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Abstract
In this report, we implement a vehicle simulation using both a sequential and parallelized
approach. The goal was a working implementation as well as an analysis of whether
the provided implementation is parallelizable and how well it scales. As for the results,
both implementations are executable, and various parameters are adjustable by the user.
The proposed solution utilizes a realistic city map and the parallelization is achieved by
splitting the map into sub-graphs and having each of the nodes manage one sub-graph
respectively. The results inspecting strong scaling were promising. On the other hand,
the results describing the weak scaling are ambiguous due to the lack of data.
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Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

✓□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

✓□ Other, namely: GitHub Copilot

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.
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Cars in the traffic of a city network and resulting traffic jams in Go

1 Introduction
1.1 About this project

This project was developed as part of the Practical Course on High-Performance Com-
puting at the Georg-August-University of Göttingen. After a week-long, hands-on course
on parallel computing approaches and tools was concluded, a solution to a non-trivial
problem of choice had to be developed. The objective was to first establish a sequential
solution that would then be expanded by a parallelized approach. Finally, an analysis of
the program was also required, in which the scalability. of the solution is explored.

As the title suggests, this particular report covers a solution for building a city network
that focuses on the movement of vehicles through the mentioned network. The idea is to
build a simulation-type of a program that emulates city traffic. This could be used on a
specific city layout with a realistic number of participating vehicles that serve a research
purpose on, for example, bottlenecks or traffic jams at rush hours. The solution could
be used to test out different layouts that could help improve the overall time an average
vehicle spends in traffic getting from one place to another.

The main goal of this project is to have a working solution that can be executed in a
sequential as well as a parallel manner. Furthermore, an analysis of the parallelization is
required. The analysis should provide information on whether different resource configu-
rations influence the parallelization and how. As elaborated in section 2, real-world data
is the most optimal data to benchmark on. There we explore the possibilities of having
OSM at hand, [Map].

1.2 Implementation Language

Due to the following reasons, our initial choice of programming language to write our
simulations was Go. It separates itself in the following aspects from other programming
languages:

• Concurrency support: Go has built-in support for concurrency and Goroutines
and methods, which can help handle multiple tasks efficiently at the same time.
This is particularly useful for traffic simulations, where multiple crews or vehicles
need to be simulated simultaneously, [var]

• Easy and readable: The Go syntax is simple and easy to use, which can help to
quickly create and maintain traffic mapping codes, e.g. [MV]

• Garbage Collection: Go has a garbage collector that automatically controls mem-
ory allocation and allocation, which can help reduce memory leaks and improve the
overall performance of the simulation, [var]

By choosing this language, we kept the overhead of an already difficult concept of a
program low while retaining its aspects in an intuitive manner.

We had written our initial versions of the simulation in Go but were encountering
issues.

Section 1 Valerius Mattfeld, Bianca Vetter 1
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Firstly, and most importantly, the OpenMPI wrapper1, was incomplete and unable
to interface properly with the underlying OpenMPI C Library2. This was most visible
when serializing data structs and encountering segmentation faults when working and
developing with it. The latter, slowed development times down and was able to only
slowly deliver results, if any.

Secondly, when a feasible solution was viable in our prototype, send and receive mes-
sages over MPI were empty on larger world sizes than 2. That indicated to us, that the
underlying Go-Garbage collector freed crucial information from memory.

Since the aim of the project was to build a traffic simulator with MPI capabilities,
we came to the conclusion to rewrite the program in Rust, although having an initially
weaker concurrency model and harder-to-read syntax.

The most important reason is that Rust provides a working MPICH3 wrapper4. Ap-
plying the structure and working of the existing Go code base was surprisingly straight-
forward because we were able to apply our previously won insights to the new prototype.
The garbage-collection issues were resolved by the Rust language design because the lan-
guage omits the need for a garbage collector. Furthermore, Rust has the side-effect of
making the program faster, therefore allowing a more efficient use of available resources.

However, at a larger scale, we encountered a synchronization problem with using a
mutex-mechanic, which will be explored later in the report.

To summarize, the initial challenges of using Go were successfully addressed by the
rewrite in Rust.

When referring to source code, variables, etc. further down in the document it will be
Rust, if not specified otherwise.

1.3 Overview of the report

In Section 2 we describe the process of acquiring the data and the preprocessing steps,
as well as the tools used. We also discuss the potential usage of a graph and justify
the reason for omitting it. Both the sequential and the parallel implementations are
discussed in depth in Section 3. This includes the code structure of the projects as well as
the algorithms. Section 4 consists of the analysis. This Section contains benchmarking,
efficiency scaling based on resources, and speedup. Finally, the conclusion to the project
and future work can be found in Section 5.

1https://github.com/sbromberger/gompi, Accessed: October 14, 2023, [Bro23]
2https://www.open-mpi.org/, Accessed: October 14, 2023
3https://www.mpich.org/, Accessed: October 14, 2023
4https://github.com/rsmpi/rsmpi, Accessed: October 14, 2023
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2 Data, Tools and Preprocessing
The most essential element for our simulation is a map. Intuitively, we decided to represent
the map as a graph structure early on. A subsequent decision that we needed to make
was whether to use a constructed graph or real-life data. Because our aim is to simulate
a realistic scenario. We found that OSM provided us with the necessary data.

2.1 OpenStreetMap

Figure 1: Displaying the export feature of OSM by extracting nodes from the city centre
of Göttingen.

According to the official documentation, OSM is a crowdsourced project that accumu-
lates and distributes open geographical data. It is an alternative to other map services
like Google Maps, Bing Maps, and Apple Maps, just to name a few.

The OSM web app makes it possible to either manually select the area of interest or
enter the desired longitude and latitude and simply download the necessary data as an
.osm file. The file is represented in Extended Markup Language (XML). OSM follows a
specific XML schema, which is already noted in the libraries.

In our case, the selected area was Göttingen city center, see Figure 1.
The data includes streets, roads, and other object markings that can be of geographical

relevance, as in Figure 1
Furthermore, OSM references alternative Application Programming Interface (API)

endpoints for exporting bigger areas of interest. This is needed because the OSM web app
provides only small exports of data, limited to 50000 nodes. This may seem as much, but

Section 2 Valerius Mattfeld, Bianca Vetter 3
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is not, because of the nature of the object. The structure of a node is elaborated in-depth
in Section 2.2.

2.2 GeoDataFramesand Graph Extraction

The acquired data was preprocessed in Python since the rich ecosystem offers a variety
of data processing options. Those options also include libraries, such as OSMnx 5, that
help parse the data obtained via the exported files.

Firstly, the imported data is converted to a MultiDiGraph object that represents
a multidirectional graph. The transitional graph object is then mapped into two Geo-
DataFrames6. A GeoDataFrame is an extension of the Pandas DataFrame. Each extracted
GeoDataFrame contains the edge and node data, respectively.
There are two types of nodes:

• Object nodes represent different objects one can find within the traffic area. Ex-
amples include various buildings, like houses or grocery stores, trees, and street
lamps.

• Intersection nodes represent either the starting or ending point of one or more
edges.

The GeoDataFrame representing the nodes consists of columns including, but not
limited to: the corresponding osmid and geographical coordinates. An edge is defined
as a connection between two intersection nodes. The GeoDataFrame holding the edge
information, integrates columns such as osmid, source and target node, number of lanes,
street name and type, maximal allowed speed, length, and more. Since the transitional
graph object is a multidirectional graph, every two-way street is depicted as two separate
edges between two corresponding nodes.

The object nodes are redundant for this project’s purpose. The edges were filtered
using the highway and landuse attributes, omitting cycleways, railways, and similar. Con-
sidering some of the edges’ data was missing and the before-mentioned attributes were
left empty, an OSM account was created and the labels were added manually.

It was at this point, that the decision against a visualization of the map along with
the vehicles was made. The reason is, deeming the visualization outside the scope of this
project and is non-critical to performing an analysis.

The aforementioned steps provide a solid foundation for creating viable input data for
our simulation.

2.3 Graph

We initially considered RedisGraph7 as a viable dependency in our simulation program.
Several reasons led to this consideration.

• The RedisGraph database eliminates potential duplicates of edges and nodes, by
design

• Redis8 offers a pub-sub interface that enables a ’common ground truth’ for all worker
5https://osmnx.readthedocs.io/en/stable/, Accessed: October 14, 2023, [OSM]
6https://geopandas.org/en/stable/, Accessed: October 14, 2023
7https://docs.redis.com/latest/stack/deprecated-features/graph/, Accessed: October 14,

2023
8https://redis.io/commands/?group=pubsub, Accessed: October 14, 2023
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nodes

• Since Redis is intended to be used as a shared cache and for its performance, it
seemed justified to have it as a permanent dependency in our simulator

However, since the requirements of the module are focused on the MPI capabilities, the
pub-sub module and shared cashing features of Redis are unsuitable in this context.
Therefore, the Redis instance is purely reduced to its graph database advantages. This
is only used once in the data processing step, i.e. the RedisGraph database is only used
once and in the initial step of producing input for our simulator.

Early versions of our simulation made use of the RedisGraph capabilities directly by
querying the graph with Cypher9. This gave us an insight into the actual simulator import
requirements.

Initially, we wrote a script for transforming the preprocessed .osm file to the Re-
disGraph data. Later on, it was decided that we would serialize the graph from the
RedisGraph database to the JSON format. This is the input data representing the final
graph in the simulator.

This venture was taken outside the simulation project into a separate open-source
project, namely the OSM-Map-Graph-Converter for OpenStreetMaps.[MV23c]

It packages the preprocessing of the OSM export into a web server instance, allowing
a generally directed graph conversion as described in Listing 1.

9https://opencypher.org/, Accessed: October 14, 2023
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1 // vertex
2 {
3 "x": 9.9268353,
4 "y": 51.5331826,
5 "osm_id": 28095800
6 }
7

8 // edge
9 {

10 "from": 208650206,
11 "to": 277409422,
12 "length": 7.829,
13 "max_speed": 30.0,
14 "name": "Waageplatz",
15 "osm_id": "24827765"
16 }
17

18 // Response
19 {
20 "filename": "file.osm",
21 "length": 187,
22 "graph": {
23 "vertices": [/*...*/ ],
24 "edges": [/*...*/ ]
25 }
26 }

Listing 1: Sample of a Directed Graph exported from OSM as JSON. Each vertex contains
GPS coordinates and an ID given by OSM. The edges connect two vertices and hold
additional data, representing a road or highway. The response part of the JSON holds
the graph itself and the graph size with a file name.

3 Implementation
3.1 Project Structure

The main project, which is the rewritten code base of the initial Go-based project [MV23a]
in Rust [MV23b], makes use of the project structure elaborated in Listing 2.

Starting with a general description of the project layout, we can find some language-
specific configuration files, like the Cargo.toml and Cargo.lock which hold the majority
of the meta-information for Rust, e.g. dependencies, authors, etc. [Fou] Also, there is a
README.md which contains some general information about this repository.

The assets/benchmarking directory has files regarding the benchmarking process,
which python scripts generate the foundation for our analysis in Section 4.

Other files in assets/ help to bootstrap the simulation. the compile.sh file pre-
pares the environment on the High-Performance Computer (HPC) frontend node and the

Section 3 Valerius Mattfeld, Bianca Vetter 6
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graph.json is the data extracted from the Göttingen city center as described in Section
2.

The business logic is contained by the src/ directory, containing various Rust modules.
The submodules graph and models represent data structures and input-models.

Most notably, the models represented in the models directory are graph_input.rs
deserializing the JSON input data from the graph.json file, and the vehicle, explained
in-depth in Section 3.2.

The data structure of the graph is contained in the graph/ module. Housing the parti-
tion model in rect.rs and a directed graph of the deserialized OSM map in osm_graph.rs.

main.rs, cli.rs, error.rs, and utils.rs provide the simulation with basic function-
alities, like random float generation, a CommandLine interface, and error specifications.

The heart of the simulation resides in world.rs, which puts all the algorithms, the
main-loop, thread-communication, MPI message transfers, and graph bootstrapping to-
gether.

Lastly, the vmpi.rs file hosts project-specific MPI-critical code, which defines inter-
faces and methods of information exchange.

On how such an interface might look like, is depicted in listing 3.

3.2 Vehicle Struct

Vehicles are implemented as a struct.10

The Vehicles, in addition to their functions, serve as the most important building
block for the project. Each Vehicle struct is assigned a number of data fields. Their
functionalities are explained in more detail in the Sections 3.3 and 3.4

• The path_ids variable is a list of node IDs that define the path the vehicle is going
to take

• The speed indicates the current speed of the Vehicle in m
s

• The is_parked flag-variable serves as an indicator of whether a Vehicle has reached
its destination, i.e. the last node in the path_ids list

• The distance_remaining keeps track of the remaining distance the Vehicle has
to travel along the edge

• prev_id and next_id are needed to determine both the current and the next edge
in the path; therefore indicating its location.

• Another data field marked_for_deletion, that serves as a flag-variable, is needed.
This data field is relevant only in the context of the MPI approach

• The steps data field counts the number of times the Vehicle entered the function
step

10Disclaimer for further reading: vehicle stylized Vehicle marks the struct called vehicle, whereas
non-stylized version marks the mean of transport.
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3.3 Sequential Approach

In both the sequential and MPI approach, the program requires a few parameters:

• input_file: The input file should contain the necessary graph data; a JSON file is
expected

• parallelism: This sets whether a parallel approach is to be used or not, it can
be used with or without MPI; either SingleThreaded or MultiThreaded value is
expected, it defaults to single-threaded

• num_vehicles: The user inputs how many vehicles should be part of the simulation;
an int is expected, it defaults to 100

• logging_level: The possible levels are Debug, Info, Warn, and Error, it defaults
to Info

• thread_runtime: Is only relevant if parallelism is set to be True. There are two
options: RustThreads and Tokio, it defaults to rust-threads

• mpi: The user can choose a simulation that uses MPI. It is important to note that
when using MPI parallelism cannot be set to SingleThreaded; a bool value is
expected, it defaults to false; deactivating the MPI capabilities.

• min_speed: The user can set a minimal speed in meters per second for the vehicles,
a Float value is expected; the default is 5.5

• max_speed: The user can set a maximal speed in meters per second for the vehicles,
a Float value is expected; the default is 8.5

If we wish to run the sequential approach, the parameter parallelism must be set
to SingleThreaded and mpi must be set to false. After those are set the first step is to
build a graph from the input file. The graph is built by building the nodes, i.e. vertices
and edges as structs. Following is the setup of the time-tracking mechanism to measure
the time required for vehicles to reach their respective destinations.

Now, the Vehicles can be constructed. Each Vehicle is assigned a random initial
speed.

The bounds are adopted from the user input. In addition, a source and a destination
node are also randomly picked for each Vehicle. The Depth-First-Search (DFS) algorithm
generates a path between the set end nodes. In our opinion, it does not really matter
what kind of algorithm one would pick, so we went with what we consider to be the
most intuitive approach, or, the easiest to implement from the respective graph-library.
It would be possible to exchange this algorithm in the future, or perhaps allow for a user
to pick between multiple solutions.

Finally, we drive. The Vehicles drive-in steps. Each step represents one second in
the simulation. A step can be one of the three:

• Drive

• Shift

• Park

Section 3 Valerius Mattfeld, Bianca Vetter 8
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Drive: A Vehicle drives when it has not yet reached its final destination or the end of
the edge it is currently driving on. For a Vehicle taking a step in the form of driving
means it is moved along the edge for a certain amount of meters. Naturally, the amount
depends on the speed at which the Vehicle is set to be moving. As already mentioned
in Section 3.2, the distance the Vehicle has left to travel on the current edge is marked
in distance_remaining.
Shift: When a Vehicle has reached the end of the current edge, it must be moved to
a neighboring edge. This step does not always happen at the exact end of the edge.
Instead, before a step is taken, we check whether the distance_remaining is larger than
the distance the Vehicle would travel within a second. If that is not the case, we save the
remainder to delta. Now we move the Vehicle to the neighboring edge and simply add
the value saved in delta to the total length of the edge. Now the Vehicle can proceed,
taking steps in the form of driving. As for determining the neighboring edge, we use the
nodes saved in prev_id and next_id. Firstly, they must be updated by simply setting the
next element in path_ids, respectively. When MPI is enabled, the Vehicle gets marked
for deletion and is sent to the next node, which has the nodes in their paths in scope.
Park: This movement form is quite self-explanatory: when a Vehicle has reached its
final destination, the variable is_parked must be set to True. Thereby notifying the root,
that the current Vehicle is done driving.

All three movement types are managed in the function named step. The simplified
overview of the explained functionality is depicted in Figure 2.

Is the car
parked?

Is vehicle
speed < edge

length?

Make a 'step'

Is this the last
edge?

Mark the
vehicle as

parked

Add the
remaining

distance to the
next edge

length

Yes

No

Yes

No

No

Yes

Figure 2: The basic workflow of the step function.

After testing the sequential approach, it became evident that there were some Vehicles
with infeasible paths. Our suspicion was confirmed with further testing. This was the case
when the source and destination nodes of the path were not connected in any way. We
fixed this by picking new source and destination nodes and running the search algorithm
until a feasible path was found.

At this point, we would like to discuss the driver model of the simulation. Firstly, a
driver model determines how the vehicles move. There are two categories: microscopic
and macroscopic driver models. The former of the two, as the name itself already implies,
defines how each of the vehicles behave individually. This would mean, that each would
have a separately defined speed, acceleration, deceleration, and the distance it keeps from
a vehicle driving in front of it. Contrary to that, in a macroscopic model, all vehicles
have either the same values for the mentioned parameters or some of the parameters are
omitted. One would pick the microscopic model for a more realistic simulation. However,
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Cars in the traffic of a city network and resulting traffic jams in Go

since this was not our main goal for this particular project, we went with a macroscopic
model. The vehicles only have different speeds at the start. This partially disappears
when they are moved to an edge where the speed must be adjusted due to the speed
limit. Acceleration, deceleration, and the distance concerning the vehicle in front are
completely left out. Nonetheless, it is still possible to implement a microscopic driver
model at a future time.

When the simulation is finished, it outputs the number of steps taken and the time
it took for all Vehicles to finish driving. This concludes the sequential approach of the
simulation.

3.4 MPI Approach

MPI stands for Message Passing Interface. It is used for parallelization, so the different
processes can communicate and share the necessary data. The parallelization happens by
having multiple processes that each have their tasks, that can mostly work concurrently.

Since the processes work concurrently, the efficiency of the program is expected to
improve. More often than not, the processes use the same resources, so they must be able
to communicate. To guarantee efficiency, it must be possible to address a specific process.
Therefore, all processes have a rank.

In MPI we have a main process called the root process, and it has the rank 0, by
default. The sub-processes, also referred to as leaf processes or tasks, have ranks ranging
from 1 up to N-1, where N marks the total number of processes.

For the processes to be able to communicate, one uses objects called communicators.
A communicator can either be an intra-communicator or an inter-communicator.

The former is a communicator that enables communication for processes within a
single group. An inter-communicator makes it possible for processes that are part of
different groups to communicate.

In our case, the MPI approach represents an extension of the sequential approach.
To indicate to the program one wants to use MPI, the user must set mpi to True and
parallelization to True as well.

Similarly to the sequential approach, a graph is built in the same way. The idea was
to then split the graph into smaller sub-graphs, and have each of the leaf processes work
on one sub-graph. This implies that the number of leaf processes equals the number of
required sub-graphs. A user can set the desired number of leaf processes when setting
up the MPI world size. The number of leafs corresponds to sizeworld − 1.

The process of splitting the graph into sub-graphs looks as follows:

1. Firstly, iterate through the vertices and find the bottom left and top right vertex.
This defines the main rectangle in which all vertices are included. The root process
monitors this main rectangle throughout the program.

2. This rectangle is then split into smaller partitions or sub-graphs, all of equal size.
The split happens along the x-axis only. This means that the partitions maintain
the same height as the main rectangle and the width is evenly divided by the number
of leaf processes.

3. Finally, all nodes are copied to the sub-graph. Afterward, all nodes outside the
bounds are removed from the scope of the leaf process. Note, that this means that
the sets of nodes within each sub-graph are pairwise disjoint. As for the edges, they
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are also copied from the main graph based on the leftover nodes in a sub-graph.
This implies, that the edges defined by nodes in different partitions are only visible
by the root process.

A visual example of how a graph partition might look is depicted in Figure 3. In this
figure, the graph depicts the city center of Göttingen, and there are four leaf processes
P1-P4.

Figure 3: Example of a graph split into four sub-graphs with a designated leaf process.

After the sub-graphs have been completely set up, each leaf process gets assigned to
one, individual sub-graph. Just like the sequential approach, the Vehicles are created,
and a path is set up for each. Given the partitioning of the main graph, it is possible
that the path of a vehicle stretches through multiple sub-graphs. To account for that, the
step function was adjusted accordingly.

The three types of movement managed by the step function that we listed and ex-
plained in Section 3.3 still persist in this approach as well. Drive remained unchanged.

We kept the functionality of Shift intact. However, we extended it to account for the
case in which the path of the Vehicle is not solely preserved within one sub-graph. The
first change happens when the Vehicle has reached the end of the current edge.

Before the Vehicle can potentially be shifted to the next one, we check whether the
following node in the Vehicle’s path is assigned to the current sub-graph.

If that is the case, we can simply make the switch to the next edge as described in
the Section 3.3. When that is not the case, the following happens:

1. First and foremost, the remainder of the current edge length is stored in the Delta
variable. Similarly to the sequential approach, an edge can have a remainder if the
leftover length is smaller than the distance a Vehicle would travel in a second.

2. The length of the next edge, which is split between the partitions, is retrieved and
added to the Delta. This unfolds by the leaf process sending an EDGE_LENGTH_REQUEST
to the root. The root process then responds to the leaf that sent the request with
the length of the edge. The status of the message containing the length is marked
with the tag EDGE_LENGTH_RESPONSE.
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3. After the length is added to Delta, the Vehicle is then serialized by the leaf
and sent to the root process with the LEAF_ROOT_VEHICLE status tag. We briefly
explored an alternative communication approach of assigning each node a lookup ta-
ble. The table contains information for each vertex and its corresponding processing
node. This way, each vehicle can be directly transferred to the corresponding node.
Thereby omitting the workaround by getting proxied by the root node. However,
this approach quickly leads to issues, like program panicking, or worse performance
for a higher number of vehicles, > 100.

4. The last step of this process for the leaf process is to set the flag-variable
marked_for_deletion to True. This variable indicates that the leaf process is not
responsible for that Vehicle anymore. It is important to note, that the Vehicle is
not parked, i.e. is still not at its destination. However, the calculations have been
handed over to another subprocess.

5. The root process must now retrieve the rank of the leaf process, which manages the
sub-graph that contains the following node in the path. Then, it forwards the serial-
ized Vehicle to the according leaf process with the status tag ROOT_LEAF_VEHICLE.

6. The leaf process, that receives the message, deserializes the Vehicle it has received
within the message. Afterward, it updates the next_id and prev_id. This step
ensures the leaf process works with an edge that is entirely contained within the
bounds of the sub-graph.

7. Now, the Delta that contains the length of the edge that is split between the sub-
graph and the remainder of the previously completed edge, can be added to the
new edge from the perspective of the vehicle. This way, the Vehicle does not drive
in between partitions, and we ensured that the whole distance is driven.

8. Finally, the Delta can be set to zero and the Vehicle continues to drive like it is
described in the Section 3.3.

The implementation is summarized in Listing 5.
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As for Park, an additional functionality has been added.
After a Vehicle has been parked, the leaf process sends a message to the root with

the status tag LEAF_ROOT_VEHICLE_FINISH. This signals to the root, that a Vehicle has
reached its destination. The root process keeps a counter of Vehicles that have reached
their destination. This is triggered by receiving this message.

When the number of Vehicles that have reached its destination matches that of the
number of created Vehicles the root process broadcasts a message with the status tag
ROOT_LEAF_TERMINATE to all leaf processes. This notifies the processes, they are to
terminate.

Finally, the root ends the mpi altogether.
A simplified workflow of what was described is depicted in Figure 4.

Le
af

 1

Is next edge
within the
partition?

Recieve Edge
length

Send VehicleStep

R
oo

t

Initialize
partitions and

vehicles

Deploy
vehiceles

Send vehicle

Le
af

 2

Unpack
recieved
vehicle

Step

No

Yes

Figure 4: Basic workflow of moving the vehicle to another leaf process. Only one transition
is depicted, solely to facilitate a clear understanding of the process.

As for the communicator objects, only one has been used, and it is an inter-process-
communicator since the leaf processes were not grouped and treated as separate entities.

After some testing, it became clear that when partitioning the main graph, there were
some vertices left that did not belong to any of the sub-graphs. It was assumed that
this error was due to inaccurate numeric precision, i.e. rounding errors of the vertex
coordinates. One solution was to add an additional width-padding for the sub-graphs.
However, while this reduced the number of unallocated vertices, it did not completely
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solve the issue. Therefore, we designed a mechanism to add the unassigned vertices to
the first partition. This can be optimized by designing an assigning algorithm that either
randomizes the target partition or assigns the node to the nearest sub-graph.
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4 Analysis
4.1 Benchmarking

For benchmarking, we used the following parameters:

• Number of vehicles: 1, 10, 100, 1000 and 10000

• Number of nodes/processes: 1, 2, 3, 4, 5 and 8

• Number of cores/workers: 2, 4, 8, 16, 32 and 48

• Complex computation: included and excluded

Number of vehicles: Benchmarks containing 10000 vehicles were omitted from the
analysis. This is due to the high error rate. The error rates for each of the vehicle number
options are listed in Table 1. An error is defined by finding a panic-message in the log
for a specific run or a non-zero exit code.

Number of nodes: There were also some additional node options: 6, 10, 15, and 19.
We found that they were not particularly useful in the analysis, so they were omitted.

Number of cores: For the same reason as the omitted node values and 100% error
rates, the following core values were omitted as well: 96, 144, and 192.

Complex computation: A complex computation is added as a placeholder to the
code, see listing 6.

Currently, the code does not include any particularly use-case-relevant complex com-
putation.

However, at some point in the future, if, for example, a visual simulation or a micro-
scopic driver model is implemented, this would impact the complexity of the program.
Therefore, we decided to take it into account for the analysis, see listing 6.

Vehicles Error Rate

1 33%
10 28%

100 28%
1000 52%

10000 86%

Table 1: Error rate per number of vehicles

4.2 Strong Scaling

To test the efficiency of the parallelization, we compared the average runtimes for different
core and node options. As for the vehicle number, we set it to 100. The number seemed
reasonably big for our particular graph, without compromising the correctness. As can
be seen in Table 1, the next bigger value for the vehicles is 1000 and has an error rate of
52%. Because of the high error rate, we deemed 100 vehicles the best option.

To test the efficiency based on the increasing number of nodes - in addition to vehicles
- we also had to decide on a fixed number of cores.
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Similarly, testing efficiency based on the growing number of cores requires a fixed
number of nodes.

To decide which values to pick, we plotted a box plot depicting different combinations.
The resulting plot is depicted in Figure 5.

We can see, that for the node-based efficiency, we must pick a relatively higher number
of cores, as there is more data for bigger core numbers. This is because the node number
must be lower than the core number, for the parallelization to make sense. The whiskers
on each side of the boxes denote the variability of the minimum and maximum. Therefore,
we decided to go with 8 cores, since they produced the most reliable data.

As for the core-based efficiency, we stuck with 2 nodes. The reasoning is similar to
before.

It can be seen in the Figure, that the 2-node configuration has a good amount of data
in comparison to other ones, and it is by far the most stable configuration as well.

Starting with the core-based efficiency, in Table 2 we listed the impact of different
numbers of cores on the average runtime. The number of cores ranges from 2 to 48. As
can be seen from the Table, it is clear that the average runtime does improve significantly
by adding more cores.

Moreover, the visualization in Figure 6 shows the data comes pretty close to the
optimum that depicts an exponential decay curve. The drop to 0.0 for 4 cores is a result
of an error and, therefore, missing data.

Figure 5: Box-plot showing the time for 100 vehicles for different node and core combi-
nations.

Similarly, for the node-based efficiency, while the number of cores is set to 8, the
number of nodes ranges from 1 to 5. The values listed in Table 3 show the similarity of
values for 2, 4, and 5 nodes.

Although the value for 3 nodes is missing, also due to an error, we can safely assume
that it would also be in the mid-60s value range.
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Vehicles Nodes Cores Average time in s

100 2 2 416.9
100 2 4 0.0
100 2 8 65.2
100 2 16 56.5
100 2 32 42.8
100 2 48 31.1

Table 2: Impact of different numbers of cores on the runtime for 100 vehicles and 2 nodes.

Figure 6: The efficiency for 2 nodes and different core values.

This data is also visualized in the Figure 8. In this Figure, if we were to eliminate the
drop at the 3-node mark and just directly connect the data from 2 to 4 nodes, it becomes
clear that the increase of nodes past 2 does not change the average time significantly.

Merging the node and core efficiency results, we conclude that the optimal number of
nodes and cores is 2 and 8 respectively.

We did expect the increase in cores to be more efficient than the increase in nodes;
however, not this drastic. We assume that the reason for this behaviour could be the
partitioning of the graph. The program is parallelizable on a core/task level because the
more cores we have, the number of vehicles each core handles decreases.

On the other hand, the number of nodes is proportionate to the number of partitions
of the main graph. Since the program goes heavy on message passing, this is a problem,
especially given the smaller size of the graph.

If the main graph were bigger, we assume, that increasing the number of nodes could
have a somewhat bigger impact on the average times.

However, this improvement would probably not be as significant as reducing the mes-
sage overhead. We have two ideas on how this could be done:

1. A different way of partitioning the graph: instead of splitting the graph vertically,
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a better option would be to find k nearest neighbours. This could minimize the
number of times a vehicle leaves the current sub-graph and enters another one. A
possible partition of the described approach is illustrated in Figure 7.

2. A different architecture: instead of each leaf process handling the calculations on
a particular sub-graph, the leaf processes handle a number of vehicles on their
complete route. This could also lead to some imbalances in the case that some
processes handle a bigger number of vehicles driving a shorter path and others
handling vehicles with predominately longer paths. However, this would probably
not be worse, but it needs to be tested. Due to the time constraints, this will be
part of the future work.

Figure 7: Graph-partition with k nearest neighbours.

Vehicles Cores Nodes Average time in s

100 8 1 123.7
100 8 2 65.2
100 8 3 0.0
100 8 4 65.2
100 8 5 67.4

Table 3: Impact of different numbers of nodes on the runtime for 100 vehicles and 8 cores.

4.3 Speedup

Another analysis we did was the speedup. We calculated the average time for the se-
quential approach and compared it to the average time for one node but with multiple
cores. As depicted in Figure 9 and also listed in 4, we can see that the values stay within
the same range, and get even a bit worse. This would imply that the code is just not
parallelizable. However, this is not the case when we run the code on a MacBook Pro
2021, Apple M1 Max with 32 GB RAM. As the numbers in Table 5 suggest, the speedup
works very well. We are unsure what the reason for this misalignment is, but we assume
it could be due to the scheduler on the HPC and different architectures, the M1 Pro
processor operating on ARM.[app]
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Figure 8: The efficiency for 8 cores and different node values.

Vehicles Nodes Cores Average time in s Speedup

100 1 1 122.2 1.000
100 1 2 123.5 0.989
100 1 4 124.4 0.982
100 1 8 123.7 0.988
100 1 16 127.8 0.956
100 1 24 123.4 0.990

Table 4: The speedup on an HPC for 100 vehicles

Vehicles Nodes Cores Average time in s Speedup

100 1 1 101.4 1.000
100 1 2 49.7 2.040
100 1 4 26.2 3.870
100 1 8 13.6 7.456

Table 5: The speedup on a MacBook Pro 2021, Apple M1 Max, 32 GB RAM for 100
vehicles.

4.4 Weak Scaling

Weak scaling is also an important part of the parallelization analysis.
However, due to the high error rates for the data containing 1000 and 10000 vehicles, it

was not possible to produce a meaningful analysis. In Figure 11 we can see the comparison
of the average time for 100 and 1000 vehicles, for different core options. The trend does
look promising, however, as already stated, due to the errors and missing data, we can
not make any certain claims.
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Figure 9: The speedup on an HPC for 100 vehicles.

Figure 10: The speedup on a MacBook Pro 2021, Apple M1 Max, 32 GB RAM for 100
vehicles.

5 Conclusion
5.1 Summary

In this report, we implemented a vehicle simulation in a sequential and parallel manner.
As already mentioned, we initially wrote the project in Go.[MV23a]
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Figure 11: Average time comparison for 100 and 1000 vehicles and different core amounts.

We started off by retrieving and processing the necessary data to emulate a real-life
street map.

We defined and implemented the vehicle Vehicle struct.
After this, it was time to think about the program flow for the sequential approach.

This approach was rewritten several times due to problems with inadequate Go-wrappers,
[Bro23].

Finally, we run some benchmarks, to get an idea of where we are currently at,
performance-wise.

It was at this point that we had a presentation where we shared the state of the
work and current results with other course participants and supervisors. This was a good
opportunity to get some feedback as well as reassurance.

After the presentation, we proceeded with the design and implementation of the MPI
approach. The main functionality within the Step function required multiple adjustments.
The adjustments also impacted the flow of the sequential approach and required some
additional rewriting.

When the implementation of the MPI approach was nearing the end, it became evident,
that it would not be possible to finish the program with meaningful results.

This was due to the before mentioned inadequate Go-wrapper, [Bro23], in combination
with Go’s native scheduling procedures, that made it impossible for the MPI to work.

Therefore, we decided to rewrite the entire project in Rust, [MV23b]. This worked
without any major issues and we quickly had a running, faster, and capable project.

We could now benchmark the different setups and analyse the results.
The analysis showed that the program is fairly parallelizable; however, it does depend

on different input parameters. It also became evident, that the graph-partitioning should
perhaps have been done somewhat differently.
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5.2 Future work

As already mentioned, throughout the report there were several spots where we noticed
room for improvement and possibilities to expand this project.

Improvements include:

• Different graph partition, such as a k nearest neighbours as depicted in Figure 7.
This would make the code more efficient

• Changing the MPI approach architecture. The current architecture builds on the
graph partition, however, in our opinion, an architecture that is based on vehicles
could be more efficient for parallelization. What we mean by that, is for the leaf
processes to handle a subset of vehicles and manage calculation for the entire drive

• Microscopic driver model implementation to make the simulation more realistic

• Synchronization of the vehicles

• Fine-tuning the Shift movement within the Step function. Currently, this happens
within one, separate step. If we were to introduce a synchronization of the vehicles,
the solution must be somewhat more seamless, and perhaps, majorly rewritten

• Visualization of the simulation
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A Work sharing
Throughout the entire project, work was distributed mainly, yet not exclusively, as de-
scribed, with both parties having a role in various steps.

A.1 Valerius Mattfeld

• Go implementation

• Rust implementation

• Go to Rust rewrite

• Code Architecture

• Feature implementations, incl. MPI.

• Benchmarking

• Benchmark data processing

A.2 Bianca Vetter

• Research

• Data Preprocessing

• Pair-programming

• Algorithm-design

• Performance Analysis

B Code samples
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mpi-traffic-sim-rust
Cargo.toml
Cargo.lock
README.md
assets

compile.sh
graph.json
benchmarking

scripts
cc_generate_batch_loads.py
cc_single-threaded.py
cc_single-noded.py
cc_generate_batch_loads_optimized.py
cc_multi-threaded.py
generate_batch_loads.py
generate_batch_loads_optimized.py

src
error.rs
world.rs
vmpi.rs
main.rs
prelude.rs
utils.rs
cli.rs
graph

rect.rs
mod.rs
osm_graph.rs

models
graph_input.rs
vehicle.rs
mod.rs
vehicle_builder.rs

Listing 2: Project Structure of the traffic simulator, [MV23b].

39 impl MpiMessageContent<EdgeLengthRequest> for EdgeLengthRequest {
40 fn to_bytes(data: EdgeLengthRequest) -> Result<Vec<u8>> {
41 Ok(serialize(&data)?)
42 }
43

44 fn from_bytes(data: Vec<u8>) -> Result<EdgeLengthRequest> {
45 Ok(deserialize(&data)?)
46 }
47 }

Listing 3: MPI message exchange interface
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13 /// Represents a vehicle that can move within a graph.
14 #[derive(Debug, Serialize, Deserialize)]
15 pub struct Vehicle {
16 pub id: String,
17 pub path_ids: Vec<Osmid>,
18 pub speed: f64,
19 pub delta: f64,
20 pub next_id: Osmid,
21 pub prev_id: Osmid,
22 pub is_parked: bool,
23 pub distance_remaining: f64,
24 pub marked_for_deletion: bool,
25 pub steps: u64,
26 }

Listing 4: Shortened version of the Vehicle struct from vehicle.rs

12 // Root to leaf vehicle sending tag
13 pub const ROOT_LEAF_VEHICLE: i32 = 1;
14

15 // Leaf to root vehicle sending tag
16 pub const LEAF_ROOT_VEHICLE: i32 = 2;
17

18 // Leaf asks root for edge length
19 pub const EDGE_LENGTH_REQUEST: i32 = 3;
20

21 // Root responds to leaf with edge length
22 pub const EDGE_LENGTH_RESPONSE: i32 = 4;
23

24 // Leaf to Root vehicle finishing notification
25 pub const LEAF_ROOT_VEHICLE_FINISH: i32 = 5;
26

27 // Root to leaf program termination notification
28 pub const ROOT_LEAF_TERMINATE: i32 = 6;

Listing 5: Leaf-root-leaf communication tags as found in vmpi.rs
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47 fn calculate_step(&mut self) {
48 // NOTE: adding CPU-intensive placeholder by
49 // generating a random prime number
50 #[cfg(feature = "complex-calculation")]
51 {
52 let mut rng = rand::thread_rng();
53 let number = rand::Rng::gen_range(&mut rng, 1_000_000..=3_000_000);
54 let _some_unused_prime = primal::Primes::all().nth(number).unwrap();
55 }
56 // WARN: Actually crucial code. Do not remove.
57 self.distance_remaining -= self.speed;
58 }

Listing 6: Extendability location for the vehicle behavior.
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