

Bianca Vetter & Valerius Mattfeld

Cars in the traffic of a city network and resulting traffic jams in Go

Predicting and Identifying Traffic Bottlenecks using Go MPI Simulations

Table of contents

- 1 Go as Programming Language
- 2 Map Data and Preprocessing
- 3 Single Node Approach
- MPI
- 5 Current and future work

Open source

MPI

Figure: Go Brand Logo

The Go Programming Language, Documentation - The Go Programming Language, Go Brand Logo

- Open source
- Simple and clean syntax

MPI

Figure: Go Brand Logo

The Go Programming Language, Documentation - The Go Programming Language, Go Brand Logo

- Open source
- Simple and clean syntax
- Concurrency via goroutines

MPI

Figure: Go Brand Logo

The Go Programming Language, Documentation - The Go Programming Language, Go Brand Logo

- Open source
- Simple and clean syntax
- Concurrency via goroutines
- Auto-typing at variable declaration

MPI

Figure: Go Brand Logo

 $The\ Go\ Programming\ Language,\ Documentation\ -\ The\ Go\ Programming\ Language,\ Go\ Brand\ Logo$

0000

Fast compilation

Figure: Go Brand Logo

Why Go? (cont.)

- Fast compilation
- Build-in garbage collection

MPI

Figure: Go Brand Logo

4/21

Why Go? (cont.)

- Fast compilation
- Build-in garbage collection
- Big standard library

MPI

Figure: Go Brand Logo

Why Go? (cont.)

- Fast compilation
- Build-in garbage collection
- Big standard library
- Many helper / Q.O.L. tools

MPI

Figure: Go Brand Logo

■ Go Modules for dependencies.

Figure: Go Brand Logo

Documentation - The Go Programming Language

Bianca Vetter & Valerius Mattfeld University of Göttingen 5/21

Why Go? (cont.)

- Go Modules for dependencies.
- comparable to pip, cargo, npm, etc.

MPI

Figure: Go Brand Logo

Documentation - The Go Programming Language

5/21

Why Go? (cont.)

- Go Modules for dependencies.
- comparable to pip, cargo, npm, etc.
- go.mod

MPI

Figure: Go Brand Logo

Documentation - The Go Programming Language

Logging an add()-function implemented in Go

```
main.go
    package main // package scope definition
    import (
        "github.com/rs/zerolog" // using a third-party package
3
        "github.com/rs/zerolog/log"
5
6
    func add(a, b int) int { // function implementation
        return a + b
8
    func main() { // entry point
10
        n := 5 // variable declaration
11
12
        log.Println(add(n, 5)) // logging library call
13
```

Go as Programming Language

Pick an area and export the data as an .osm file



Figure: Example: Node-Edge Relationship

OpenStreetMap

- Pick an area and export the data as an .osm file
- Data includes:

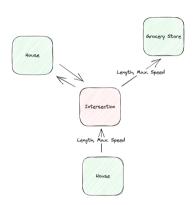
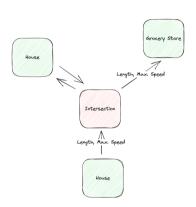



Figure: Example: Node-Edge Relationship

7/21

OpenStreetMap

- Pick an area and export the data as an .osm file
- Data includes:
 - Nodes includes ID. Geo-coordinates
 - Object node (e.g. House, Store)
 - Intersection node

MPI

Figure: Example: Node-Edge Relationship

OpenStreetMap

- Pick an area and export the data as an .osm file
- Data includes:
 - Nodes includes ID. Geo-coordinates
 - Object node (e.g. House, Store)
 - Intersection node
 - Edges
 - Def.: Has source and target node
 - Includes tags (max. speed, length, etc.)

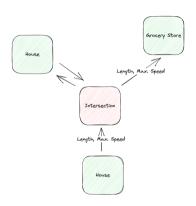


Figure: Example: Node-Edge Relationship

Preprocessing

- Using OSMnx Python package for OpenStreetMap
- It makes it easy to extract the data in a DataFrame similar format

			osmid	oneway	lanes	name	highway	maxspeed	reversed	length	ref	geometry	access	service	area	width	bridge	landuse
u	v	key																
28095800	316420843	0	25299426	True	2	Groner Landstraße	secondary	50	False	14.601	NaN	LINESTRING (9.92684 51.53318, 9.92667 51.53327)	NaN	NaN	NaN	NaN	NaN	NaN
28095826	155062449	0	15540548	True	2	Berliner Straße	primary_link	50	False	25.882	NaN	LINESTRING (9.92882 51.53627, 9.92886 51.53635	NaN	NaN	NaN	NaN	NaN	NaN
28095837	173163461	0	28538211	True	NaN	Godehardstraße	tertiary	50	False	12.508	NaN	LINESTRING (9.93032 51.53718, 9.93043 51.53709)	NaN	NaN	NaN	NaN	NaN	NaN
28095839	4029069313	0	28538183	True	2	Berliner Straße	primary	50	False	62.761	В3	LINESTRING (9.93092 51.53724, 9.93174 51.53749)	NaN	NaN	NaN	NaN	NaN	NaN
28095862	28095866	0	28665635	True	2	Weender Landstraße	tertiary	50	False	12.310	NaN	LINESTRING (9.93382 51.53838, 9.93391 51.53828)	NaN	NaN	NaN	NaN	NaN	NaN

Figure: Edge data example

OSMnx 1.5.1 documentation

Preprocessing (cont.)

- Map preprocessing includes:
 - ► Fully filtering object nodes
 - ► Removing irrelevant edges (e.g. cycleways)

Figure: Raw OSM Map: Göttingen city centre

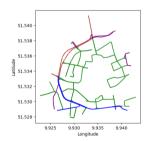


Figure: Processed map: Göttingen city centre

Bianca Vetter & Valerius Mattfeld University of Göttingen 9/21

Redis

Figure: Redis Logo

■ **RedisGraph** is part of the preprocessing

Sanfilipo. Redis. OSMnx 1.5.1 documentation, RedisInsight | The Best Redis GUI, Graph | Redis Documentation Center

Redis

Figure: Redis Logo

- **RedisGraph** is part of the preprocessing
- Uses the Cypher Syntax

Sanfilipo, Redis, OSMnx 1.5.1 documentation, RedisInsight | The Best Redis GUI, Graph | Redis Documentation Center

Redis

Figure: Redis Logo

- **RedisGraph** is part of the preprocessing
- Uses the Cypher Syntax
- Helps us to parse the data from OSMnx into a directed Graph-Database

Sanfilipo, Redis, OSMnx 1.5.1 documentation, RedisInsight | The Best Redis GUI, Graph | Redis Documentation Center

Go as Programming Language

Figure: Redis Logo

- RedisGraph is part of the preprocessing
- Uses the Cypher Syntax
- Helps us to parse the data from OSMnx into a directed Graph-Database
- Has a GUI client (RedisInsight), which allows us to query for the needed data

Sanfilipo, Redis, OSMnx 1.5.1 documentation, RedisInsight | The Best Redis GUI, Graph | Redis Documentation Center

Implementation

■ Initializes in-memory graph from RedisGraph

- Initializes in-memory graph from RedisGraph
- Parses the incoming graph data into Vertex and Edge structs

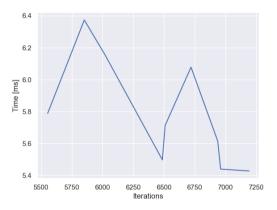
- Initializes in-memory graph from RedisGraph
- Parses the incoming graph data into Vertex and Edge structs
- Uses *Depth-First-Search* for path finding

- Initializes in-memory graph from RedisGraph
- Parses the incoming graph data into Vertex and Edge structs
- Uses Depth-First-Search for path finding
- Omits realistic, microscopic driver model

Implementation - Vehicle

Vehicle Struct in Go

```
vehicle.go
    type Vehicle struct {
        TD
                          string // Unique identifier
        Path
                           [lint // Vertex IDs
        DistanceTravelled float64
        Speed
                          float64
        Graph
                          *graph.Graph[int, GVertex] // Parent Graph Reference
        TsParked
                          bool // Is done travelling
        PathLengths
                           [1float64 // Edge lengths of the path
                           float64 // Maximum distance of the Path
        PathLimit
9
10
```

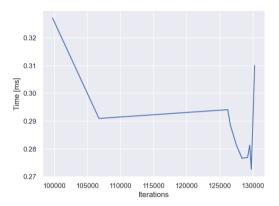

Implementation - Graph Structs

```
graph.go
    type Edge struct {
        TD
                      int // Unique identifier
                      int // Source vertex ID
3
        Source
                      int // Desitination vertex ID
        Target
        Length
                      float64 // Length of the edge
        MaxSpeed
                      float64 // Speed Limit
6
        Data
                      EdgeProperties // Holds HashMap with current Vehicles
8
9
    type GVertex struct {
10
        ID int // Unique identifier
11
          float64 // Longitude (GPS)
12
          float64 // Latitude (GPS)
13
14
```

Benchmarking the Sequential Implementation

- Benchmarking with following parameters
 - Number of vehicles: **100** (default)
 - ▶ Go-routines activated: False (default)
 - ▶ Randomized speed: $5, 5\frac{m}{s} \le v \le 8, 5\frac{m}{s}$, where v is velocity. (default)

Bianca Vetter & Valerius Mattfeld

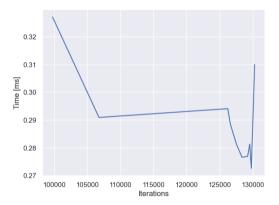


Average Iteration: 6474, 80

Average ms/op: 5,78

MPI

Figure: Sequential Benchmark



Average Iteration: 123424,80

Average ms/op: 0,29

MPI

Figure: Sequential Benchmark with Goroutines

- Average Iteration: 123424, 80
- **19,06x more** iterations
- Average ms/op: 0, 29

a ca. **94.97%** faster

Figure: Sequential Benchmark with Goroutines

17/21

Go as Programming Language

■ **Goal**: Find a simple implementation, that can be distributed between ranks

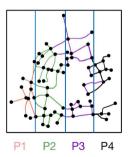


Figure: Example: Edge based partition

First implementation - Edge based partition

- **Goal**: Find a simple implementation, that can be distributed between ranks **Idea**:
 - ▶ Graph split induced by vertex GPS coordinates and # ranks
 - ▶ Each process has a subgraph that includes feature-complete edges

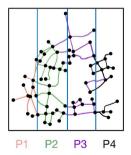


Figure: Example: Edge based partition

First implementation - Edge based partition (cont.)

Implementation:

- ▶ Edges and vertices must be serialized for MPI-IPC
- Vehicle methods must be modified to switch ranks for MPI.

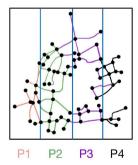


Figure: Example: Edge based partition

Second implementation - Path based partition

■ **Goal**: Minimizing the communication between processes

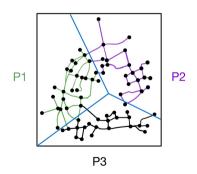


Figure: Example: Path based partition

Second implementation - Path based partition

- **Goal**: Minimizing the communication between processes
- Idea: Each process manages n nearest neighbours

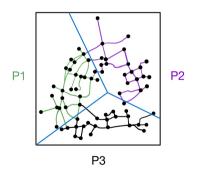


Figure: Example: Path based partition

Second implementation - Path based partition

- **Goal**: Minimizing the communication between processes
- Idea: Each process manages n nearest neighbours
- Implementation: Architecture not fully developed yet

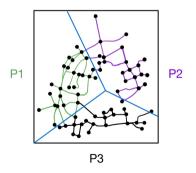


Figure: Example: Path based partition

Current Work

■ Focus: Improvements on Edge-based Partitioning approach on MPI

- Focus: Improvements on Edge-based Partitioning approach on MPI
- Candidate: Implementation of the Path-based Partitioning approach on MPI

Current Work

- **Focus:** Improvements on *Edge-based Partitioning* approach on MPI
- Candidate: Implementation of the Path-based Partitioning approach on MPI
- In progress: Simplification of the map input process; omitting Redis

- Microscopic driver model implementation
- GUI Visualization
- Map input generalisation: Add any coordinates from OpenStreetMaps

References

```
Documentation - The Go Programming Language, en. URL: https://go.dev/doc/ (visited on 07/04/2023).
Go Brand Logo, en. URL: https://go.dev/blog/go-brand (visited on 07/10/2023).
Graph | Redis Documentation Center. URL:
```

https://docs.redis.com/latest/stack/deprecated-features/graph/ (visited on 07/10/2023).

Mattfeld, Valerius and Bianca Vetter, Github - PCHPC - Graph, URL:

https://github.com/valerius21/pchpc/blob/main/streets/redisInfo.go#L33-L44 (visited on 07/10/2023).

.Github - PCHPC - Vehicle. URL: https://github.com/valerius21/pchpc/blob/ c33d3de5f7d55ffb9e21bc3fec3b8ed0f04e2e26/streets/vehicle.go#L16-L25 (visited on 07/10/2023).

OpenStreetMap. en-GB. URL: https://www.openstreetmap.org/ (visited on 07/10/2023).

OSMnx 1.5.1 documentation. URL: https://osmnx.readthedocs.io/en/stable/ (visited on 07/10/2023).

RedisInsight | The Best Redis GUI, en. URL: https://redis.com/redis-enterprise/redis-insight/(visited on 07/10/2023).

Sanfilipo, Salvatore, Redis, en. URL: https://redis.io/(visited on 07/10/2023).

The Go Programming Language. original-date: 2014-08-19T04:33:40Z. July 2023. URL:

https://github.com/golang/go(visited on 07/05/2023).