
GWDG – Kurs
Parallel Programming with MPI

Point-to-Point Communication

Oswald Haan
ohaan@gwdg.de

Message Passing

Basic mechanism of the message passing programming model:
Transfer a message between two processes in two steps:

1. On the source process: Sending the message from memory
to the destination process

2. On the destination process: Receiving the message from the
source process to memory

Parallel Programming with MPI 2April 2023

source process

memory

destination process

memory

system buffer
step 1: send

step 2: receive

dadata

MPI Setup for Message Passing

Parallel Programming with MPI 3April 2023

0

2

1

3

src = 2

dst = 1

tag = 11

MPI_SEND

MPI_RECV

MPI_COMM_WORLD

MPI specification: Message Content

A MPI message contains:

a number of elements of the same datatype.

MPI datatypes:

– basic datatype

basic C types are different from basic Fortran types

– derived datatypes

derived datatypes can be built up from basic or

recursively from derived datatypes.

– datatype handles are used to describe

the data layout of a datatype in memory.

Parallel Programming with MPI 4April 2023

Basic MPI-Datatypes: Fortran

MPI datatype Fortran datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER

MPI_COMPLEX COMPLEX

Parallel Programming with MPI 5April 2023

Basic MPI Datatypes: C

MPI datatype C datatype

MPI_INT signed int

MPI_LONG signed long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_CHAR char

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED_CHAR unsigned char

Parallel Programming with MPI 6April 2023

Basic MPI-datatypes: mpi4py

MPI datatype correspond to C datatype

MPI.INT signed int

MPI.LONG signed long int

MPI.FLOAT float

MPI.DOUBLE double

MPI.LONG_DOUBLE long double

MPI.CHAR char

Parallel Programming with MPI 7April 2023

MPI specification: Message Envelope

Each MPI message content is accompanied by a message

envelope, which contains additional information necessary

or useful for the data transfer:

• the communicator, to which source and destination

processes belong,

• the ranks of source and destination processes in this

communicator,

• an identifier (tag), which can be used to differentiate

between messages.

The message tag must be specified by the user as an integer

in the range [0, UB], where the value of the implementation dependent

upper bound UB is equal to the MPI constant MPI_TAG_UB.

The MPI standard requires UB to be at least 32767.

Parallel Programming with MPI 8April 2023

Blocking Send Operation: MPI_SEND

C:

int MPI_Send(void *buf, int count,

MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

Fortran:

MPI_SEND(buf, count, datatype, dest, tag,

comm, ierr)

<type> buf(*)

INTEGER count, datatype, dest, tag, comm, ierr

Parallel Programming with MPI 9April 2023

Blocking Send Operation: MPI_SEND

mpi4py:

comm.send(obj, dest, tag = 0)

obj : Python object; dest, tag: integer

comm.Send(ar, dest, tag = 0)

ar : NumPy array; dest, tag: integer

Parallel Programming with MPI 10April 2023

Blocking Receive Operation: MPI_RECV

C:

int MPI_Recv(void *buf, int count,

MPI_Datatype datatype,

int src, int tag, MPI_Comm comm,

MPI_Status *status)

Fortran:

MPI_RECV(buf, count, datatype, src, tag,

comm, status, ierr)

<type> buf(*)

INTEGER count, datatype, src, tag, comm, ierr

INTEGER status(MPI_STATUS_SIZE)

Parallel Programming with MPI 11April 2023

Blocking Receive Operation: MPI_RECV

mpi4py:

obj = comm.recv(buf=None, source= ANY_SOURCE,

tag= ANY_TAG, status=None)

obj : python object, source, tag: integer

status: status_object MPI.Status()

comm.Recv(ar, source= ANY_SOURCE,

tag= ANY_TAG, status=None)

ar : numpy array; dest, tag: integer

status: status_object MPI.Status()

Parallel Programming with MPI 12April 2023

MPI_RECV Restriction

The size of data to be recieved must be equal or greater than the

size of the pending message:

recvcount*size(recvtype) must be equal or greater than
sendcount*size(sendtype)

otherwise the program stops with an error

Parallel Programming with MPI 13April 2023

„Wild Cards“ for MPI_RECV

MPI_RECV copies a pending message into the memory of the
calling process, starting at address buf --

if the source and tag attributes of the message envelope
conform with the source and tag arguments
in the call to MPI_RECV.

With “wild card” arguments for source and/or for tag a pending
message will be received irrespective of its attributed source
and/or tag values.

C, Fortran : MPI_ANY_SOURCE, MPI_ANY_TAG

mpi4py MPI.ANY_SOURCE, MPI.ANY_TAG

Parallel Programming with MPI 14April 2023

The status argument in MPI_RECV

The actual source and tag of the received message, and its actual
size can be retrieved from the data-structure status returned as
an argument in the call to MPI_RECV.

If the information from status is not needed, the argument can be
ignored, saving memory space for this data structure and the
processing cost to produce its content.

C, Fortran: use MPI_STATUS_IGNORE

as status argument

mpi4py: use status = None

or omit the status argument

Parallel Programming with MPI 15April 2023

Retrieving Message Properties
from the Status Argument stat

Parallel Programming with MPI 16April 2023

C Fortran mpi4py
type of
stat

MPI_Status stat integer

stat(MPI_STATUS_SIZE)

stat = MPI.Status()

source stat.MPI_SOURCE stat(MPI_SOURCE) stat.Get_source()

tag stat.MPI_TAG stat(MPI_TAG) stat.Get_tag()

error stat.MPI_ERROR stat(MPI_ERROR) stat.Get_error()

count MPI_Get_count

(&stat,datatype,&count)

call MPI_GET_COUNT

(stat,datatype,count,ierr)

stat.Get_elements

(datatype)

size --- --- stat.Get_size()

Probing a Message before Receiving it

The properties of a pending message can be retrieved with the MPI_PROBE
routine before actually copying the message to memory with MPI_RECV.
C:

MPI_Probe(source, tag, comm, &status);

Fortran:
call MPI_PROBE(source, tag, comm,

status, ierr)

mpi4py:
res = comm.Probe(source=ANY_SOURCE, tag=ANY_TAG,

status=None)

res : Literal (True)

source and tag can be wild cards!

Probing the information in status can be used to
 adjust the count of elements to be received to the size of the message
 select messages from particular sources / with particular tags .

Parallel Programming with MPI 17April 2023

Semantics of Blocking Point-to-Point Communication

A call to MPI_SEND is blocking:

 It completes, if the message data from the send buffer are copied to another
location and therefore the send buffer can be safely reused.

– It is local , if the message data are copied to a temporary buffer in the source or
destination process: it can complete before a matching MPI_RECV has been called
in the destination process.

– It is non-local, if the message data are copied directly to the receive buffer of a
matching MPI_RECV call: it can complete only after a matching MPI_RECV has
been called in the destination process.

• The choice between buffered and direct sending the message with MPI_SEND
is implementation dependent

A call to MPI_RECV is blocking:

 It completes, if the data from a matching message are completely copied into
the receive buffer.

– It is always non-local : it can complete only after a matching MPI_SEND has been
called in the source process.

Parallel Programming with MPI 18April 2023

Explicit Modi for blocking Send
MPI provides three additional send routines with prescribed behavior:

Buffered Send: MPI_BSEND(sbuf,...
A user defined temporary buffer temp must be provided with a call to

MPI_BUFFER_ATTACH(temp,size)

Is local: it completes, when sbuf has been copied to temp in the sending process

Low latency / low bandwidth (additional data copying)

Synchronous Send: MPI_SSEND(sbuf,...
Is non-local: it returns, when sbuf has been copied to rbuf in the memory of the
destination process

High latency (establishing communication channel) / high bandwidth

Ready Send: MPI_RSEND(sbuf,...
Is non-local: it fails unless a matching MPI_RECV has been called in the destination
process.

Standard Send: MPI_SEND(sbuf,...
Buffered for short, synchronous for long messages

Best of two worlds / but danger of deadlock

Parallel Programming with MPI 19April 2023

Syntax for Buffered Send

Fortran:
call MPI_BUFFER_ATTACH(temp, bsize, ierr)

call MPI_BSEND(sendbuf, count, datatype, ...

call MPI_BUFFER_DETACH(temp, bsize, ierr)

bsize is the size in Bytes of the temporary buffer to be attached.

The temporary buffer space temp must be declared to contain at least
bsize Bytes.

bsize >= # Bytes for the send buffer + MPI_BSEND_OVERHEAD

where MPI_BSEND_OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

. Parallel Programming with MPI 20April 2023

Syntax for Buffered Send

C:
MPI_Buffer_attach(void* temp, int bsize);

MPI_Bsend(void* sendbuf, int count, ...);

MPI_Buffer_detach(void* temp_ptr, int* bsize);

bsize is the size in Bytes of the temporary buffer to be attached.

The temporary buffer space with address pointer temp must be declared
to contain at least bsize Bytes,

temp_ptr is the pointer to the address in memory, where
the value of the address pointer temp is stored.

bsize >= # Bytes for the send buffer + MPI_BSEND_OVERHEAD

where MPI_BSEND_OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

Parallel Programming with MPI 21April 2023

Syntax for Buffered Send

mpi4py:
sendbuf = numpy.ones(nl,dtype = np.float64)

ntemp = nl + MPI.BSEND_OVERHEAD/8

temp = np.empty(ntemp,dtype = np.float64)

MPI.Attach_buffer(temp)

comm.Bsend(sendbuf,dest,tag=0)

MPI.Detach_buffer()

#Bytes of temp = # Bytes for the send buffer + MPI.BSEND_OVERHEAD

where MPI.BSEND_OVERHEAD, is a predefined upper bound of Bytes used
for administration of buffered send.

.
Parallel Programming with MPI 22April 2023

Synchronous Send

Parallel Programming with MPI 23April 2023

Sending
Process

SEND

RECV

System Buffer

Receiving
Process

Buffered Send

Parallel Programming with MPI 24April 2023

Sending
Process

SEND

RECV

System buffer

Receiving
Process

temporary buffer

Ready Send

Parallel Programming with MPI 25April 2023

Sending
Process

SEND

RECV

System Buffer

Receiving
Process

Message Order Preservation

Rule for multiple messages on the same connection,

i.e. same communicator, source, and destination rank:

•If several receives match multiple messages, then the sending
order is preserved.

Messages do not overtake each other.

• This is true even for non-synchronous sends.

Parallel Programming with MPI 26April 2023

Receives Match Both Sends

Parallel Programming with MPI 27April 2023

Sending
Process 0

SEND

RECV

Receiving
Process 1

dst = 1

tag = 1

SEND
dst = 1

tag = 2
src = 0

tag = *

RECV
src = 0

tag = *

Each Receive Matches One Send

Parallel Programming with MPI 28April 2023

Sending
Process 0

SEND

RECV

Receiving
Process 1

dst = 1

tag = 1

SEND
dst = 1

tag = 2
src = 0

tag = 2

RECV
src = 0

tag = 1

Message Exchange

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag,

comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag,

comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag,

comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag,

comm, status, ierr)

END IF

Parallel Programming with MPI 29April 2023

Message Exchange with Buffered SEND

Parallel Programming with MPI 30April 2023

BSEND

RECV

BSEND

RECV

process 0 process 1temporary
buffers

Message Exchange with Synchronous SEND

Parallel Programming with MPI 31April 2023

SSEND SSEND

process 0 process 1

.

.

.
waiting
for RECV
from proc. 1

.

.

.
waiting

for RECV
from proc. 0

! deadlock !

No Deadlock with Reversed Order

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag,

comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag,

comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag,

comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag,

comm, ierr)

END IF

Parallel Programming with MPI 32April 2023

Message Exchange without Deadlock

Parallel Programming with MPI 33April 2023

SEND

RECV

SEND

RECV

process 0 process 1

Message Exchange with MPI_SENDRECV

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

ipn = 1

ELSE IF (rank.EQ.1) THEN

ipn = 0

END IF

call MPI_SENDRECV(sendbuf, count, MPI_REAL, ipn, tag

, recvbuf, count, MPI_REAL, ipn, tag

, comm, status, ierr)

Parallel Programming with MPI 34April 2023

Non-Blocking
Point-to-Point Communication

April 2023 Parallel Programming with MPI 35

Blocking vs. Non-Blocking
Blocking

Calls to blocking point-to point send and receive routines return
after completion of the intended data movement:
• The message passing is completed in the sending process, when the data

from the send buffer are copied to a different place (either to a temporary
buffer or to the receive buffer in the receiving process)

• The message passing is completed in the receiving process, when the data
from the send buffer are stored in the receive buffer.

Non-Blocking

Calls to non-blocking routines return immidiately.
Completion of the communication must be monitored by
MPI routines for testing or waiting for completion.

• User responsibility:
data in send or receive buffer are not to be used until the completion ot the
transaction has been assured

Parallel Programming with MPI 36April 2023

WHY Non-Blocking Communication

• Overlap communication and working with data not
involved in the communication

• Break deadlocks

• Avoid temporary buffering of messages

Parallel Programming with MPI 37April 2023

HOW Non-Blocking Communication

Split communication into two operations

1. Posting: initiate non-blocking communication routine
- returns immediately
- routine name starting with MPI_I …

compute and communicate data
not involved in the posted routine

2. Waiting: monitor the progress of the posted communication
- MPI_WAIT blocks until completion of the communication
- MPI_TEST returns the status of the communication

Parallel Programming with MPI 38April 2023

The Request Object

A request object is used to identify a non-blocking communication

A request handle refering to the request object generated with
the call to MPI_I… is returned in an argument in the calling
sequence
The request handle argument in the MPI_WAIT and MPI_TEST
routines identifies the specific communication process to be
monitored

Parallel Programming with MPI 39April 2023

Nonblocking Communication

Nonblocking communication calls cooperate with

blocking communication calls:

A message sent by MPI_ISEND can be received by MPI_RECV

A message sent by MPI_SEND can be received by MPI_IRECV

Parallel Programming with MPI 40April 2023

Syntax for Non-Blocking SEND

C:
int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *req)

Fortran:
MPI_ISEND(buf, count, datatype, dest, tag, comm, req, ierr)

<type> buf(*)

INTEGER count, datatype, dest, tag, comm, req, ierr

mpi4 py:
req=comm.isend(buf,dest,tag=0)

buf : any Python object

req=comm.Isend(buf,dest,tag=0)

buf : buffer-like object, e.g. numpy-array

Parallel Programming with MPI 41April 2023

Syntax for Non-Blocking RECV

C:
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *req)

Fortran:
MPI_IRECV(buf, count, datatype, source, tag, comm, req, ierr)

<type> buf(*)

INTEGER count, datatype, source, tag, comm, req, ierr

mpi4 py:
req=comm.irecv(buf=None, source=ANY_SOURCE, tag=ANY_TAG)

buf : optional

req=comm.Irecv(buf, source=ANY_SOURCE, tag=ANY_TAG)

buf : buffer-like object, e.g. numpy-array

No status argument for posting a nonblocking receive

Parallel Programming with MPI 42April 2023

Waiting for Completion

C:
int MPI_Wait(MPI_Request *req

, MPI_Status *status)

Fortran:
MPI_WAIT(req, status, ierr)

INTEGER req, status(MPI_STATUS_SIZE), ierror

mpi4py:
buf=MPI.Request.wait(req, status=None) or

buf=req.wait(status=None)

buf: any Python object

MPI.Request.Wait(req, status=None) or

req.Wait(status=None)

• WAIT is blocking until the operation, which created req, has completed.

• If req was created by IRECV, status contains information about sender,
tag and length of the message; if it was created by ISEND, status is
undefined

Parallel Programming with MPI 43April 2023

ISEND

Parallel Programming with MPI 44April 2023

Sending
Process

ISEND

RECV

System

Receiving
Process

WAIT

other work

System

IRECV

Parallel Programming with MPI 45April 2023

Sending
Process

SEND
WAIT

System

Receiving
Process

IRECV

other work

System

Message Exchange with ISEND

Parallel Programming with MPI 46April 2023

Process 0

ISEND

RECV

System

Process 1

WAIT

System

ISEND

RECV

WAIT

Testing for Completion

C:
int MPI_Test(MPI_Request *req, int *flag

, MPI_Status *status)

Fortran:
MPI_TEST(req, flag, status, ierr)

INTEGER req, status(MPI_STATUS_SIZE), ierror

LOGICAL flag

mpi4py:
flag = MPI.Request.Test(request, status=None)

• TEST is non-blocking.

• returns flag=true (1 for C), if the operation, which created request ,
has completed.

• returns flag=false (0 for C), if the operation, which created request ,
has not yet completed.

• If the operation has completed, status is as in MPI_WAIT

Parallel Programming with MPI 47April 2023

