

Institute for Computer Science / GWDG

Ruben Kellner

Linux Crash Course

What even is a Linux

Practical Course in High Performance Computing

April 17, 2023

Learning Objectives

- Become acquainted with the Linux OS
- Receive an overview of the Linux history
- Understand the range of usages of Linux
- Learn about Linux system concepts

Table of contents

- 1 Overview
- 2 Linux Desktop
- 3 Linux System
- 4 Compiling Software

What is a Linux

- Originally developed by Linus Torvalds in 1991
- Open Source operating system https://github.com/torvalds/linux
- Available under GPL-2.0 license
- Commonly bundled as Linux Distributions (Ubuntu, Debian, Red Hat, Arch, ...)
- Omnipresent in High-Performance Computing
- Most commonly used on servers also available for desktops

Tux - Linux mascot

Image source: https://en.wikipedia.org/wiki/Tux_ (mascot)#/media/File:Tux.png

History of Linux

- *1960s* IBM develops OS for their Hardware
- 1970s Unix is developed and becomes popular in academics
- 1980s
 - ▶ First Disk Operating Systems (DOS), home computers start to gain traction
 - First Operating Systems with a GUI pop up
 - 1987 Andrew S. Tanenbaum writes Minix as a free open source Unix for educational purposes
- 1990s
 - > 1991 Linus Torvalds releases the first Linux based on Minix (free of Minix code)
 - Linux was supposed to be named Freax, and was only named Linux, after an Administrator uploaded it under this name
 - The first Linux kernel had a size of 65KB
 - It is released under the GNU Public License (GPL)

Linux Today

- There are over 1000 different Linux distributions
- Over 300 distributions are actively maintained
- Over 30 million lines of code and over 1 million commits
- Provides an LTS and stable version
- Linus Torvalds is still project lead

Compiling Software

Linux OS market share - June 2022

User Desktop 2.9%

- Smartphones and similar 71%
- HPC and Supercomputing 100%
 - ▶ 48% Linux
 - 16.6% CentOS
 - 9.6% Cray Linux
 - ▶ 3.4% SUSE Linux Enterprise Server
 - 2% TOSS
 - 9.6% Other

Practical Course in High Performance Computing

Ruben Kellner

Practical Course in High Performance Computing

Linux License - GPL-2.0

- GNU General Public License (GPL) Copyleft
- Anybody may redistribute and sell it
- Source must be public
- Any derived product also under same license
 - A company may take and modify Linux source
 - They must make the modified source available
- GPL also called "Virus" license

Linux Versions

X.YY.ZZZ (e.g., 6.1.23

- X.YY signals major version
- ZZZ is bug fix release
- Increment of X has no special meaning
 - Linus prefers YY to not get "too big"
- Current LTS release is 6.1
- Find kernel version with uname r
 - > Distributions may append version number for their modifications

https://www.kernel.org/category/releases.html

Desktop Environment (DE)

- Unlike Windows or Mac, multiple DEs supported
- Most popular: GNOME, KDE
- DE (mostly) independent of Linux distribution
- Often highly customizable
 - Replace file explorer, login manager, ...

Compiling Software

Compiling Software

Compiling Software

The Shell

What is the Shell?

- a command line interface
- no GUI
- you type in commands and parameters
- steep learning curve
- easier to implement new functions compared to a GUI
- fast as no GUI components need to be calculated

File System Types

Many different file system (FS) implementations exist

Some support **Journaling**

- FS keeps a log (journal) of file operations
- Enables consistency in case of crash during write
- See currently mounted FS via

Compiling Software

File System Types - Examples

ext4

Native Linux FS

XFS

- High-performance FS
- NTFS/FAT
 - Windows FS

HFS+

Mac FS

tmpfs

Linux temporary in-memory FS

System Logging

Logs commonly in /var/log

- Find application and system logs here
- ▶ Use tail -f file to follow changes
- dmesg print Kernel ring buffer
- journalctl for systemd logs

Compiling own Software

- Compiling means to create an executable or a library from the source code
- Scientific software is often only available as source code
- Compiling on the target system often yields better performance
- Prepackaged software typically requires administrator (root) privileges ...
 - (on the Cluster sudo or su won't work)
 - but you can use Singularity containers!

Getting and Unpacking the Source Code

Source code is usually packaged as "tarball"

- Look for file extensions "tar.gz", "tar.bz2", "tgz"
- Naming convention is often {NAME}-{VERSION}.tar.gz
- If the tarball is available on the web use "wget" to download
- Use "tar "to unpack the tarball
 - Use "tar xvzf "for 'tar.gz ", "tgz "
 - Use "tar xvjf "for "tar.bz2 "

Compiling Software

Recipe: wget and tar

Using wget and tar to prepare the source code

- > mkdir \$HOME/build
- > cd \$HOME/build
- > wget <tarball URL>
- > tar xvzf <name-version>.tar.gz
- > cd <name-version>

Reminder: Connecting with SSH

- Place the SSH key you received per mail in your user folder
- **NN** is the number in the key file name
- In PowerShell or Terminal type the following command
 - ssh -i hpctrainingNN hpctrainingNN@login-mdc.hpc.gwdg.de
 - -o ProxyCommand='ssh -W %h:%p hpctrainingNN@login.gwdg.de
 - -i hpctrainingNN'
- Confirm the connection and enter the SSH keys passphrase twice
 - The passphrase is in the email you received
- If you are already in the GÖNET, you only need the first line

Downloading Sourcecode

- create a directory with mkdir
 - apps/install/fftw/
- switch into the directory
 - cd apps/install/fftw/
- download fftw
 - wget http://www.fftw.org/fftw-3.3.10.tar.gz
- you do the extraction with
 - tar xvzf fftw-3.3.10.tar.gz

Compile the program

- load up the Compiler on the cluster
 - module load intel-oneapi-compilers/2022.0.1
- Configure the prefix
 - cd fftw-3.3.10

./configure CC=icc -prefix=/usr/users/(yourusername)/apps/fftw-3.3.10

- with the prefix set you can compile the software
 - ▶ make -j 10
- now check the installation, and install the program
 - make check
 - make install

Compile the program

check the installation with

ls -alh /apps/fftw-3.3.10/

now we have installed fftw successfully, you can check whether the installation is there by navigating into the folder we chose in the prefix and checking for the files

Last Frame