
GWDG – Kurs
Parallel Programming with MPI

The Message Passing Interface (MPI):
An Introduction

Oswald Haan
ohaan@gwdg.de

recv buffer

Programming Model: Message Passing

April 2023 Parallel Programming with MPI 2

Multiple processors connected
to a communication network

objects:
local data + instructions,
local program counters (pc)
unique task identification (tid)

operations:
opcode (op1, op2,...,re1,re2)
send(ad,n,tid), recv(ad,n,tid)

synchronization:
recv is blocking

I D

pc

memory

cpu

communication network

cpu cpu

recv buffer

I D

pc

memory

recv buffer

I D

pc

memory

Programming Interfaces for Message Passing

April 2023 Parallel Programming with MPI 3

1980-1990: various hardware and software specific solutions

1994

1996-2009

2012

MPI-4 2021

April 2023 Parallel Programming with MPI 4

MPI: Message passing interface

MPI : message passing library interface specification

message passing:

MPI is a realization of the Message Passing Programming Model
(data exchanged between two processes)

With extensions
(collective operations, one-sided communication, process control, parallel I/O, …)

library :

MPI operations are invoked by calls to routines from a library

interface specification:

MPI specifies the calling sequences and the intended results of routine calls in a language
independent manner, as well as the binding of this specification to Fortran and C.
Bindings to other languages exist.

no implementation:

MPI provides no implementation of the interface specification.
Open source and vendor implementations exist.

An MPI program consists of autonomous processes (tasks), executing their own
code, in an MIMD style.
Each process executes in its own address space.
The processes communicate via calls to MPI communication primitives.

A communicator is a collection of MPI tasks communicating with each other.

The size of a communicator is its number of tasks.

The rank of a task within a communicator is its unique identification number (tid)

between 0 and size-1.

Every task in an MPI program belongs to one or more communicators and is aware
of the communicators it belongs to, of their sizes and of its own tid relative to each
communicator.

The MPI setup for Parallel Processing

April 2023 Parallel Programming with MPI 5

tid = 0 tid = 1
tid =
size-1

communicator

tasks

A special case of the MIMD programming model arises if every process in a
parallel run executes the same program:

SPMD = Single Program Multiple Data

Instructions and Data for each process can be chosen individually from the
common program, guided by its unique process identification number.

With no loss of generality the MPI program will be of SPMD type, i.e. there is a
single program , and every process in the MPI application will execute this
program in its own execution context.

MPI for SPMD Parallel Programs

April 2023 Parallel Programming with MPI 6

Predefined data types and constants in header files (C and Fortran 77),
in modules (Fortran90/95/03/08):

Routines for
o environmental management: MPI-1
o point to point communications: MPI-1
o collective communications: MPI-1
o derived data types MPI-1
o Communicator MPI-1
o Process topologies MPI-1
o Dynamic process management MPI-2
o One sided communication MPI-2
o Parallel file I/O MPI-2
o Shared memory windows MPI-3
o Partitioned communications MPI-4
o Big counts MPI-4

MPI Components

April 2023 Parallel Programming with MPI 7

April 2023 Parallel Programming with MPI 8

MPI-Dokumentation

Official documentation of the standards(MPI-3.1) by MPI-Forum:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Open MPI documentation (man pages)
https://www.open-mpi.org/doc/current/

MPI- The Complete Reference (Only versions 1, 1.1)
http://www.cslab.ntua.gr/courses/common/mpi-book.pdf

Parallel Programming for Science and Engineering
Using MPI, OpenMP, and the PETSc library

https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgra
mming.pdf

Parallel Programming with MPI
https://www.cs.usfca.edu/~peter/ppmpi/

Using MPI
https://wgropp.cs.illinois.edu/usingmpiweb

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.open-mpi.org/doc/current/
http://www.cslab.ntua.gr/courses/common/mpi-book.pdf
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
https://www.cs.usfca.edu/~peter/ppmpi/
https://wgropp.cs.illinois.edu/usingmpiweb

April 2023 Parallel Programming with MPI 9

MPI-Forum

The MPI-Forum is an international group of hardware manufacturers, software
developers and users, which started the standardization and steers the further
development of the MPI standard.

http://www.mpi-forum.org/

http://www.mpi-forum.org/

April 2023 Parallel Programming with MPI 10

MPI Implementations

The MPI standard is a specification of calling sequences and intended
results of routines in a language-independent manner, as well as the
binding of this specification to Fortran and C.

MPI implementions provide :
• Translation of the MPI program into machine specific code for using

the underlying hardware of cpus and communication system
efficiently.

• Interface for starting, controlling and stopping of multiple processes
on the physical processors.

Examples of implementions (available at GWDG)

OpenMPI: OpenSource implemention of MPI-3.1
Intel-mpi: Vendor implemention of MPI-3.1

April 2023 Parallel Programming with MPI 11

MPI : Pros and Cons

• MPI programs run on all parallel systems:
from multicore desktop to largest supercomputer

• Separation of specification and implementation:
• A standard for the library interface provides portability
• Hardware specific implementations allow to optimize performance

using the underlying hardware properties
• Application oriented routines simplify programming und allow efficient

implementations

• Parallel processing with Message Passing requires distribution and
exchange of data in addition to distribution of work.

• Support of a large number of library routines for special use cases (more
than 250 MPI routines: https://www.open-mpi.org/doc/current/)

http://www.open-mpi.org/doc/current/

April 2023 Parallel Programming with MPI 12

MPI beyond Fortran and C

Other programming languages, for which bindings to the MPI
functionality exist:
• C++
• Python
• R
• Matlab
• Java
• Scala
• Haskell
• OpenGL
• Ada
• Caml
• Lisp
• C#

Available on GWDG-clusters
mpi4py: open source python bindings for MPI

April 2023 Parallel Programming with MPI 13

Documentation for mpi4py

Manual
https://mpi4py.readthedocs.io/en/stable

Application Programming Interface (API) Reference
https://mpi4py.github.io/apiref

A Python Introduction to Parallel Programming with MPI
https://materials.jeremybejarano.com/MPIwithPython

Article Mpi4py in GWDG‘s web site
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:mpi4py

https://mpi4py.readthedocs.io/en/stable
https://mpi4py.github.io/apiref
https://materials.jeremybejarano.com/MPIwithPython
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:mpi4py

C:
#include <mpi.h>

Fortran77:
include ´mpif.h´

Fortran90/95/03
use mpi or include ´mpif.h´

Fortran 2008
use mpi_f08

Header files contain declarations (and in some cases initializations) of MPI specific
data types and objects. The most important object is:

MPI_COMM_WORLD

MPI_COMM_WORLD is the name of the communicator object which is created,
when an MPI program is launched and consists of all processes, which begin
executing the MPI program.

MPI Header Files and Modules

April 2023 Parallel Programming with MPI 14

Handles identify special types of MPI objects.
Handles refer to internal MPI data structures.

For the programmer, handles are
• predefined constants in header files mpi.h , mpif.h

and in modules mpi, mpi_f08
 Example: MPI_COMM_WORLD
 Can be used in initialization expressions or assignments.
 The object accessed by the predefined constant handle exists and

does not change between MPI_Init and MPI_Finalize.
• values returned by some MPI routines,

to be stored in variables, that are defined as
• in Fortran:

 INTEGER
• in Fortran 2008:

 Special types, e.g. TYPE(MPI_Comm)
• in C:

 special MPI typedefs, e.g., MPI_Comm

MPI Handle

April 2023 Parallel Programming with MPI 15

April 2023 Parallel Programming with MPI 16

Language-Independent Specification

• Example: MPI_RECV for receiving data:

MPI_RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative

integer)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (status)

IN, OUT, INOUT: intended use of argument is input, output or both:

All names for MPI routines and predefined objects begin with MPI_

therefore:
MPI_...... namespace must be reserved for MPI constants and routines,
i.e. application routines and variable names must not begin with MPI_

All MPI routines provide error codes, as return value in C, as parameter in Fortran.
Many MPI routines require as parameter a communicator object:

C: (names are case sensitive, first letter of routine name must be upper case,
all following letters must be lower case)

int error;

error = MPI_Xxxx(parameter,...);

Fortran: (names are case insensitive)
INTEGER ERROR

CALL MPI_XXXX(parameter,...,ERROR)

MPI Conventions for C and Fortran

April 2023 Parallel Programming with MPI 17

April 2023 Parallel Programming with MPI 18

Syntax of MPI functions

FORTRAN :

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,

STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

STATUS(MPI_STATUS_SIZE),IERROR

C :

int MPI_Recv(void* buf, int count, MPI_Datatype

datatype, int source,int tag,

MPI_Comm comm, MPI_Status *status)

April 2023 Parallel Programming with MPI 19

Syntax of MPI functions

mpi4py

obj = comm.recv(buf=None, source= ANY_SOURCE,

tag= ANY_TAG, status=None)

where comm: Communicator, e.g. MPI.COMM_WORLD

obj: Any type python object,

buf: buffer or None

source: int or ANY_SOURCE

tag: int or ANY_TAG,

status: MPI.status() or None

Error handling implicit via python module Exception

April 2023 Parallel Programming with MPI 20

Syntax of MPI functions

mpi4py

comm.Recv(buf, source= ANY_SOURCE,

tag= ANY_TAG, status=None)

where comm: Communicator, e.g. MPI.COMM_WORLD

buf: buffer-like objects in contiguous

memory, e.g. numpy arrays

source: int or ANY_SOURCE

tag: int or ANY_TAG,

status: MPI.status() or None

Error handling implicit via python module Exception

April 2023 Parallel Programming with MPI 21

MPI program: general outline

Fortran

program main

include ´mpif.h´

integer ierror

...

call MPI_INIT(ierror)

...

invoking MPI routines

...

call MPI_FINALIZE(ierror)

...

end

C

#include "mpi.h"

int main(int argc,

char **argv)

{

...

MPI_Init(&argc, &argv);

...

invoking MPI routines

...

MPI_Finalize();

...

}

April 2023 Parallel Programming with MPI 22

MPI program: general outline

python

from mpi4py import MPI

...

invoking MPI routines

...

April 2023 Parallel Programming with MPI 23

Starting a MPI-Program

The mpirun command (with implementation-dependent
features) is available for all implementations.
Simplest form is:

mpirun –n 4 ./a.out

mpirun –n 4 python ./script.py

Invokes 4 processes, which execute in a SPMD-style the same executable
a.out. (resp. script.py).

The MPI-2 standard specifies and recommends for all
implementations a standardized startup command

mpiexec

April 2023 Parallel Programming with MPI 24

MPI Routines for Environmental Management

MPI_INIT()
MPI_FINALIZE()
MPI_INITIALIZED(flag)
OUT flag true if MPI_INIT has been called (logical)

MPI_FINALIZED(flag)
OUT flag true if MPI_FINALIZED has been called (logical)

MPI_COMM_SIZE(comm, size)
IN comm communicator (handle)
OUT size number of processes in the group of comm (integer)

MPI_COMM_RANK(comm, rank)
IN comm communicator (handle)
OUT rank rank of the calling process in group of comm (integer)

April 2023 Parallel Programming with MPI 25

MPI Routines for Environmental Management

MPI_GET_VERSION(version, subversion)

MPI_GET_PROCESSOR_NAME(name, len)
OUT name node name (string)

OUT len length of the result in name (integer)

MPI_WTIME()
Returns in a floating point number the seconds elapsed since some fixed time in the past
Fortran: double precision t; t = MPI_WTIME()

C: double t = MPI_Wtime();

Python: t = MPI.Wtime()

MPI_WTICK()
Returns in a floating point number the resolution of MPI_WTIME in seconds

April 2023 Parallel Programming with MPI 26

Simple MPI Program (Fortran)

program hello

implicit none

include ´mpif.h´

integer ierr, np, tid

call MPI_INIT(ier)

call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, tid, ierr)

call MPI_FINALIZE(ierr)

write(6,*)‘hello‘, np, tid

end

April 2023 Parallel Programming with MPI 27

#include "mpi.h"

#include<stdio.h>

int main(int argc,char **argv)

{

int np, tid;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&np);

MPI_Comm_rank(MPI_COMM_WORLD,&tid);

printf("hello %i %i \n",np,tid);

MPI_Finalize();

return 0;

}

Simple MPI Program (C)

April 2023 Parallel Programming with MPI 28

Simple MPI Program (Python)

#hello.py

from mpi4py import MPI

comm = MPI.COMM_WORLD

tid = comm.Get_rank()

np = comm.Get_size()

print ("hello", np, tid)

April 2023 Parallel Programming with MPI 29

Single Program Multiple Data (SPMD)

program spmd_example

include ´mpif.h´

integer ier, np, tid

call MPI_INIT(ier)

call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ier)

call MPI_COMM_RANK(MPI_COMM_WORLD, tid, ier)

if (tid.eq.0) call sub0

if (tid.eq.1) call sub1

call MPI_FINALIZE(ier)

end

