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Learning Objectives

■ Know the purpose of VCS in general and Git in particular

■ Set up and configure Git

■ Create local and clone remote repositories

■ Craft and review commits

■ Interact with local and remote branches
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Why version control systems (VCS)?

■ Track changes in your project

■ Be able to jump to the last known working state

■ Explore different (potentially experimental “throwaway”) branches of
development

■ Attach meaningful notes to each set of changes aka. “commit”

■ Collaborate with others
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What is Git?

■ Initial release in 2005 by Linus Torvalds

■ Used for developing the Linux Kernel

■ Previously: BitKeeper (proprietary)

■ https://git-scm.com/

▶ Documentation
▶ Git command reference

▶ Ebook: Scott Chacon, Ben Straub - Pro Git
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Git terminology

■ Git projects are called repositories.

■ Fully distributed, i.e. each local clone contains the entire project history

■ Versions of the managed file tree are called commits.

■ They form a graph where each new commit has at least one parent.

■ Branches are easily created - they’re just named pointers to commits.

■ HEAD points to the branch that will receive the next commit.

■ Important commits (e.g. release versions) can get a named (even
annotated, signed) tag pointing to them.
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Fundamental Structure: Directed Acyclic Graph (DAG) of commits
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Installing Git

■ Linux distributions
Use your package manager of choice, e.g. apt install git

■ MacOS
Installation is possible via Homebrew: brew install git

■ Windows
Download and run the Git installer https://git-scm.com/download/win
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Configuring Git

■ First, we make sure that git is installed and ready to use:
git --version

■ Each commit contains your name <NAME> and mail adress <EMAIL>, so let’s
set those:
git config --global user.name "<NAME>"

git config --global user.email "<EMAIL>"
Omitting the --global switch would configure them for your current repo.
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Creating and cloning repositories

■ We can locally create a new, empty repository with
git init
The commit objects and other internal Git data will be stored in a hidden
subdirectory .git.

■ Usually we’d like to get a local copy of a remote repo at <URL>, done via
git clone <URL>

■ There are many options to show the history leading to the commit <C>, e.g.:
git log --decorate --graph --oneline [<C>]

▶ Without specifying any commits, the history to the current commit is shown.
▶ There are many GUIs available as well, cf.

https://git-scm.com/downloads/guis
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Creating commits

■ The current state of the working directory can be queried as follows:
git status
This will show changed and new, untracked files.

■ Best practice for files that are produced by your build:

▶ Include in .gitignore file and don’t commit them.
▶ These files can be bootstrapped for most programming languages at

gitignore.io.
▶ Examples: *.o for a C project or *.pdf for LATEX

■ To stage all changed files, i.e. mark as part of the next commit:
git add .

▶ Replace . by a filename (pattern) to be more specific

■ Finally, we can create the new commit with:
git commit -m "<MESSAGE>"
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Local and remote branches

■ Let’s first get an overview of the available branches:
git branch

■ With the -a switch we get remote tracking branches as well.

■ A new branch <BRANCH> can be created with
git branch <BRANCH>

■ ...and selected as the current one (i.e. representing the working tree) with
git checkout <BRANCH>

■ In order to merge in the commits from <OTHER_BRANCH> we use
git merge <OTHER_BRANCH>

▶ Git is really smart about automatically resolving merge conflicts, at least for
text files.

▶ If this fails, we have to manually edit the colloding files and then create the
merge commit.
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Local and remote branches

■ Remote repositories can be shown with:
git remote

▶ With the -v switch each URL is shown as well.

■ When cloning a git repo, the source is automatically configured as the
remote origin.

■ We can configure a new remote <REMOTE> at <URL> as follows:
git remote add <REMOTE> <URL>

■ The <URL> can be given by

▶ a web tool like GitHub, GitLab or Gitea or
▶ the path to a bare repo (created with git init --bare and not containing

a working tree).
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Local and remote branches

■ Showing branches with full verbosity reveals remote tracking branches:
git branch -vv
Again, these are automatically created when cloning from a remote repo.

■ In order to update the remote tracking branch:
git fetch

■ This can be combined to automatically merge into the local branch:
git pull

■ Finally, we can upload locally new commits to the remote branch with:
git push

■ Tracking can be set manually, e.g. for <BRANCH> to track <REMOTE> with:
git push -u <REMOTE> <BRANCH>
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