
Introduction to Git

A free and open source VCS

Jonathan Decker

Institute for Computer Science / GWDG

2023.04.17 PCHPC

SH

∞

jonathan.decker@uni-goettingen.de

)

jonathan.decker@uni-goettingen.de


Introduction Setup and Configuration Creating commits Managing branches

Table of contents

1 Introduction

2 Setup and Configuration

3 Creating commits

4 Managing branches

Jonathan Decker PCHPC 2 / 14



Introduction Setup and Configuration Creating commits Managing branches

Learning Objectives

■ Know the purpose of VCS in general and Git in particular

■ Set up and configure Git

■ Create local and clone remote repositories

■ Craft and review commits

■ Interact with local and remote branches

Jonathan Decker PCHPC 3 / 14



Introduction Setup and Configuration Creating commits Managing branches

Why version control systems (VCS)?

■ Track changes in your project

■ Be able to jump to the last known working state

■ Explore different (potentially experimental “throwaway”) branches of
development

■ Attach meaningful notes to each set of changes aka. “commit”

■ Collaborate with others

Jonathan Decker PCHPC 4 / 14



Introduction Setup and Configuration Creating commits Managing branches

What is Git?

■ Initial release in 2005 by Linus Torvalds

■ Used for developing the Linux Kernel

■ Previously: BitKeeper (proprietary)

■ https://git-scm.com/

▶ Documentation
▶ Git command reference

▶ Ebook: Scott Chacon, Ben Straub - Pro Git

Jonathan Decker PCHPC 5 / 14

https://git-scm.com/


Introduction Setup and Configuration Creating commits Managing branches

What is Git?

■ Initial release in 2005 by Linus Torvalds

■ Used for developing the Linux Kernel

■ Previously: BitKeeper (proprietary)

■ https://git-scm.com/

▶ Documentation
▶ Git command reference

▶ Ebook: Scott Chacon, Ben Straub - Pro Git

Jonathan Decker PCHPC 5 / 14

https://git-scm.com/


Introduction Setup and Configuration Creating commits Managing branches

What is Git?

■ Initial release in 2005 by Linus Torvalds

■ Used for developing the Linux Kernel

■ Previously: BitKeeper (proprietary)

■ https://git-scm.com/

▶ Documentation
▶ Git command reference

▶ Ebook: Scott Chacon, Ben Straub - Pro Git

Jonathan Decker PCHPC 5 / 14

https://git-scm.com/


Introduction Setup and Configuration Creating commits Managing branches

What is Git?

■ Initial release in 2005 by Linus Torvalds

■ Used for developing the Linux Kernel

■ Previously: BitKeeper (proprietary)

■ https://git-scm.com/

▶ Documentation
▶ Git command reference
▶ Ebook: Scott Chacon, Ben Straub - Pro Git

Jonathan Decker PCHPC 5 / 14

https://git-scm.com/


Introduction Setup and Configuration Creating commits Managing branches

Git terminology

■ Git projects are called repositories.

■ Fully distributed, i.e. each local clone contains the entire project history

■ Versions of the managed file tree are called commits.

■ They form a graph where each new commit has at least one parent.

■ Branches are easily created - they’re just named pointers to commits.

■ HEAD points to the branch that will receive the next commit.

■ Important commits (e.g. release versions) can get a named (even
annotated, signed) tag pointing to them.

Jonathan Decker PCHPC 6 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root

A1 A2

B1 B2 B3

AB1 AB2

C1 C2

master

master mastermaster

masterfeature

feature feature

develop develop

HEAD

HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1

A2

B1 B2 B3

AB1 AB2

C1 C2master

master

mastermaster

masterfeature

feature feature

develop developHEAD

HEAD

HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2master master

master

master

masterfeature

feature feature

develop developHEAD HEAD

HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2master master

master

master

master

feature

feature feature

develop developHEAD HEAD HEAD

HEAD

HEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1

B2 B3

AB1 AB2

C1 C2master master

master

master

master

feature

feature feature

develop developHEAD HEAD HEAD

HEAD

HEAD

HEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2

B3

AB1 AB2

C1 C2master master

master

master

masterfeature

feature

feature

develop developHEAD HEAD HEAD

HEADHEAD

HEAD

HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2master master

master

master

masterfeature

feature

feature

develop developHEAD HEAD HEAD

HEADHEADHEAD

HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2master master master

master

masterfeature

feature

feature

develop

developHEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD

HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1

C2master master master

master

masterfeature

feature

feature

develop

developHEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD

HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2

master master master

master

masterfeature

feature

feature

develop

develop

HEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD

HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2

master master master

master

masterfeature

feature

feature

develop

develop

HEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD

HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1

AB2

C1 C2

master master mastermaster

master

feature

feature

feature

develop

develop

HEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2

master master mastermaster

master

feature

feature

feature

develop

develop

HEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Fundamental Structure: Directed Acyclic Graph (DAG) of commits

root A1 A2

B1 B2 B3

AB1 AB2

C1 C2

master master mastermaster

master

feature

feature

feature

develop

develop

HEAD HEAD HEAD

HEADHEADHEAD HEAD

HEADHEAD HEAD

HEAD

release

Jonathan Decker PCHPC 7 / 14



Introduction Setup and Configuration Creating commits Managing branches

Installing Git

■ Linux distributions
Use your package manager of choice, e.g. apt install git

■ MacOS
Installation is possible via Homebrew: brew install git

■ Windows
Download and run the Git installer https://git-scm.com/download/win

Jonathan Decker PCHPC 8 / 14

https://git-scm.com/download/win


Introduction Setup and Configuration Creating commits Managing branches

Configuring Git

■ First, we make sure that git is installed and ready to use:
git --version

■ Each commit contains your name <NAME> and mail adress <EMAIL>, so let’s
set those:
git config --global user.name "<NAME>"

git config --global user.email "<EMAIL>"
Omitting the --global switch would configure them for your current repo.

Jonathan Decker PCHPC 9 / 14



Introduction Setup and Configuration Creating commits Managing branches

Creating and cloning repositories

■ We can locally create a new, empty repository with
git init
The commit objects and other internal Git data will be stored in a hidden
subdirectory .git.

■ Usually we’d like to get a local copy of a remote repo at <URL>, done via
git clone <URL>

■ There are many options to show the history leading to the commit <C>, e.g.:
git log --decorate --graph --oneline [<C>]

▶ Without specifying any commits, the history to the current commit is shown.
▶ There are many GUIs available as well, cf.

https://git-scm.com/downloads/guis

Jonathan Decker PCHPC 10 / 14

https://git-scm.com/downloads/guis


Introduction Setup and Configuration Creating commits Managing branches

Creating commits

■ The current state of the working directory can be queried as follows:
git status
This will show changed and new, untracked files.

■ Best practice for files that are produced by your build:

▶ Include in .gitignore file and don’t commit them.
▶ These files can be bootstrapped for most programming languages at

gitignore.io.
▶ Examples: *.o for a C project or *.pdf for LATEX

■ To stage all changed files, i.e. mark as part of the next commit:
git add .

▶ Replace . by a filename (pattern) to be more specific

■ Finally, we can create the new commit with:
git commit -m "<MESSAGE>"

Jonathan Decker PCHPC 11 / 14

gitignore.io


Introduction Setup and Configuration Creating commits Managing branches

Local and remote branches

■ Let’s first get an overview of the available branches:
git branch

■ With the -a switch we get remote tracking branches as well.

■ A new branch <BRANCH> can be created with
git branch <BRANCH>

■ ...and selected as the current one (i.e. representing the working tree) with
git checkout <BRANCH>

■ In order to merge in the commits from <OTHER_BRANCH> we use
git merge <OTHER_BRANCH>

▶ Git is really smart about automatically resolving merge conflicts, at least for
text files.

▶ If this fails, we have to manually edit the colloding files and then create the
merge commit.

Jonathan Decker PCHPC 12 / 14



Introduction Setup and Configuration Creating commits Managing branches

Local and remote branches

■ Remote repositories can be shown with:
git remote

▶ With the -v switch each URL is shown as well.

■ When cloning a git repo, the source is automatically configured as the
remote origin.

■ We can configure a new remote <REMOTE> at <URL> as follows:
git remote add <REMOTE> <URL>

■ The <URL> can be given by

▶ a web tool like GitHub, GitLab or Gitea or
▶ the path to a bare repo (created with git init --bare and not containing

a working tree).

Jonathan Decker PCHPC 13 / 14



Introduction Setup and Configuration Creating commits Managing branches

Local and remote branches

■ Showing branches with full verbosity reveals remote tracking branches:
git branch -vv
Again, these are automatically created when cloning from a remote repo.

■ In order to update the remote tracking branch:
git fetch

■ This can be combined to automatically merge into the local branch:
git pull

■ Finally, we can upload locally new commits to the remote branch with:
git push

■ Tracking can be set manually, e.g. for <BRANCH> to track <REMOTE> with:
git push -u <REMOTE> <BRANCH>

Jonathan Decker PCHPC 14 / 14


	Introduction
	Setup and Configuration
	Creating commits
	Managing branches

