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Abstract

Genetic Algorithms (GA) are able to evolve electrical circuits, an approach known as
"evolvable hardware". Evolvable hardware usually utilize re-programmable compute de-
vices like Field Programmable Gate Arrays (FPGA’s) to test the evolved, different circuit
configurations in silicon. This has the advantage that the GA can exploit physical hard-
ware properties. This work focuses on the usage of a GA to evolve logic circuits. As
logic circuits only follow their logical operations, e.g. AND, NAND, OR, it is possible
to simulate the circuits in a virtual environment. The advantage of simulation is that it
allows to utilize modern High Performance Computing (HPC) centers for massive parallel
simulations. In particular a binary N bit multiplier based on logic gates is evolved. To
evolve the circuit a parallelized GA framework is developed, named PyGMA. PyGMA uses
the Message Passing Interface (MPI) to benefit from the computational power of HPC
clusters. Performance analysis shows that PyGMA benefits extremely from MPI support
if the simulation of the evolved logic circuits - the evaluation of the fitness function - is
compute intensive. Additionally the modular program structure of PyGMA allows for
easy adoption of the framework to all sorts of evolutionary tasks, not only logic circuits.
Unfortunately the goal of evolving a binary multiplier is not quite reached. The GA is
found to be stuck in a local optima and evolution does not continue. This is due to sev-
eral reasons that are addressed and can be potentially resolved in future research. The
implementation is available as open source [Oed23].
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Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

✓□ Not at all, I used my biological Brain

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

□ Other, namely: -

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.
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PyGMA: Pythonic Genetic MPI parallelized Algorithm

1 Introduction
Bio Inspired Design is the process of engineering nature inspired technology. Biological
systems have long been used to gain new engineering ideas. For example massive parallel
systems are needed in many applications today. Carver Mead, who invented the field
of Neuromorphic Hardware - which is specialized, massively parallel hardware to mimic
the behaviour of the brain in a computational manner -, said “I was thinking about how
you would make massively parallel systems, and the only examples we had were in the
brains of animals,” 1. Deep Learning and AI, especially the Transformer architecture,
has gained a lot of maturity lately due to the fact that bigger training data sets can
be processed in big High-Performance Computing (HPC) data centers featuring massive
compute performance. These systems are as well inspired by biology. The basic idea was
to encode information, like seen in biology, in a firing rate. These Artificial Neuronal
Network (ANN) are therefore rate coded networks rooted in a biological inspiration. But
not only the processes in the brain also social processes have found their way into computer
algorithms. Bee Colony Optimization and Ant colony Optimization as well as Particle
Swarm Optimization are well working Optimization methods. There are yet another whole
category of algorithms called Evolutionary Algorithm (EA). Algorithms in this category
have in common that they follow some sort of iterative improving approach. There is an
initial starting state - which is often randomly defined - from which in each iteration, called
generation in this context, a slightly better solution is derived. The process continues until
either a satisfied solution is found or another stop criterion is reached. In this work an
EA, specifically a Genetic Algorithm (GA) is implemented.

1.1 Genetic Algorithms

GA’s are a form of EA and the following will give a fundamental introduction into the
concept. GA’s can be used for optimisation problems, where the objective is to find
parameters to a function that minimizes or maximizes it. GA’s are good suited for the
task because they have an innate exploratory behaviour of the parameter space. Thus,
in the case of function optimisation the GA can be seen as a search algorithm inside
the parameter state space of the function that should be optimized. But GA’s can also
be used in engeneering tasks like evolving an optimal antenna for a NASA space craft
[LHL05]. The working mechanism of a GA can be described by elaborate on the several
parts that together form the algorithm.

The fundamental part in the GA are the individuals. Individuals are grouped into a
population for easy handling. Usually the population size is a tunable parameter. Each
individual inside a population is characterized by its genome, the gene. The gene is
distinct to each individual.

Genes represent a solution to the problem that the GA is about to solve. Generally genes
code arbitrary structures that are mapped from the genotype - the gene itself - to the
phenotype - the structure the gene is encoding -. In a function optimisation problem
the gene would be a parameter configuration for the function that should be optimized.

1Carver Mead
https://www.hpcwire.com/2013/11/25/carver-mead-quantum-computing-neuromorphic-design/
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Genes change from individual to individual and as such different solutions are encoded
by each individual. Additionally new genes and modified genes are produced via Genetic
Operators (GO).

GO’s are predefined rules which create new genes - new solutions to a problem -. A
very basic and often used GO is the mutation operator. It takes a gene and randomly
changes some of its values. By doing so a random new solution to a problem is generated
which brings in some diversity into the gene pool of the population. Of course random
change might not lead to a very good solution. That is why another very common GO
is the crossover operator. In its simplest form the crossover operator takes genes from
two different individuals, the parents, and produces two new individuals, the offspring’s,
by combining the parentental genes. A single point crossover operator will generate an
offspring by taking the first half of the genome from the first parent and the second half
of the genome from the second parent - and vice versa for the second offspring -. Ideally
the ofsprings inherit the best parts of the solution from both parents and thus represent a
better solution to the problem. A two point crossover operator is visualized in figure 1 B.
If new individuals actually represent a better solution is tested during a fitness evaluation
which every individual has to pass through.

Fitness evaluation will evaluate how good the solution, represented by a certain individual,
is. As such it will assign a usually positive fitness value to each individual. This value
can then be further used to sort out the best performing individuals. Fitness evaluation
will involve to map the genotype - the gene - to the phenotype - the solution the gene is
coding - and then test the phenotype in a certain environment. For example if the goal is
to evolve virtual creatures that can swim, the gene of an individual - the genotype - will
be mapped into a 3 dimensional creature - the phenotype - which will be put into water
- simulated environment - and its swimming ability’s, its swimming speed is measured
[Sim94]. Based on how good the creature - phenotype - performs the gene - genotype -
will get a fitness value assigned. This fitness value will be used to sort the individuals
and make offsprings only from the best performing ones.

All the above parts fit together in the main loop of the GA. The general concept of the
algorithm can be seen in figure 1 A. Generally there are three phases. An initialisation
phase in which the individuals are created and their genes initialized. Next comes the
evolutionary phase in which the fitness of the individuals is evaluated and new offsprings
are produced by applying GO to create new offsprings. Once this phase has reached a
desirable solution or reached another stop criterion, like a certain amount of evolutionary
epochs, the end phase begins. In the last phase the best performing individuals are saved
such that the found solution can be used in practice.

Beside the above basic concepts there are more advanced ones. One advancement that
helps the populations to develop new genetic diversity is that of island models [Del+19].
In a normal GA there is only one population of individuals. GA’s implementing the island
model will have more than one population and all populations will evolve independently
for a given period of time. After this period they’re individuals will be combined. This
helps the single island populations to benefit from the genetic diversity of the other ones.

Section 2 Winfried Gero Oed 2
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A B

C

Figure 1: A showing the general procedure that happens in every GA. Fitness is evaluated
for every individual independently. B showing the schematic of a 2 point crossover GO.
From the selected parents, gene strings defined by 2 points will be copied to generate new
offspring’s as shown in blue and green. C shows three island populations. Each population
has its own individuals and evolve on its own. At certain points in the evolutionary process
genetic exchange between the islands can happen. This enables all island populations to
benefit from the gene diversity of other island populations.

2 PyGMA Framework
PyGMA is a modular Genetic Algorithm written in Python that utilize the Message
Passing Interface (MPI) for parallelization of the fitness evaluation function for individuals
in multiple island populations [Oed23]. The modular approach makes it easy to extend
PyGMA’s core functionality to all kinds of needs. A overview of the core and modular
components is given in figure 2. The following text will describe the modular parts first,
as they are the most interesting ones for the user. Thereafter the core parts are described.

The modular parts in PyGMA represent the user interface. There are no command line
parameters or a Graphical User Interface (GUI). All program configurations are done
within the configuration file. This file contains a Python dictionary which will have
sections for defining all needed parameters. To help the user it will contain a short
description of the parameters as comments. Inside the configuration file the user will
tell PyGMA how many populations, how many individuals in each population or if MPI

Section 2 Winfried Gero Oed 3
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PyGMA

Config

EvolutionaryPhaseExperimentGeneticOperators

IndividualPopulation MPI_worker

Configuration Objects

Apply_Gnenetic_operator_stacks

Conduct phase specific experiment

Stagnation check

Start new evolutionary phase Check if phase is finished

Sort individuals based on their fitness

Determine  if to use MPI. MPI Futures, Python Futures, none at all

Pass work to MPI workers

Apply phase start operators

Initialize populations
Instantiate individuals

Return the fittest n individuals

Population mean/max fitness values

Evolution Controller

Components

Core

Figure 2: Illustration of the different modules that together form the PyGMA program.
The green objects represent dynamically defined components by the user. All user defined
components will be collected inside the configuration file. This file will be read by the
main program component and define how the program will behave. Generally the core
components will not be touched by the user but will perform all the necessary evolutionary
algorithmic steps shown in the blue text box.

should be used for parallelization or not. Additionally the user will define the instances
of the modular parts used in the evolutionary process. These parts are: the evolutionary
phase with its starting operators, the genetic operators that should be applied to the genes
in each generation/epoch, the experiment that should be carried out on the individuals
of the populations to evaluate their fitness. These three main parts will now be shortly
described.

An evolutionary phase can be thought of as a certain time frame in the evolutionary
process. It can be used to define intermediate steps in the process. For example it might
be to complex to evolve randomly generated genes directly into the desired complex shape.
It might be helpful to have intermediate steps. These steps can be defined in different
evolutionary phases that will be carried out subsequently. Basically you will first evolve a
simple solution and then move on to a more complex one. The simple solution might need
another fitness evaluation approach as the complex one, which is why every evolutionary

Section 2 Winfried Gero Oed 4
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phase has its own experiment - the individuals are tested in an experiment to evaluate
their fitness -. Each evolutionary phase is a Python object which is used to define the
stop condition - run for N epochs or run until fitness > X - and used experiment for
that phase. It will be user defined, by inherit from the base evolutionary phase class and
implement the proper methods that are called by PyGMA.

The experiment describes an algorithm that is used to evaluate the fitness of an individual.
It will get a gene G and has to evaluate the fitness of that gene f(G). The fitness
evaluation can be very different depending on the problem the user want to solve. It can
be a function optimisation task, in which case the gene will be translated into parameters
for the function and then these parameters will be put into the function to see the output,
but it could be a more complex task. In the presented work a gene will encode a logic
circuit that should do some kind of logical operation. Hence the evaluation of the fitness
function f(G) will involve to translate the gene G into a logic circuit and then simulate
this circuit to determine if its outputs are correct. Depending on a logically correct circuit
and if, how many correct outputs are produced by it the gene G can be rated with a fitness
value. Since fitness evaluation often involves computational heavy simulations this part
of the algorithm is parallelized using local processes or MPI.

Another user definable part are the GO. GO’s define rules on how genes are altered
in each generation / epoch of the GA. Simple mutation operators will randomly mutate
gene parts with a certain probability while other operators like crossover operators produce
new offspring’s by combining the genes of two parents. The user can define arbitrary GO.
These GO can be stacked on top of each other to built a GO stack that will be applied
sequentially to the genes. Each population inside PyGMA can have its own, distinct
operator stack. The user will define the GO classes and then instantiate the class objects
and load them into the stacks inside the configuration file. From here PyGMA will read
the stacks and apply them to the genes during the evolutionary process. These conclude
the basic description of the user definable components. Next there will be a very brief
description of what happens with the core components, which the user does not need to
touch. In principle there are several components which in working together built the core
functionality of PyGMA. These are the main PyGMA program wrapper, the controller,
the populations and individuals of the populations.

The program wrapper is the main entry point in the execution tree of PyGMA. It will be
called in serial and parallelized execution and by reading the configuration file determines
if it should spawn MPI workers or local processes or none at all. It will initiate the con-
troller object which will handle all other program parts like applying GO’s or distributing
the fitness evaluation of the single individuals to the worker processes - the worker pro-
cesses will also be spawned by the main program wrapper -. Populations and individuals
will be handled by the controller class and hold the individuals which hold their specific
gene and fitness.

2.1 Implemented Parallelization Approaches

In total there are four parallelization approaches implemented in PyGMA. These are none
at all, local processes via Pythons inbuilt Processpool executor, dynamic MPI worker
processes via MPI4Py futures (MPIPoolExecutor) or static MPI worker processes imple-
mented in an own manner. The last three approaches are now described where the focus

Section 2 Winfried Gero Oed 5
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will be on the final approach as this is the one developed in this course.

Python is an interpreter language and features a Global Interpreter Lock (GIL). Only one
thread can control the Python interpreter at a time. This makes threaded parallelization
a not always successful endeavour. It only makes sense for tasks that are waiting most
of their time - for example downloading data - but not for computationally heavy tasks,
as they will not benefit at all since only one thread can work at a time. To overcome
this many processes can be used where each process will have its own context and with
it its own Python interpreter. While overcoming the GIL, processes need to be forked
and spawned which, unlike for spawning threads, involves copying the whole program
memory to create a new and independent context for the process. This is a slow operation
and only brings a computational benefit if the work done in the single processes is very
compute intensive, meaning computation time is definitely larger as process spawning
time. With the inbuilt Python Procespool executor it is only possible to dynamically
spawn local processes. Hence the MPIPoolExecutor provided via the MPI4Py library
is used to spawn worker processes dynamically on remote worker nodes. Both of these
approaches are implemented in PyGMA. For the speedup testing carried out in this work
it was not the case that computation time is definitely larger then process spawning time.
As such it can be seen in figure 5 that using more processes actually slows down the
overall execution time of the program.

Despite dynamically spawned worker processes MPI makes it possible to spawn ever living
worker processes on remote nodes in the beginning of the execution of a program. Every
worker has its own program context all the time and will only exchange the definitely
needed data fragments with the main process. This makes the approach very fast but
also involves more manual handling in the data exchange process between the master
and worker processes. The MPI implementation in PyGMA will spawn worker processes
in the beginning of the program, then start them and let them evaluate the fitness of
each individual in every evolutionary generation/epoch. The main program flow imple-
mentation for the master process can be seen in the appendix in code listing 1 and the
implementation of the worker process is listed in the appendix in listing 2. Generally the
main idea is the following. The master process has a list which contains the MPI ranks of
each worker. As long as there are genes which fitness has to be evaluated a loop over all
worker ranks is conducted. For each worker it will be checked if the worker is idling, then
a gene is passed to this worker, or if there is a result which can be retrieved. If a result
is retrieved it is marked that a gene was successfully evaluated, reducing the amount of
genes which fitness has to be evaluated by one and as such the most outer loop will end at
some point. In principle there can be no deadlock for the workers in this implementation.
Each worker will never touch or wait for a resource another worker has to provide and as
such workers are only depended on the master process. However the master process can
get stuck if a worker is not finish processing or the sending process fails. In this case the
master process would wait indefinitely for the result of the worker process and evolution
would not continue. To overcome this a check could be implemented which marks the
genes that are in processing with a time stamp and if a certain processing time limit is
exceeded sends the gene to another worker process. Additionally it should be checked if
the worker who failed is still alive and functioning, if not this rank should be removed
from the worker list to not distribute data to it anymore.

Code snippets and tests for other parallelization approaches where made as well. Inde-
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pendent island evolution’s could be used as parallelization approach. In this case the
single island populations would be computed by they’re own process. This would allow
for many island populations and brings the benefit that all GO would be applied in a
parallelized environment alongside their populations. Since having problems and genetic
evolution strategies - mainly the way the GO’s and fitness function are designed - that
benefit from this approach are very complex it was not implemented in this project.

Another parallelization approach would be to send a whole pack of genes to the workers
at once, instead of always sending only a single gene for fitness evaluation. This would
have as drawback that some gene packs might need longer to be evaluated and as such
the longest pack would determine the computational time. This is mitigated when using
single genes as a worker, in the worst case, gets only one complex gene, not a whole pack.

Another maybe faster approach is to use mpi4py’s inbuilt functionality to send numpy
arrays. If not explicitly defined mpi4py will send Python objects by pickling them. This
is slow compared to directly sending only the raw data. However to send raw data the
buffer to receive this data has to be defined. This usually happens in the beginning of the
program and the buffer has a fixed size. As such the send data should also not change
in size. Since genes can change in their size due to the different evolutionary phases the
slower pickle approach is used.

3 Logic Circuit Evolving Experiment
In this project a mechanism that allows a genetic algorithm to synthesize logic circuits is
developed. Synthesize logical circuits is in line with synthesize electrical circuits known
as "evolvable hardware" [Tho98]. Evolvable hardware brings together evolutionary al-
gorithms and reconfigurable electronic devices. Normal Application Specific Integrated
Circuit (ASIC) compute chips can not change their internal wiring’s. Reconfigurable com-
pute devices like Fild Programmable Gate Array (FPGA) can change their internal wiring
and function, they are re-programmable. This enables evolutionary inspired algorithms
to evolve a FPGA configuration that will solve a given problem. It can also be used to
evolve fault tolerant systems [Gar05]. Evolution of such circuits can take place in an
"intrinsic" or "extrinsic" manner. Intrinsic means that configurations produced by the
GA will be downloaded on a physical device for evaluation. Extrinsic means that each
configuration will be evaluated using a hardware simulator. Both approaches have their
advantages and drawbacks. Simulation can be faster because it can be easily parallelized
- in a HPC environment - and it usually comes with a much lower initialisation time. On
real physical substrate the evolved configuration has to be loaded onto the FPGA and
its logical tiles configured accordingly. This can take up to 9 seconds [HFB22]. If one
think of the fact that an GA can take several hundreds of evolutionary generations and
in each generation several individual configurations - the genes of the individuals inside
the populations - have to be evaluated, reconfiguration time of the physical substrate be-
comes a crucial factor. However evolving directly on the physical substrate benefits from
hardware effects that are and can not be part of the simulation, like material nuances or
electromagnetic fields [Tho98].

This work, PyGMA is specialized on extrinsic evolution of logical - not electrical - circuits.

Section 3 Winfried Gero Oed 7
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To simulate the logical circuits the Python library Circuit 2 3 is used. Circuit allows for
construction of logic circuits and their evaluation on specified inputs. The general idea is
to have a binary gene encode the circuit, meaning it will encode how many logic gates,
the function of the gates, connection of the gates and inputs and outputs it has. Each of
such a logic circuit configuration is simulated to obtain a fitness value for the gene. This
involves supplying certain inputs into the circuit and obtain the outputs, then compare
them to the desired output. The next subsection will describe how the mapping from a
gene to a logic circuit takes place.

3.1 Genetic Circuit Coding

Binary gene strings are used to encode the logic circuit. The description that follows now
is based on figure 3 and will describe the coding by walking through the figure as this
will give a more intuitive understanding of the coding to the reader. A logical circuit has
inputs - in figure 3 named I1, I2, I3, I4 -, logical gates - in figure 3 G4, G5, G6, G7 - and
outputs - in figure 3 O8, O9 -. All these parts have to be coded by the gene string.

Inputs are coded by a fixed number of bits. For each input it is coded to which logical
gates it is connected. This is done by having two bits for each logical gate, where the first
bit codes if the input is connected to input one of this gate and the second if the input is
connected to input two. Hence there are 2 ·N genetic bits for each input, where N is the
number of logic gates in the circuit.

Gates are coded by first defining their function. This can be any of the 8 logical functions
and as such the first 3 binary bits are devoted for this. Each logic gate has at least one
input. This input is the output of one of the components in the logical circuit. As such it is
determined by choosing one of the components of the circuit. This is done by coding three
variables, the addressing mode, the direction and the length. The variables essentially tell
how to choose the input component by walking on the gene string in a certain direction.
First the addressing mode bit tells if walking should start from the beginning of the gene
string or from the current position of the current gate. The direction bit tells if walking
should be done to the left or the right on the gene string. The length bit’s defines how
many gates should be walked. As example take the coding 0, 1, 0011 from the input one
of gate G4. The first bit, the addressing mode, is 0 meaning we start walking from the
current gate position in the gene string. The second bit, the direction bit, is 1 meaning
we walk right - we increase the counter -. The next four bits, 0011, tell how long we shall
walk, in this case three gates. We will therefore determine gate G7 as the first input to
gate G4. For each gate above coding will need 3 + (1 + 1+ bin(N)) · 2 coding bits, where
N is the amount of gates in the circuit, bin(N) the number of bits needed to code N in
the base two numerical system.

Outputs have only one input and can only connect to logical gates, not inputs or other
outputs. They’re first coding bit is a direction bit which will determine the walking
direction. Following bits code the walking length, starting from the beginning of the
gates. Take as example the output O9 which is coded by 0, 001. The first direction bit
is 0 hence we should walk from beginning by increasing our walking counter. Next we

2https://github.com/reity/circuit
3https://circuit.readthedocs.io/en/2.0.1/
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should walk 001 = 1 gate. Since gate zero is G4 we will end up with G5.

Above coding schema, as such, allows for arbitrary circuit coding.

3.2 Circuit construction

Having defined a gene coding it is possible to map a binary string into a logical circuit.
In practice this leads to some issues that has to be addressed.

The coding allows for arbitrary configurations of the logic gates. However some config-
urations are not valid. Mapping the output of a logic gate to the exact same gate is
inappropriate. This intrinsically includes all circles where an output of gate A is fed back
to gate A, potentially by feeding it to B, then C and then from C back to A. Such circles
have to be detected.

Constructing the logic gates for simulation in the used Circuit library also puts some
constraints on the initialisation process. Each logic gate inside the Circuit library is a
Python object. To instantiate the object the input and output gates, which are Python
objects as well , have to be provided to the constructor. Unfortunately the binary gene
string does not sort the logic gates in any way. Meaning that when starting to process
the gene string showed in figure 3 and trying to construct gate G4, first G6 and G7 needs
to be constructed. To overcome this problem a gate construction algorithm is developed.
This algorithm loops through all gates and try’s to construct them. If it finds that it can
not construct the gate due to the fact that it’s inputs do rely on a gate not constructed
already, it will create a stack and puts the gate on this stack. Then continue with the
gate that was needed as input. If this gate can not be constructed because it has input
from another gate not yet constructed it will be put on the stack as well and processing
is continued with the input gate in need. The stack will grow until finally all inputs are
constructible, which is at least always possible for input gates as an input does not rely
on any other gate. Finally it will be possible to construct all gates on the stack. There
are lists and structures involved to remember which gates have already been constructed.
The full implementation could be viewed in the repository if necessary but will be not
further elaborated here.

3.3 Logical Multiplier Experiment

The goal in this evolutionary experiment is to evolve a binary N bit multiplier. A binary
N bit multiplier will get two N bit numbers and multiply them to retrieve a maximal
N + N long bit number - e.g. 11 ∗ 11 = 1001 which is 3 ∗ 3 = 9 -. To evolve such
a circuit the above described gene coding is used since it allows for arbitrary coding of
logical circuits.

Fitness evaluation is implemented in the following way. Each circuit - represented as
a binary gene string from an individual inside the GA - is constructed, if possible. If
it is not possible to construct the circuits, e.g. because it contains loops, the fitness is
0. If it is possible then all possible combinations of two N bit numbers are given into
the circuit and its outputs are compared to the correct output defined by multiplication
- meaning that for N = 3 and the inputs I0 = 010 I1 = 100 the output should be
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Binary Gene String

I0 (00,00,00,01)
I1 (00,00,00,10)
I2 (00,00,01,00)
I3 (00,00,10,00)

Inputs

Gates
G4 (010|0,1,0011|0,1,0010)
G5 (001|1,1,0001|0,0,0000)
G6 (010|0,1,0000|0,1,0000)
G7 (010|0,1,0000|0,1,0000)

Outputs O8 (0,000)
O9 (0,001)

(G_0_in0 G_0_in1, ..., G_n_in0 G_n_in1)

Code meaning

(Logical Function| In0(AdressingMode, Direction, Length)| In1(AdressingMode, Direction, Length))

Logical Gate Function Coding

BUFF 
NOT     
AND     
OR       
XOR     
NAND  
NOR    
XNOR  

000
001
010
011
100
101
110
111

(Direction, Length)

G7

G6

G4

G5

I1

I0

I3

I2

O8

O9

00000001000000100000010000001000   010010011010010001110001000000010010000010000010010000010000    00000001

Internal Gene Representation

Inputs Gates Outputs

Logical Circuit

Figure 3: Described is the binary coding of a logic circuit. The simple circuit shown does
not make any sense despite being very simple to understand and checked in function. Next
to the circuit the coding for the logical gates are shown. A NOT gate is coded via the bits
001. The logical circuit can be represented in binary gene strings which are shown below
the circuit. Parts in these strings belonging together are separated from other parts using
a comma or slash. The coding is dissected into the inputs, the logic gates and outputs.
Next to the binary gene strings their bit meaning is described. Finally in the bottom the
final gene string is shown, which is the concatenation of all bits into one string.

O = 001000 -. Based on how many correct bits the circuit can produced it is rated by
fitness = 1/(error+0.00001). This ensures that if the error is very small the fitness will
be very high.

To increase the fitness two standard GO are applied. First a binary mutation operator
which will mutate every bit inside the binary genetic string with a chance of x percent.
Secondly a single point crossover operator which generates new genes by taking two parent
genes (p0, p1) and a random point k, then composing a child by taking the first k bits
from p0 and the remaining bits from p1.

With the above described setup it is possible to evolve logic circuits that have a fitness
0 < fitness. However the evolutionary process gets stuck in a local optima and is not
able to evolve further. Applying different and more genetic operators as well as having
a more appropriate fitness function which guides the evolutionary process is necessary.
These issues and solution strategies are addressed in section 5.

Section 4 Winfried Gero Oed 10



PyGMA: Pythonic Genetic MPI parallelized Algorithm

A

B

Figure 4: A shows the results for the strong scaling test using Amdahl’s law. The theo-
retically calculated speedup by Amdahl’s law is shown in orange and measured real world
MPI parallelization performance in green. Note that the experiment used for performance
testing utilize 282 individuals and as such using more then 282 compute cores will not
bring any benefit, rather overhead, which is why the speedup is worse for 300 cores. B
shows the results for the weak scaling test using Gustafson’s law. The theoretically cal-
culated speedup by Gustafson’s law is shown in orange and measured real world MPI
parallelization performance in green.

4 Parallelization Performance Analysis
Performance analysis is able to tell if an application can benefit from highly parallelized
HPC environments. It usually consists of two parts, a theoretical part and practical part.
In the theoretical part the speedup gained by parallelization is calculated using Amdahl’s
and or Gustafson’s law. Thereafter the real world speedup is evaluated by measuring the
execution time of the application using no, up to strong parallelization enabled.

In PyGMA parallelization is implemented for the fitness evaluation of the single individ-
uals inside the populations. The fitness is evaluated in every evolutionary epoch. Fitness
evaluation usually requires a mapping from the genotype to the phenotype followed by
a simulation of the phenotype which allows for the fitness measurement. This steps are
the most execution heavy task in a GA. Normally fitness evaluation of one individual
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does not depend on another. This makes the fitness evaluation a well suited target for
parallelization approaches.

However there are serial parts in every evolutionary epoch that, assuming normal condi-
tions, can not be parallelized very well. This includes applying the GO and evolutionary
stagnation checks. GO are independently applied to the genes of all individuals and as
such could be subject to parallelization. Normally they involve very lightweight opera-
tions - e.g. a mutation operator on a binary gene string will flip some bits -. Therefore
starting a new process to apply the operator or send the gene to another worker process
over the network yields to much overhead. The only reason to apply a parallel approach
to GO is when these contain many and heavy operations, which is not the usual case.
PyGMA therefore apply’s all GO’s in every evolutionary epoch in a serial manner.

To measure the speedup gained by parallelization in PyGMA only the time spend for
computing the evolutionary epochs is measured. General initialisation time and shutdown
time of the worker processes is not considered since they do not contribute reasonable
values to the execution time. The initialisation process is parallelized an starting several
MPI processes will initiate the same initialisation part on each worker as if PyGMA would
run on a single Central Processing Unit (CPU). Shutdown of MPI processes is very fast.

Since the individuals in the populations of a GA are subject to change, the evaluation of
the fitness - execution heavy part - can take a different amount of execution time. There-
fore the mean execution time for 300 epochs is measured and represented in the practical
parts of the test. All tests where carried out on the Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen (GWDG) compute cluster using the medium parti-
tion. This partition features 95 compute nodes each having two Intel(R) Xeon(R) Plat-
inum 9242 CPU’s @ 2.30GHz. For benchmarking not more then 20 CPU cores are used on
each node. Meaning to allocate 200 compute cores, 10 nodes, each running 20 processes
where allocated.

Performance was tested on the logical circuit evolving experiment described in section 3.
Parameters for this experiment where chosen in the following way. 3 population’s where
generated each having 94 individuals. This results in 282 genes which means the fitness
evaluation has to be conducted 282 times each epoch. 3 genetic operators where used
on each population. The first being the standard removal operator which deletes the 90
worst performing individuals and leaves the fittest 4 - elitism - for further gene generation.
Secondly a mutation operator is applied which will generate 45 new individuals by taking
a gene from the fittest 4 remaining ones and randomly flips bits with a probability of 5
percent. Third a single point crossover operator is applied which will take two of the 4
fittest genes and combines them into new offspring’s until 45 new offspring’s are generated.
Overall there where 128 logic gates used to find a logical multiplier that can multiply two
3 bit numbers.
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4.1 Strong Scaling

In this scaling test it is assumed that certain parts of the program can not be parallelized
and have to be carried out in serial operations. As such the ultimate speedup gained by
using more processors is limited to at least to the time the program is spending in its serial
parts. Strong scaling is defined by Amdahl’s law [Amd67]. The law can be formulated as

sspeedup = T/(s+ p/N) (1)

where s is the time spend in the serial parts of the program and p the time spend in
the parallelized sections, T = s + p the overall execution time on one processor core -
execution time without parallelization - and N the amount of processor cores used for
parallelization.

In each evolutionary epoch PyGMA’s serial sections s are the application of the GO
to the individual genes. These step takes a mean execution time of 0.00635 seconds in
each epoch for above described circuit evolving experiment. The parallel parts are the
evaluation of the fitness for each individual/gene. Evaluating the fitness on one processor
core for all 282 genes takes a mean execution time of 4.89924 seconds. The resulting
strong scaling speedup can be seen in figure 4 A and in the appendix table 1. For the
maximal speedup we can assume that we minimize the parallel execution time with infinite
compute resources to zero. We then get sspeedup = T/(s + p/N) ≤ T/s = smax, where
smax = 4.90559/0.00635 = 772.533. Meaning despite how many parallel compute resource
we use the speedup limit is 772.533

4.2 Weak Scaling

Weak scaling, as proposed by John Gustafson, takes into account the fact that paralleliza-
tion is applied when scaling the problem size - this is in contradiction with Amdahl’s law
where the problem size is fixed - [Gus88]. This means that theoretically the problem size
can grow in size by N but the runtime is kept the same due to adding N more compute
cores that handle the parallel parts. Gustavson’s law can be formalized by

sscaledspeedup = s+ p ·N (2)

where s is the serial part execution fraction, p is the parallel part execution fraction,
which means that 1 = s+p, N is the number of processors used. Since the problem size is
scaled, but due to adding more compute units the runtime is kept the same, the speedup
evolves linear in theory.

In practice some problems do not follow this theoretical speedup because increasing the
problem size will additionally increasing the linear parts and not only the parallel ones. In
a GA it is most likely that increasing the problem size will also increase the serial execution
time of the algorithm. This is exactly the case for the logic circuit evolving experiment
that is used in testing here. To increase the problem complexity there are more logic
gates added to the circuit that is evolved. Unfortunately adding logic gates means that
they have to be represented inside the genome of the individuals. Therefore adding logic
gates leads to longer genes. Longer genes mean more work for the GO and therefore
will result in longer serial execution time as the GO are applied in a serial fashion. The
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serial part of applying the Genetic Operators (OP) went from 0.00635 to 0.49579 seconds
for an experiment with 128 and 19200 logic gates respectively. The parallel problem
difficulty - the evaluation of the fitness function - also does not scale linearly by adding
more logic gates. For example using double the amount of logic gates does not increase
the difficulty of the fitness evaluation by a factor of two. It does add more gates that
have to be constructed and theoretically be simulated in the evaluation process but due
to the fact that many gates might not be used in the task their simulation is not carried
out. Additionally construction of many logic gates has huge overhead in the construction
algorithm which need to check if there are connection loops for the logic gates. The used
Circuit library for simulating the logic gates might as well follow a non linear execution
behaviour if the number of gates increase.

The scaling problems can be seen in the first speedup tests ranging from 10 to 100 used
processor cores in figure 4 B. The speedup should be linearly but it is much more, because
the problem did not scaled correctly and the task was to easy. Whereas for more then
6400 logic gates, which is the case for more then 100 used processor cores, the problem
becomes to complex and generates to much overhead, in other words does not scale very
well and as such takes much more execution time. Hence the speedup does not follow
Gustavson’s law.

5 Future Work
Future work has to be carried out to make logical circuit evolving with PyGMA a success.
In the current state the evolutionary process will stuck in a local optima and is not able
to evolve further. Due to time limitations there are several unaddressed problems.

The fitness evaluation is not optimized for the search space of the GA. It will measure
the fitness only based on the correct input output pairs. These pairs do not give a great
guide for the evolutionary search process. It is necessary to test the output but for the
circuit design it might be more fruitful if other metrics are applied that really guide the
search process in how the circuit should be shaped. For example a metric that takes
into account the shape of already existing, human engineered circuits might help. This
is based on the idea of nest building using GA in Bonobo et al. [BDT99]. Bonobo et.
al. used human rated geometrical metrics to evolve agents that build certain structures.
Similar ideas might be used for the circuit design evaluation. It might enable the circuits
to evolve in a certain already well established structure in human design approaches and
from there to further improvements.

PyGMA also features evolutionary stages that enable the process to come up with a
simple solution which can be enhanced further. This stages are currently unused. Using
these it might be possible to first evolve genes that represent simple logic gate structures
like a 2 bit multiplier and the enhance this multiplier further.

The used GO’s are very basic operators and are not tuned for hardware evolving. At least
a k point - not only single point - mutation operator should be implemented. Additionally
it could be helpful to implement a connection modification operator. This operator would
not modify all parts of the gene string but only the ones encoding the connections of the
gates. By applying it, not the gate function, only the connections are changed. It was
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found that such operators work well for designing fault tolerant electronic circuits [Gar05].

The used coding for the inputs is another problem that needs to be adressed. Currently,
for each input its connections to all other gates is directly coded. Hence for 128 logical
gates one input needs 128 ∗ 2 = 264 genetic bits. This makes the input coding part the
longest on the whole genome. Additionally it leads to the fact that the inputs will connect
to many logic gates, which is usually not the case in a logic circuit.

All the above points should be addressed in future. The modular design of PyGMA
provides a solid foundation needed for the improvements.

6 Discussion
The developed GA framework, PyGMA was introduced. It allows for user definable,
modular evolutionary experiments. Running the framework in a HPC environment with
strong parallelization applied showed reasonable speedup values. As such PyGMA is well
suited to run on highly parallel compute environments. Evolution of functional logic
circuits however was not possible due to the fact that the algorithm get stuck in a local
optima. Possible solutions to this problem like advancing the used fitness function and
GO have been pointed out and can be solved in future research.
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A Appendix Figures

Figure 5: Mean generation/epoch runtime in seconds for the Strong scaling test conducted
with either MPI or local processes parallelization. It can be clearly seen that spawning
local processes yields to much overhead and will slow down computation time compared
to a complete serial computation. However using the own developed MPI parallelization,
which involves spawning worker processes in the beginning and then pass work to them
yields a great benefit (green). Note that for this test 282 individuals (94 in each of the three
populations) where simulated. Using more then 282 processing cores should therefore not
reduce computation time but rather slightly increase it due to more overhead.
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B Appendix Tables

Logical Gates Cores Epoch Time (S) Theoretical Speedup Real World Speedup
128 2 5.226 2.00 0.94
128 10 0.570 9.88 8.61
128 20 0.276 19.52 17.76
128 40 0.143 38.08 34.19
128 60 0.097 55.74 50.53
128 80 0.082 72.58 60.13
128 100 0.064 88.64 76.68
128 200 0.043 159.03 114.96
128 280 0.039 205.71 125.95
128 300 0.040 216.29 123.04

Table 1: Speedup times for the Strong scaling test as defined by Amdahl’s law. The
amount of logical gates and as such the computational complexity of the task is not
changed. By adding more processing resources (cores) the evolutionary epochs can be
computed faster and as such the global runtime will be reduced. The theoretical speedup
column shows the speedup calculated by Amdahl’s law. The real world speedup column
shows the in reality measured speedup when using the own implemented MPI paralleliza-
tion approach by comparing it to the single core serial execution time.
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Logical Gates Cores Epoch Time (S) Theoretical Speedup Real World Speedup
128 2 5.226 2.00 0.94
640 10 2.508 9.99 19.56
1280 20 2.615 19.98 37.52
2560 40 2.949 39.95 66.54
3840 60 3.378 59.92 87.13
5120 80 4.276 79.90 91.77
6400 100 4.688 99.87 104.64
12800 200 11.919 199.74 82.32
17920 280 21.868 279.64 62.81
19200 300 26.473 299.61 55.59

Table 2: Speedup times for the weak scaling test as proposed by Gustafson. The task
difficulty is scaled to the number of cores by adding the respecting amount of logic gates.
The theoretical speedup should be linearly because the added difficulty will be compen-
sated by adding more compute resources. Real world data shows that for the hardware
evolving experiment the speedup is not linear, for several reasons discussed in section 4.2.

C Code samples
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1 from mpi4py import MPI
2 from core.mpi_tags import mpi_tags
3 comm = MPI.COMM_WORLD
4 world_size = comm.Get_size()
5

6 # while we have data distribute it to free workers
7 # collect finished data as well
8 # a gene is computed once the result is written back
9 genes_to_compute = len(worker_tuples)

10 while genes_to_compute > 0:
11 # check all workers
12 for worker_index in range(1, world_size):
13

14 # check if worker can compute new data (Is idle)
15 # and we have data to compute
16 if (comm.iprobe(source=worker_index, tag=mpi_tags.IDLE) and
17 worker_tuples):
18 # eat up idle message to clean the pipeline
19 comm.recv(source=worker_index, tag=mpi_tags.IDLE)
20 # pop the next data to distribute
21 data = worker_tuples.pop()
22 # signalling the worker that it should continue to work
23 comm.send(True, dest=worker_index,
24 tag=mpi_tags.CONTINUE_PROCESSING)
25 # send data to worker
26 comm.send(data, dest=worker_index,
27 tag=mpi_tags.DATA)
28

29 # check if we can retrieve a result from the worker
30 if comm.iprobe(source=worker_index, tag=mpi_tags.DATA_RETURN):
31 # retrieve the result
32 w_result = comm.recv(
33 source=worker_index, tag=mpi_tags.DATA_RETURN)
34 # write the fitness result into the appropriate individual
35 self.populations[w_result[0]
36 ].individuals[w_result[1]].fitness = w_result[2]
37 # note that we have computed a gene
38 genes_to_compute -= 1
39

Listing 1: This code listing shows the implementation of the MPI master process and
how genes are distributed to the workers and their fitness evaluation result stored for
each individual. The MPI tags are Integer Enums that facilitate the maintaining and
readability of the code.
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1 class MPI_worker():
2 def __init__(self, config):
3 self.config = config
4 self.comm = MPI.COMM_WORLD
5 self.rank = self.comm.Get_rank()
6 def start(self):
7 # work loop until stop is signalled
8 while True:
9 # signaling that we are waiting for new work

10 self.comm.isend(None, dest=0, tag=mpi_tags.IDLE)
11

12 # we receive a bool if we shall to continue to process
13 continue_processing = self.comm.recv(
14 source=0, tag=mpi_tags.CONTINUE_PROCESSING)
15

16 # if we shall not continue stop the worker
17 if not continue_processing:
18 break
19

20 # get the working data
21 # format will be (pop_index, indiv_index, phase_index, gene)
22 data = self.comm.recv(source=0, tag=mpi_tags.DATA)
23

24 # extract data
25 pop_index = data[0]
26 indiv_index = data[1]
27 phase_index = data[2]
28 gene = data[3]
29

30 # instantiate the experiment and evaluate the individual
31 experiment = self.config['evolutionary_phases'][
32 phase_index].experiment
33

34 # conduct the experiment
35 fitness = experiment.conduct(gene)
36

37 # return the fitness containing result tuple
38 self.comm.send((pop_index, indiv_index, fitness),
39 dest=0, tag=mpi_tags.DATA_RETURN)

Listing 2: The listing shows the implementation of the MPI worker process. The worker
will be waiting in the blocking recv statement in line 13 until he receives the go to evaluate
the fitness of another gene. Genetic data is extracted an passed into the Experiment which
will return a fitness value of the specific gene, which is then send to the master process
along with other needed information’s in line 38.
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