
Parallel ASTC Texture Compressor

Update

Tim Dettmar

Institute of Computer Science

03.07.23 Practical Course in High-Performance Computing

SH

∞

)



Recap Compressor Implementation Texture-Level Parallelization Tasks

Outline

1 Recap

2 Compressor Implementation

3 Texture-Level Parallelization

4 Tasks

Tim Dettmar Practical Course in High-Performance Computing 2 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Recap

■ General-purpose image compression algorithms are...

▶ Optimized for space efficiency
▶ Difficult to determine the output size given only the input size
▶ JPEG, PNG, HEIC, AVIF, etc.

■ Texture compression is image compression designed specifically for GPUs

▶ Balances performance and space efficiency (file and decode HW)
▶ Random access ideal for perf sensitive apps: games, CAD etc.
▶ ASTC is one of the most complex of these formats
▶ ASTC’s complexity makes it extremely slow to encode

■ mpASTC leverages parallelism, reducing wall-clock encoding time

Tim Dettmar Practical Course in High-Performance Computing 3 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Outline

1 Recap

2 Compressor Implementation

3 Texture-Level Parallelization

4 Tasks

Tim Dettmar Practical Course in High-Performance Computing 4 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Compressor

■ Initially a unoptimized search was used

▶ Far too slow for blocks with >2 colours!
▶ A single block could take hours to encode in the worst case

■ astcenc-like implementation infeasible due to time constraints

▶ Quality and performance of mpASTC probably will not be as good
▶ Lacking the hand rolled assembly, heuristics, etc.

■ Compressor will use techniques described in astcrt

▶ Lower-complexity implementation with reasonable quality

Tim Dettmar Practical Course in High-Performance Computing 5 / 17

[Oom]



Recap Compressor Implementation Texture-Level Parallelization Tasks

Target Feature Set

Limited support of the ASTC feature set

■ RGB LDR colour profile

■ 4x4 block size

■ Fixed texel weight count (16)

■ Fixed colour endpoint count (2)

■ Limited partitioning support

Tim Dettmar Practical Course in High-Performance Computing 6 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

General Process

Endpoint Selection

Gradient

Quantization
0�255

Quint

Trit

1�8.00 bpt

3�2.33 bpt

5�1.60 bpt

Of 128 bits, �96 available for encoding
A B

■ Many images are far more complicated than this simple gradient!

■ ASTC only allows for specific quantization ranges

Tim Dettmar Practical Course in High-Performance Computing 7 / 17

[Khr]



Recap Compressor Implementation Texture-Level Parallelization Tasks

Quantization Ranges

■ ASTC standard specifies variable encoding for colour and texels
▶ Weights

• Min. 1 bit, max. 5 bits (2 - 32 states)
• = 16 - 80 bits

▶ Colour Endpoints

• Min. 1.3 bits to 8 bits (2 - 256 states)
• Fewer bits if more partitions in use
• = 8 - 48 bits per partition

Tim Dettmar Practical Course in High-Performance Computing 8 / 17

[Khr]



Recap Compressor Implementation Texture-Level Parallelization Tasks

Parallel Block-Level Search

■ Different combinations of colour endpoints and quant levels can be tried in
parallel

■ This strategy would be very thread-heavy

▶ i.e., may only be feasible on GPUs

■ In any case, the combination with the highest PSNR is used

Tim Dettmar Practical Course in High-Performance Computing 9 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Outline

1 Recap

2 Compressor Implementation

3 Texture-Level Parallelization

4 Tasks

Tim Dettmar Practical Course in High-Performance Computing 10 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Work Dispatch

■ Trivial solution: split work evenly across all threads

■ Flawed: not all blocks take the same time to encode

▶ Single colour: very fast to encode
▶ Shades of a single colour: small search space
▶ High-entropy data: large search space

• Almost guaranteed to be lossy
• Exhaustive search is infeasible
• Billions of possible encodings

■ Increasing work efficiency requires dispatching work dynamically

Tim Dettmar Practical Course in High-Performance Computing 11 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Work Dispatch - Node Level

■ Avoiding intermediate buffering through sending several rows
simultaneously

▶ Dispatch size of a 4x4 block = 4 rows x image width
▶ Placed into a receive buffer with a preset size
▶ Sending partial width increases communication overhead
▶ Parallelism sufficient with full-width method

Tim Dettmar Practical Course in High-Performance Computing 12 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Work Dispatch - Work Unit

■ Split from the Dispatch Unit are Work Units

■ A “Work Unit” is a single 4x4 RGB block to be compressed

■ Further parallelism theoretically possible but no benefit

Tim Dettmar Practical Course in High-Performance Computing 13 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Implementation

■ Actual block compression functions identical between serial/parallel

▶ Work dispatch for parallelism is an additional layer on top
▶ Work unit size always blocks of 4x4 pixels
▶ Thus, sequential implementation simply loops through all blocks

Tim Dettmar Practical Course in High-Performance Computing 14 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Parallelization

■ Each worker double-buffers two DUs

■ Each thread is dynamically allocated a WU
from the worker DU queue

■ When done, worker:

▶ Flips buffer
▶ Sends compressed result to rank 0
▶ Requests another DU from rank 0
▶ Uses non-blocking MPI functions

4�4
block

Work
Unit

=

n WUs Dispatch
Unit

=

Dispatch Unit
Queue

Worker 0 Worker 1 Worker n

Threads Threads Threads

Tim Dettmar Practical Course in High-Performance Computing 15 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

Remaining Components

■ Experimentation with encoding parameters

■ Search space optimization

■ Block-level parallelism

■ Visualization

Tim Dettmar Practical Course in High-Performance Computing 16 / 17



Recap Compressor Implementation Texture-Level Parallelization Tasks

References

[Khr] Khronos Group. Khronos Data Format Specification Registry. URL:
https://registry.khronos.org/DataFormat/.

[Oom] Daniel Oom. Real-Time Adaptive Scalable Texture Compression For the Web. URL:
https://hdl.handle.net/20.500.12380/234933.

Tim Dettmar Practical Course in High-Performance Computing 17 / 17

https://registry.khronos.org/DataFormat/
https://hdl.handle.net/20.500.12380/234933

	Recap
	Compressor Implementation
	Texture-Level Parallelization
	Tasks

