sbuf,...
A user defined temporary buffer temp must be provided with a call to

MPI_BUFFER_ATTACH(temp,size)
Is local: it completes, when sbuf has been copied to temp in the sending process
Low latency / low bandwidth (additional data copying)

Synchronous Send: MPI_SSEND(sbuf,...
Is non-local: it returns, when sbuf has been copied to rbuf in the memory of the

destination process

High latency (establishing communication channel) / high bandwidth

Ready Send: MPI_RSEND(sbuf,...
Is non-local: it fails unless a matching MPI_RECV has been called in the destination
process.

Standard Send: MPI_SEND(sbuf,...
Buffered for short, synchronous for long messages

Best of two worlds / but danger of deadlock

April 2023 Parallel Programming with MPI

Syntax for Buffered Send

Fortran:
call MPI BUFFER ATTACH (temp, bsize, ierr)
call MPI BSEND(sendbuf, count, datatype,
call MPI BUFFER DETACH (temp, bsize, ierr)

bsize is the size in Bytes of the temporary buffer to be attached.

The temporary buffer space temp must be declared to contain at least
bsize Bytes.

bsize >= # Bytes for the send buffer + MPI_BSEND_OVERHEAD

where MPI_BSEND OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

April 2023 Parallel Programming with MPI

Syntax for Buffered Send

C:
MPI Buffer attach(void* temp, int bsize);
MPI Bsend(void* sendbuf, int count, ...);

MPI Buffer detach(void* temp ptr, int* bsize);
bsize is the size in Bytes of the temporary buffer to be attached.

The temporary buffer space with address pointer temp must be declared
to contain at least bsize Bytes,

temp ptristhe pointer to the address in memory, where
the value of the address pointer temp is stored.

bsize >= # Bytes for the send buffer + MPI_BSEND_OVERHEAD

where MPI_BSEND OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

April 2023 Parallel Programming with MPI

Syntax for Buffered Send

mpidpy:
sendbuf = numpy.ones (nl,dtype = np.floaté64)
ntemp = nl + MPI.BSEND OVERHEAD/8

temp = np.empty(ntemp,dtype = np.floaté64)

MPI.Attach buffer (temp)
comm.Bsend (sendbuf,dest, tag=0)
MPI .Detach buffer()

#Bytes of temp = # Bytes for the send buffer + MPI.BSEND OVERHEAD

where MPI.BSEND_OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

April 2023 Parallel Programming with MPI

Synchronous Send

Sending Receiving
Process Process

0 IISuffer
Enquire

>end Message fn

April 2023 Parallel Programming with MPI

Buffered Send

Sending Receiving
Process Process

temgary buffar Sys puffer

Send v
D fCopy Daty | fecEnvelope

Enquire

ity

 —

Send Dat;

April 2023 Parallel Programming with MPI

Ready Send

Sending Receiving
Process Process

Buffer
Enquire

April 2023 Parallel Programming with MPI

Message Order Preservation

Rule for multiple messages on the same connection,
i.e. same communicator, source, and destination rank:

o|f several receives match multiple messages, then the sending
order is preserved.

Messages do not overtake each other.

e This is true even for non-synchronous sends.

April 2023 Parallel Programming with MPI

Receives Match Both Sends

Sending Receiving
Process O Process 1

April 2023 Parallel Programming with MPI

Each Receive Matches One Send

Sending Receiving
Process O Process 1

April 2023 Parallel Programming with MPI

Message Exchange

CALL MPI COMM RANK (comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI SEND (sendbuf, count, MPI REAL,
comm, ierr)

CALL MPI RECV(recvbuf, count, MPI REAL,
comm, status, ierr)

ELSE IF (rank.EQ.1l) THEN

CALL MPI_SEND (sendbuf, count, MPI_ REAL,
comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI REAL,
comm, status, ierr)

END TIF

April 2023 Parallel Programming with MPI

Message Exchange with Buffered SEND

process 0 temporary process 1
buffers

/

April 2023 Parallel Programming with MPI

Message Exchange with Synchronous SEND

process 0 process 1

waiting waiting
for RECV for RECV
from proc. 1 from proc. O

I deadlock !

April 2023 Parallel Programming with MPI

No Deadlock with Reversed Order

CALL MPI COMM RANK (comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI REAL,
comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI REAL,
comm, status, ierr)
ELSE IF (rank.EQ.1l) THEN

CALL MPI RECV(recvbuf, count, MPI REAL,
comm, status, ierr)

CALL MPI SEND (sendbuf, count, MPI REAL,
comm, ierr)

END IF

April 2023 Parallel Programming with MPI

Message Exchange without Deadlock

process 0 process 1

April 2023 Parallel Programming with MPI

Message Exchange with MPI_SENDRECV

CALL MPI COMM RANK (comm, rank, ierr)
IF (rank.EQ.0) THEN
ipn = 1
ELSE IF (rank.EQ.1l) THEN
ipn = 0
END IF
call MPI SENDRECV(sendbuf, count, MPI REAL, ipn, tag
, recvbuf, count, MPI REAL, ipn, tag

, comm, status, ierr)

April 2023 Parallel Programming with MPI

Non-Blocking
Point-to-Point Communication

April 2023 Parallel Programming with MPI

Blocking vs. Non-Blocking
Blocking

Calls to blocking point-to point send and receive routines return
after completion of the intended data movement:

* The message passing is completed in the sending process, when the data
from the send buffer are copied to a different place (either to a temporary
buffer or to the receive buffer in the receiving process)

The message passing is completed in the receiving process, when the data
from the send buffer are stored in the receive buffer.

Non-Blocking

Calls to non-blocking routines return immidiately.

Completion of the communication must be monitored by

MPI routines for testing or waiting for completion.

* User responsibility:
data in send or receive buffer are not to be used until the completion ot the
transaction has been assured

April 2023 Parallel Programming with MPI

WHY Non-Blocking Communication

* Overlap communication and working with data not
involved in the communication

 Break deadlocks

* Avoid temporary buffering of messages

April 2023 Parallel Programming with MPI

HOW Non-Blocking Communication

Split communication into two operations

1. Posting: initiate non-blocking communication routine
- returns immediately
- routine name starting with MIPI | ...

compute and communicate data
not involved in the posted routine

Waiting: monitor the progress of the posted communication
- MIPI_WAIT blocks until completion of the communication
- MPI _TEST returns the status of the communication

April 2023 Parallel Programming with MPI

The Request Object

A request object is used to identify a non-blocking communication

A request handle refering to the request object generated with
the call toMPI_I..is returned in an argument in the calling
seguence

The request handle argument in the MPI_WAIT and MPI_TEST
routines identifies the specific communication process to be
monitored

April 2023 Parallel Programming with MPI

Nonblocking Communication

Nonblocking communication calls cooperate with

blocking communication calls:
A message sent by MP| ISEND can be received by MPI RECV

A message sent by MPI_SEND can be received by MP| IRECV

April 2023 Parallel Programming with MPI

Syntax for Non-Blocking SEND

int MPI Isend(void *buf, int count, MPI Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI Request *req)

Fortran:

MPI ISEND (buf, count, datatype, dest, tag, comm, req, ierr)
<type> buf (*)
INTEGER count, datatype, dest, tag, comm, req, ierr

mpi4 py:
reg=comm. isend (buf,dest, tag=0)

buf : any Python object
reg=comm. Isend (buf,6dest, tag=0)

buf : buffer-like object, e.g. numpy-array

April 2023 Parallel Programming with MPI

Syntax for Non-Blocking RECV

C:
int MPI Irecv(void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm, MPI Request *req)

Fortran:

MPI IRECV(buf, count, datatype, source, tag, comm, req, ierr)
<type> buf (*)
INTEGER count, datatype, source, tag, comm, req, ierr

mpi4 py:

reg=comm. irecv (buf=None, source=ANY SOURCE, tag=ANY TAG)
buf : optional

reg=comm. Irecv (buf, source=ANY SOURCE, tag=ANY TAG)
buf : buffer-like object, e.g. numpy-array

No status argument for posting a nonblocking receive

April 2023 Parallel Programming with MPI

Waiting for Completion

C:

int MPI Wait(MPI Request *req

, MPI Status *status)

Fortran:

MPI WAIT (req, status, ierr)

INTEGER req, status(MPI_STATUS SIZE), ierror
mpidpy:

buf=MPI.Request.wait (req, status=None) or

buf=req.wait (status=None)
buf: any Python object

MPI.Request.Wait(req, status=None) or
req.Wait (status=None)

WAIT is blocking until the operation, which created req, has completed.

If req was created by IRECV, status contains information about sender,
tag and length of the message; if it was created by ISEND, status is
undefined

April 2023 Parallel Programming with MPI

Sending Receiving
Process Process

April 2023 Parallel Programming with MPI

Sending Receiving
Process Process

Sys

April 2023 Parallel Programming with MPI

Message Exchange with ISEND

Process O Process 1

April 2023 Parallel Programming with MPI

Testing for Completion
C:

int MPI Test(MPI Request *req, int *flag
, MPI Status *status)

Fortran:

MPI TEST (req, flag, status, ierr)
INTEGER req, status(MPI_STATUS SIZE), ierror

flag = MPI.Request.Test (request, status=None)

TEST is non-blocking.

returns £lag=true (1 for C), if the operation, which created request,
has completed.

returns £lag=false (0 for C), if the operation, which created request,
has not yet completed.

If the operation has completed, status isasin MPI_WAIT

April 2023 Parallel Programming with MPI

