
SH

∞

Seminar Report

Rusty Parallel Traveling Salesman
Problem Solver

Lars Quentin, Johann Carl Meyer

MatrNr: 21774184, 21969570

Supervisor: Dr. Artur Wachtel

Georg-August-Universität Göttingen
Institute of Computer Science

October 15, 2023

Abstract
The Travelling Salesman Problem (TSP) is one of the most studied problems in computer
science and one of the most intuitive and well-known NP-complete problems. This re-
port presents walky, a new Rust-based TSP solver. Walky supports exact solving using
several highly optimized algorithms with support for sequential, multithreaded as well as
distributed, MPI execution. Additionally, it supports two different approximation algo-
rithms: The simple, easy-to-implement Nearest Neighbour approximation and the more
sophisticated Christofides algorithm. Walky is fully production-ready, fully tested, and
supports the most-used TSPLIB-XML format.

The Benchmarks show that, for exact solving, walky successfully uses pruning to im-
mensely improve performance and increase the viability of exact solving. The nearest
neighbour algorithm scales well with parallelism due to its minimal inter-worker com-
munication requirements. The 1-tree lower bound also greatly benefits from parallelism.
Christofides algorithm in its randomized implementation is a very quick approximation to
the TSP, it can be made more reliable by utilizing parallelism. For the MST computation,
the graphs tested in this setting were too small to benefit from parallelism, though the
benchmarks indicated that for larger graphs a parallel implementation of Prim’s algorithm
would outperform its sequential counterpart.

Overall, walky shows that Rust is a valid choice for developing highly distributed
High-Performance Computing (HPC) applications.

i

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

✓□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

□ Other, namely: -

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables v

List of Figures v

List of Abbreviations vi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Travelling Salesman Problem Definition 1
1.1.2 Why is TSP interesting? . 1
1.1.3 The Implementation of this Project 2

1.2 Goals and Contributions . 2

2 Methodology 3
2.1 Minimum Spanning Tree . 3

2.1.1 Prim’s Algorithm . 3
2.2 Exact and Approximate Solving . 4
2.3 Exact Solving . 4

2.3.1 Sequential Algorithms . 4
2.3.2 Prefix Space Partitioning . 7
2.3.3 Shared Memory Parallelization . 8
2.3.4 Statically Partitioned Distributed Memory Parallelization 9
2.3.5 Dynamically Partitioned Distributed Memory Parallelization 9

2.4 Approximate Solving . 10
2.4.1 Nearest Neighbour . 11
2.4.2 Christofides Algorithm . 11

2.5 Lower Bound . 14
2.5.1 MST Lower Bound . 14
2.5.2 1-tree Lower Bound . 14

3 Implementation 17
3.1 Rust . 17
3.2 Compiler Optimizations . 17
3.3 Command Line Interface (CLI) . 18
3.4 Parallelism Libraries . 18
3.5 Correctness and Tests . 19
3.6 Continuous Integration (CI) pipeline . 20
3.7 Documentation and Releases . 20

4 Performance Analysis / Evaluation 21
4.1 Cluster Setup . 21
4.2 Vampir-based Analysis of Rust MPI Code 21
4.3 Exact Solving Benchmarks . 21

4.3.1 Problem Size Scaling . 21
4.3.2 Strong Scaling . 23
4.3.3 MPI Analysis . 25

iii

4.4 Nearest Neighbour benchmarks . 25
4.4.1 Problem Size Scaling . 25
4.4.2 Strong Scaling . 26
4.4.3 MPI Analysis . 27

4.5 Christofides benchmarks . 28
4.5.1 Problem Size Scaling . 28
4.5.2 Strong Scaling . 29
4.5.3 MPI Analysis . 29

4.6 1-tree Lower Bound . 30
4.6.1 Problem Size Scaling . 30
4.6.2 Strong Scaling . 31
4.6.3 MPI Analysis . 31

4.7 MST lower bound . 32

5 Challenges and Future Work 34
5.1 Challenges . 34
5.2 Future Work . 34

6 Conclusion 35

References 36

A Work sharing A1
A.1 Lars Quentin . A1
A.2 Johann Carl Meyer . A2

B Code samples A2
B.1 walky subcommands . A2

C Tabular Results Exact Solving A5

iv

List of Tables
1 The results of the exact Message Passing Interface (MPI) solver. Efficiency

is computed as prefixes per worker per second. The type αnβp stands for
α computing nodes with β workers per node. 24

List of Figures
1 Naïve implementation of a TSP solver in pseudocode. 5
2 A pseudocode and visual representation of a recursive enumeration 5
3 An example subgraph with a Nearest Neighbour (NN) lower bound (a) and

the formal for computing the total cost of an NN (b). 6
4 Comparison between the NN (a) and Minimum Spanning Tree (MST) (b)

graph of the remaining vertices for an example graph. 7
5 . 22
6 The results of the exact solver. shows all algorithms until the NN prune . . 22
7 . 22
8 The results of the exact solver. shows all algorithms with a smaller y-axis . 22
9 The comparison of the statically and dynamically allocated algorithm for

different numbers of workers. 24
10 Problem Size scaling of the Nearest Neighbour algorithm 26
11 Strong scaling of the Nearest Neighbour algorithm 27
12 Problem Size scaling of the Christofides algorithm 28
13 Strong scaling of the Christofides algorithm 29
14 problem size scaling of the 1-tree lower bound 30
15 Strong scaling of the 1-tree lower bound 31
16 problem size scaling of the MST lower bound 32

v

List of Abbreviations
ABI Application Binary Interface

CI Continuous Integration

CLI Command Line Interface

FFI Foreign Function Interface

HPC High-Performance Computing

NN Nearest Neighbour

NP Nondeterministic Polynomial Time

LLVM Low Level Virtual Machine

LTO Link Time Optimization

MPI Message Passing Interface

MSRV Minimum Supported Rust Version

MST Minimum Spanning Tree

RAII Resource Acquisition Is Initialization

SCC Scientific Compute Cluster

TSP Travelling Salesman Problem

UX User Experience

vi

Rusty Parallel Traveling Salesman Problem Solver

1 Introduction
1.1 Motivation

Before explaining the general motivation, a small introduction to the TSP is required.

1.1.1 Travelling Salesman Problem Definition

The TSP is easily described in colloquial language.

user “Kapitän Nemo” https://commons.wikimedia.org/w/index.php?
curid=5584283

“Given a list of cities and the distances
between each pair of cities, what is the
shortest possible route that visits each
city exactly once and returns to the ori-
gin city?” [1]

More formally the TSP is defined as follows.

• Input: A weighted (only non-negative weights), undirected, and complete graph.

• Output: A tour (cycle that visits every vertex) on the input graph, that uses each
edge at most one time.

• The optimization problem: Find a valid output that has minimal (cumulative)
edge weight.

For a more visual introduction to the problem, see the video essay “The Traveling
Salesman Problem: When Good Enough Beats Perfect” by Reducible [2].

1.1.2 Why is TSP interesting?

The TSP is interesting for us, because of a few reasons. First, the problem is well studied,
thus good literature on the problem is easily found. Then, the TSP is known to be NP-
hard, meaning that there can be found relatively small input data, for which the solution
takes large amounts of computing power, thus suggesting that HPC can be leveraged
to speed up a computation. Moreover, the problem is intuitive to understand and has
practical applications in e.g. genome analysis, satellite route planning, or fiber optical
network design [3], using the Concorde TSP Solver software.

Section 1 Lars Quentin, Johann Carl Meyer 1

https://commons.wikimedia.org/w/index.php?curid=5584283
https://commons.wikimedia.org/w/index.php?curid=5584283
https://en.wikipedia.org/wiki/Concorde_TSP_Solver

Rusty Parallel Traveling Salesman Problem Solver

1.1.3 The Implementation of this Project

As a part of this project, a TSP solver was implemented and made publicly available on
GitHub1, the software has been built using the Rust programming language. To integrate
into the Rust ecosystem, the solver has been published to crates.io as well2. All the code is
published and licensed under the permissive MIT open-source license to encourage further
third-party development.

1.2 Goals and Contributions

The following goals and contributions are defined for this project.

1. Develop a CLI tool compatible with current state-of-the-art research

2. Performance and Efficiency

• Create a blazingly fast software package

• Provide a 100% pure Rust alternative to classical solvers

• Support both shared and distributed memory parallelization

• Achieve full documentation coverage

• Achieve high unit test coverage

3. Exact Solving

• Implement a simple, exact solver for the TSP

• Offer several optimized versions

• Create a shared memory parallelized version

• Develop a distributed memory, parallelized solver based on MPI

4. Approximation Tactics

• Include a trivial, easy-to-parallelize tactic and

• A sophisticated, state-of-the-art tactic

• For both:

– Provide a shared memory parallelized solver
– Provide a distributed memory, MPI-based parallelized solver

5. Lower Bound Calculation for TSP

• Provide a sequential implementation

• Develop a parallelized implementation using MPI

1https://github.com/lquenti/walky
2https://crates.io/crates/walky/

Section 1 Lars Quentin, Johann Carl Meyer 2

https://github.com/lquenti/walky/blob/main/LICENSE
https://github.com/lquenti/walky
https://crates.io/crates/walky/

Rusty Parallel Traveling Salesman Problem Solver

2 Methodology
2.1 Minimum Spanning Tree

For the further report, it is assumed, that the reader is familiar with the concept of an
MST. For the unfamiliar reader, a look at [4, pp. 585ff.] is suggested.

For this project, the MSTs are being calculated using Prim’s Algorithm.

2.1.1 Prim’s Algorithm

Prim’s Algorithm is a well-known algorithm used for finding MSTs in graphs. The fol-
lowing Definition of the algorithm is adapted from [4, p. 596].

1 // G: a graph
2 // G.V: List of all vertices in G
3 // G.Adj: G.Adj[u] is a List of all vertices that are adjacent to u
4 // w: w(u,v) == weight of the edge between u and v
5 // r: root / starting vertex for the algorithm
6 MST-PRIM(G, w, r)
7 for each vertex u in G.V
8 u.key = ∞
9 u.pi = NIL

10 r.key = 0
11 Q = PriorityQueue::empty()
12 for each vertex u in G.V
13 Q.insert(u)
14 while not Q.is_empty()
15 u = Q.extract_min() // add u to the tree
16 for each vertex v in G.Adj[u] // update keys of u's non-tree neighbors
17 if v in Q and w(u, v) < v.key
18 v.pi = u
19 v.key = w(u,v)
20 Q.update_key(v, w(u,v))

The implementation of the PriorityQueue can be done with different data structures.
A naïve way is to use vectors with linear search, where a single extract_min Operation
takes linear time. There are more sophisticated implementations using binary or Fibonacci
heaps, that improve the asymptotic time demand of Prim’s algorithm. However, when
testing the different implementations on TSPLIB instances [5], it becomes clear that the
graph sizes are too small to benefit from asymptotic improvements, and the simple linear
search approach is the fastest. This is likely a consequence of the higher locality and
simplicity of the code, giving rise to better compile-time optimizations, better branch
prediction, and many other optimizations.

It is possible to parallelize linear search on a vector. However, due to the graphs for
a TSP instance being relatively small in terms of nodes, there was very little benefit in
using parallelization for the tested use cases. Even more so, the overhead created by
the parallelization framework oftentimes outweighed the benefits of parallel computation.
Nevertheless, a parallel implementation for shared memory is provided, relying on the

Section 2 Lars Quentin, Johann Carl Meyer 3

Rusty Parallel Traveling Salesman Problem Solver

rayon ParallelIterator implementation to handle the exact details. Although an im-
plementation using MPI is possible, the results from the rayon benchmarks suggest that
there is little benefit in implementing it for this use case, as can be seen in section 4.7.

2.2 Exact and Approximate Solving

Since it is known to be NP3 complete, the TSP is very hard to solve. While the
naïve implementation is Θ(n!) time and Θ(n2) space4, even highly optimized, dynamic
programming-based algorithms such as the well-known Held-Karp algorithm [6] still re-
quire Θ(2nn2) time with Θ(n2n) space complexity for caching; n being the number of
nodes. This implies that, for large graphs, the computation is too time-expensive. More
importantly, a sub-exponential algorithm is very unlikely to be found in the future, as it
would implicitly prove that P = NP .

With such a hard problem, which, as mentioned in the introduction, has many ap-
plications in real life, the need for sub-exponential approximation algorithms becomes
obvious. Walky supports both exact solving and finding approximate solutions. In this
chapter, the focus will first be on exact solving, starting with the naïve Θ(n!) algorithm
which will then be optimized and parallelized using traditional performance optimization
methods. After that, two different approximation algorithms will be covered. Lastly, two
more algorithms for computing the lower bound will be presented.

2.3 Exact Solving

This section will focus on the exact solving. Starting with the most naïve, sequential
implementation, this report will iteratively optimize the runtime using traditional perfor-
mance engineering. Note that many of the ideas are inspired by the related TSP lecture
from the MIT 6.172 course “Performance Engineering of Software Systems” [7].

2.3.1 Sequential Algorithms

This section will use pseudo-code whenever possible to simplify the algorithmic concepts
explained.

Version 0: Naïve implementation: For a n-vertex graph, with vertices numbered
1, . . . , n, a tour can be described as an n-dimensional vector where each number [1, n]
can occur only once. Thus, testing all possible tours for the shortest one is equivalent to
trying out all permutations of the vector (1, . . . , n). In pseudocode:

3Nondeterministic Polynomial Time (NP)
4Which is the minimum to hold the graph itself.

Section 2 Lars Quentin, Johann Carl Meyer 4

Rusty Parallel Traveling Salesman Problem Solver

1 def tsp_solver(G):
2 path = [1..n]
3 least_cost = inf
4 while (has_next_permutation(path)):
5 current_cost = evaluate(path)
6 if (current_cost < least_cost):
7 least_cost = current_cost
8 path = next_permutation(path)
9 return least_cost

Figure 1: Naïve implementation of a TSP solver in pseudocode.

Since there are (
∏n

i=1 i) = n! possible permutations, this algorithm has a time com-
plexity of Θ(n!). For enumeration, Nayuiki’s iterative next lexicographical permutation
algorithm was used [8].

Version 1: Fix the first element: The TSP is defined as the shortest path traveling
through all cities and returning to the origin. Since a tour is cyclic, the vectors (1, 2, 3),
(3, 1, 2), and (2, 3, 1) all represent the same underlying tour. Thus, one can reduce the
time complexity to Θ((n− 1)!) by fixing the first element.

Version 2 and 3: Prune if the subpath is non-optimal: Version 2 caches the
subpaths, reducing the amount of additions required to compute the tour cost.

Starting with version 3, the next algorithm iterations will heavily rely on decision tree
pruning. This is best explained by an example:

Example 2.1. Pruning Let G be an n-dimensional, fully connected, undirected symmetric
graph for which the TSP is being solved. W.l.o.g let 35 be the current optimal known cost.

Let us further assume that the path (4, 5, 6) has cost 36. Since edge costs can’t be
negative, this means that all paths with the prefix (4, 5, 6) can’t be better than the already
known optimum, thus they can be pruned.

Hence, instead of iterating over all possible solutions as a whole, the partial sums of
the subtours will be cached using recursive enumeration:

1 def rec_enum(xs, n):
2 """Recursively enumerate xs"""
3 if len(xs) == n: # Full path
4 print(xs)
5 for i in range(n):
6 if i not in xs:
7 rec_enum(xs + [i], n)

(a) Pseudocode of recursive enumeration

1

4

3

2

2

3

3

4

2

2

4

2

4

3

3

4

(b) All permutations of (1, 2, 3, 4), with 1
fixed as the first element, visualized as a
decision tree.

Figure 2: A pseudocode and visual representation of a recursive enumeration

Section 2 Lars Quentin, Johann Carl Meyer 5

Rusty Parallel Traveling Salesman Problem Solver

Therefore, version 3 uses recursive enumeration for the tour generation, computing
the sub-tour cost on each level, and pruning whenever the partial sum is bigger than the
previously known optimum by not recursing deeper.

Analogous to this approach, the next versions will use pruning extensively to achieve
better performance by reducing the number of permutations to compute the cost for.

Version 4: Prune using NN Metric: In version 3, the subgraph was pruned iff it
already costs more than the previously known minimum. To prune more aggressively,
now a subgraph will be pruned iff its cost plus a lower bound on the remaining vertices
is bigger than the current minimum. A graph qualifies as a lower bound if its cumulative
cost is below the sum of the costs of the vertices added to the TSP solution;

Here, the Nearest Neighbour lower bound will be used5. The NN graph will be com-
puted by connecting each vertex to its nearest neighbour. Note that the resulting graph
can have multi-edges and doesn’t have to be fully connected.

Let p be our recursively enumerated subpath, v1, . . . , vm be the free vertices (i.e. vi ̸∈
p), and c : V ×V → R be the cost function. The nearest neighbour graph can be computed
in Θ(m2) using the following formula:

(a)

cNN :=
∑

i∈{1,...,m}

min
j∈{1,...,m}

i ̸=j

c(i, j)

(b)

Figure 3: An example subgraph with a NN lower bound (a) and the formal for computing
the total cost of an NN (b).

Note that this is an obvious improvement over the previous lower bound for pruning
since p+ cNN is a tighter bound than p+ 0.

Version 5: Prune using the MST Metric: This version uses the same approach as
version 4, but instead of computing a NN graph, it computes the previously defined MST
from the remaining vertices. This is an even tighter bound.

5Not to be confused with the Nearest Neighbour algorithm used for approximating a solution.

Section 2 Lars Quentin, Johann Carl Meyer 6

Rusty Parallel Traveling Salesman Problem Solver

(a) (b)

Figure 4: Comparison between the NN (a) and MST (b) graph of the remaining vertices
for an example graph.

Note that it is not obvious that this algorithm will perform better than the previous
versions. While it improves its pruning ability, it also adds the cost of computing all
MSTs. In the next and last version, those MSTs will be cached to reduce redundant
computations.

Version 6: Cache the previous MSTs: The last version builds upon version 5, but
caches the MSTs so that the amount of redundant compute is reduced. This requires
a fast MST lookup; in our code a HashMap was used, resulting in O(1) average lookup
time. Furthermore, instead of using the default HashMap, a cryptographically insecure
but overall more performant HashMap was used [9]6.

2.3.2 Prefix Space Partitioning

For explaining both the shared and distributed parallelization algorithms, the concept of
prefix space partitioning is required.

As explained before, a TSP solution of an n-vertex graph can be viewed as an n-
dimensional vector. Furthermore, since the paths are generated using recursive enumer-
ation, the prefix of a path can be used to compute all subpaths containing that prefix.
This means that the prefixes of a given length form an equivalence relation on the set of
all paths. Since all equivalence classes have the same size, one can evenly partition the
work by dividing the number of prefixes by the number of workers.

This mapping is archived by interpreting a prefix as a n-ary number.

Definition 2.2. Mapping paths to n-ary numbers: A path v := (v1, . . . , vm) of an n-vertex
graph can be mapped to a number by interpreting the i-th element as the i-th digit of an
n-ary number. Formally, the mapping function ρn,m can be defined as

ρn,m : {1, . . . , n}m → N

ρn,m(v1, . . . , nm) :=
m∑
i=1

ni−1vi

6As the name implies, rustc-hash is also used in the compiler itself and maintained by the Rust core
team.

Section 2 Lars Quentin, Johann Carl Meyer 7

Rusty Parallel Traveling Salesman Problem Solver

Let ρ−1
n,m be defined as the inverse, i.e. ρ−1

n,m(ρn,m(x)) = x.

Example 2.3. This is analogous (but reversed) to how natural numbers in base 10 can
be defined.

(12345)10 = 5 · 100 + 4 · 101 + 3 · 102 + 2 · 103 + 1 · 104 = ρ10,5(5, 4, 3, 2, 1)

Example 2.4. This is also how binary numbers are converted into the decimal system.

(10001)2 = 1 · 20 + 1 · 24 = 9 = ρ2,5(1, 0, 0, 0, 1)

Now, with this number mapping in mind, the prefix space partitioning algorithm can
be properly defined:

Definition 2.5. Prefix Space Partitioning Algorithm: Given a graph with n vertices, a
prefix length of m and p workers, the i-th worker can compute his prefix range as follows:

1. Compute the total number of prefix values, including invalid paths: nm.

2. Calculate the i-th chunk of all path ids: [l, r) := [nm/p · (i− 1), nm/p · i)

3. Map and return the prefixes associated with those bounds:

• Starting Value: ρ−1
n,m(l)

• Ending Value (exclusive): ρ−1
n,m(r)

Remark. Note that this prefix space partitioning can be done locally on each worker
without any communication needed by using its rank and the world size.

2.3.3 Shared Memory Parallelization

With the idea of prefix space partitioning in mind, the shared memory parallelization
algorithm is straightforward:

1. Start n threads. n can be manually specified, otherwise it defaults to
std::thread::available_parallelism.

2. Each thread computes its prefix space using prefix space partitioning.
The prefix length can be manually specified, otherwise it defaults to 3.

3. Each thread computes each valid tour in its prefix space.

The threads prune using the MST lower bound of the version 5 sequential algorithm.
The current minimum is potentially updated after every tour. Synchronization is done
via a mutex, of which all threads get an atomically counted reference. Note that we do
not cache the MSTs as the performance boost was negligible while resulting in a lot of
locking.

Section 2 Lars Quentin, Johann Carl Meyer 8

Rusty Parallel Traveling Salesman Problem Solver

2.3.4 Statically Partitioned Distributed Memory Parallelization

The statically partitioned, MPI-based solver works analogously to the multi-threaded
version, using both the MST lower bound as well as the prefix space partitioning.

This means that it

• divides up the work through prefix space partitioning.

• goes through all possible solutions that can’t be pruned away.

• generates all possible paths through recursive enumeration.

• caches the sum of the partial path throughout the recursion.

• prunes iff the partial sum plus the MST lower bound is bigger than the known
optimum.

Now to the communication. Let us assume that the communicator world size is n. We
choose rank 0 as the communicator and rank {1, . . . , n− 1} as the workers.

Using prefix space partitioning7, each worker knows the prefixes it has to process. In
order to prune, every time a worker finishes a prefix, it sends its current lowest cost it
ever encountered to the coordinator. This is done even if it was not improved during that
prefix.

It is done because this message is also used as an update request for the newest global
minimum known from the coordinator. After taking the worker’s minimum into account,
it returns the global minimum that all workers ever archived. Note that only the cost and
not the full path is sent to minimize the amount of traffic between the communicator and
the workers. After all assigned prefixes are computed, the worker waits at a barrier for
the other workers to complete.

Since the workers prune, the coordinator can not know how many requests it can
expect from each worker. Thus, each worker has to tell the coordinator when it is done,
otherwise, it will deadlock waiting for yet another processed prefix.

This is done by sending another message with a negative cost. The coordinator tracks
how many of those messages were received. Once the coordinator receives n− 1 messages
it stops listening. Receiving n − 1 finish messages implies that all workers are already
waiting at the barrier. Thus, the coordinator joins the barrier node; breaking the barrier
and starting the wrapup.

After the barrier was broken, the coordinator broadcasts which rank won with which
cost. Therefore, all workers know who won. The winner then finally broadcasts the
winning tour to every other node. Thus, in the end, every worker knows the best cost
from the coordinator and the best path from the winner. Again, note that the wrapup is
a network efficiency optimization since it allowed us to not send the current best path to
the coordinator each time it was improved by a worker.

2.3.5 Dynamically Partitioned Distributed Memory Parallelization

This algorithm is an optimization of the previous MPI-based algorithm. This is only done
by changing the communication scheme. Thus, the algorithmic steps are the same as the
statically partitioned algorithm.

7Variadic prefix length, defaults to 3 vertices.

Section 2 Lars Quentin, Johann Carl Meyer 9

Rusty Parallel Traveling Salesman Problem Solver

In the static solver, the load was divided locally through the rank and prefix space
partitioning. This is easy to compute since one can just divide with n-ary numbers.

But, especially since the problem is factorial, the problem should be pruned as much
as possible. In the static version, this was done by telling the root the local minimum it
currently knows, and as an answer receiving the global current minimum with that answer
in mind. Note that this requires one bidirectional communication per prefix.

This approach has one disadvantage. Note that, while the pruning greatly optimizes
the average-case scenario, it does not improve the worst-case scenario. The algorithm
performs great, but its performance is very dependent on the graph and its pruneability.
The same logic applies to all subgraphs with fixed prefixes.

The workers have (potentially) vastly different workloads, depending on how well they
can prune. Since the coordinator has to wait for all workers to finish before it knows
the global best solution, all finished workers have to idle, wasting precious compute.
Even more important, global work coordination wouldn’t even increase the amount of
communications, since we do one bi-directional send and receive per prefix nonetheless.

Thus, instead of using prefix space partitioning to predivide it statically, the compu-
tation workflow is as follows:

1. The worker asks the coordinator for a new prefix to compute8.

2. The coordinator answers with the next non-computed prefix as well as the current
minimum.
If all prefixes are computed, the worker receives a prefix with all zeroes, which means
it waits at a barrier for the others to finish.

3. The worker computes the current prefix given to it.
It uses the current global minimum given with the prefix to prune accordingly.

4. The worker returns its local minimum to the work node.
This is an implicit ask for more work.
The root node can use that node-specific minimum to update the global minimum
if needed.

Although the root could already know which prefix resulted in the global minimum
by keeping track of which ones it assigned to whom, it does not know the whole minimal
path. Thus, it needs the same wrapup as the static solver.

After the barrier was broken, the coordinator broadcasts which rank won with which
cost. Therefore, all workers know who won. The winner then finally broadcasts the
winning tour to every other node. Thus, in the end, every worker knows the best cost
from the coordinator and the best path from the winner. Again, note that the wrapup is
a network efficiency optimization since it allowed us to not send the current best path to
the coordinator each time it was improved by a worker.

2.4 Approximate Solving

Walky provides two different approximation algorithms for solving the TSP: The Near-
est Neighbour algorithm, which provides a simple but not tight approximation, and the
Christofides algorithm, which is more sophisticated but produces a tighter bound.

8For easier MPI communication, prefixes have a fixed length of 3 vertices.

Section 2 Lars Quentin, Johann Carl Meyer 10

Rusty Parallel Traveling Salesman Problem Solver

2.4.1 Nearest Neighbour

The 1-nearest-neighbour algorithm9 is a simple, straightforward greedy algorithm to com-
pute an approximation for the TSP. It works as follows:

Algorithm:

• Choose a random starting node.

• From that node, greedily visit the nearest node which was not visited before.

• Repeat until all nodes are visited.

• Return to the starting node to close the tour.

In walky, the nearest neighbour algorithm computes the 1-nearest-neighbour for all
starting nodes and returns the minimum. Since the 1-nearest-neighbour has a complexity
of Θ(n2), the nearest neighbour has a complexity of Θ(n3).

Shared-Memory Parallelization: The parallelization was done trivially. Using the
rayon create, all staring nodes were processed parallelly using a preallocated thread pool.
The results were then reduced to get the global minimum.

Distributed-Memory Parallelization: The MPI-based implementation uses a sim-
plified version of the aforementioned prefix space partitioning.

This algorithm requires no coordinator, i.e. all nodes are workers. The 1-nearest-
neighbour computations will be done sequentially, the parallelization consists of the work-
load partitioning through the starting nodes.

Given an n-vertex graph and m workers, the i-th rank computes the 1-nearest-neighbour
for the starting nodes [n/m · i, n/m · (i+1)). Since every worker knows its rank, this can
be computed locally and independently without any communication.

Once the minimum of that local chunk has been found, the MPI communication starts.
First, through an ALL_REDUCE on the cost every worker finds out the best cost and which
worker won. After that, the best worker knows that it won. It then proceeds to broadcast
the whole path to everyone. Analogously to the static exact solver, this is a network
efficiency optimization by only sending one path through the network at the end.

Now every worker knows the global minimum and can successfully return it.

2.4.2 Christofides Algorithm

Next is an algorithm that requires more assumptions on the input, but also gives an
approximation to the TSP that is guaranteed to have a weight ≤ 1.5 ·ω, with ω being the
weight of the optimal solution [10]. The algorithm requires two preliminary definitions.

Definition 2.6 (Matching). See [11]. Let G = (V,E) be a Graph. A set M ⊆ E is called
matching of G, if all edges in M are pairwise disjoint

∀x, y ∈M : x ∩ y = ∅

.
9Not to be confused with the nearest neighbour lower bound used for exact solving.

Section 2 Lars Quentin, Johann Carl Meyer 11

Rusty Parallel Traveling Salesman Problem Solver

Definition 2.7 (Perfect Matching). See [11]. Let G = (V,E) be a graph and M ⊆ E be
a matching of G. Then, M is called perfect, if M spans the whole graph

∀v ∈ V ∃e ∈M : v ∈ e

.

Now, the Christofides Algorithm can be defined.

Definition 2.8 (Christofides Algorithm). Let G = (V,E) be a metric Graph (i.e. the
triangle inequality holds). The Christofides algorithm is a five-step procedure [10]:

1. Calculate the MST of G: MST = (VM , EM).

2. Calculate an exact matching in S := (ES, VS).

Let VS := {v ∈ VM | degM(v) ≡ 1 mod 2} the set of all vertices that have odd degree
in the MST. Then let ES := {e ∈ VG|e = (e1, e2) ∧ e1 ∈ VS ∧ e2 ∈ VS}. Of all
possible perfect matchings, choose one with minimal weight.

3. Combine the MST and the matching into one multigraph.

4. Find an Eulerian cycle through the multigraph.

5. Make the Eulerian cycle Hamiltonian.

Remark. According to [10], in step 2 a perfect matching can always be found.
Some of the above steps use constructs that are not defined yet. Those steps will be

elaborated on below. In contrast to that, for step 1 simply refer to section 2.1.

Explaining Step 2 Of Christofides Algorithm In definition 2.8, only a high-level
description for step 2 was provided. To provide further explanation, a visualization of
that step on the K5 graph follows.

Let G = K5. Edge weights are left out for the simplicity of visualization. In the left
graph, an MST of G is highlighted with bold edges in black. The vertices of odd degree
w.r.t the MST are: 1, 2, 3, 4. The task is then to find a matching over these vertices. The
resulting matching is visualized in the right graph with blue edges.

1

2

34

5

1

2

34

5

Finding A Matching Executing the Christofides Algorithm involves finding a minimum-
cost perfect matching. In a sequential setting Edmonds’s Blossom Algorithm10 gives an
exact solution to the problem. Instead of this algorithm, a naïve randomized approximate
solution was implemented, to be able to utilize parallelization.

The randomized approximate solution follows this idea: randomly guess a matching
and do some randomized improvements. Repeat this and take the matching with minimal
cost. This solution is easy to implement and easy to parallelize.

10For a definition and live demonstration see https://algorithms.discrete.ma.tum.de/
graph-algorithms/matchings-blossom-algorithm/index_en.html.

Section 2 Lars Quentin, Johann Carl Meyer 12

https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

Rusty Parallel Traveling Salesman Problem Solver

Definition 2.9 (Algorithm: Finding an initial matching). Let G = (V,E) be a complete
graph with an even amount of vertices |V | = 2n, n ∈ N. W.l.o.g. let V = {1, . . . , 2n}.
Select a permutation π : V → V uniformly at random. Now

M = {{π(1), π(2)}, . . . , {π(2n− 1), π(2n)}}

is a perfect matching of G.

Now, focus on improving a matching consisting of only 2 edges.

Theorem 2.10 (Minimum-cost perfect matching on K4). Given the Graph K4 = (V,E)
w.o.l.g. V = {{1, 2}, {3, 4}}. Then exactly 3 perfect matchings exist on K4:

1

2

3

4 ,

1

2

3

4 ,

1

2

3

4

A matching with the lowest cost is a minimum-cost perfect matching on K4.

Proof. When constructing a matching for K4, there are
(
4
2

)
= 6 options for the first edge

e1 = {a, b}. The choice for the second edge immediately follows as e2 = {c, d}, by the
property of a matching: e1 ∩ e2 = ∅. Then M = {e1, e2}. Because the order of edges is
unimportant for the matching, for every choice of (e1, e2), there is one choice (e′1, e

′
2) with

e1 = e′2 ∧ e2 = e′1. Therefore, there are 6
2
= 3 perfect matchings on K4.

With this theorem, one can improve matchings of arbitrary size.

Definition 2.11 (Randomly Improving A Matching). Let

M = {m0, . . . ,mn−1}

be a perfect matching on Kn, n ∈ N. Repeat the following procedure k ∈ N times:
Uniformly at random select a permutation π : M →M . For every perfect matching

M ′
i = {π(m2i), π(m2i+1)}, i = 0, . . . ,

⌊n
2

⌋
on the corresponding subgraph K ′ ⊆ Kn with K ′ ∼= K4, use theorem 2.10 to compute a
minimum-cost perfect matching M̃ ′

i . Then set

M ←
{
M̃ ′

i |i ∈
{
i = 0, . . . ,

⌊n
2

⌋}}
∪

{
{π(mn−1)} , if n is odd
∅ , else

.

Remark. The application of theorem 2.10 on each M ′
i can be parallelized, as the compu-

tation for each i is independent of all other computations.

Last Steps Of Christofides Algorithm For step 4 one needs to compute an Eulerian
cycle. This is done with an implementation of Hierholzer’s algorithm [12][13, Algorithm
X.4].

Finally, step 5 is easily done using the metric property of the complete input graph:
Start the Hamiltonian cycle at some vertex and keep track of which vertices have been
visited while traversing the Eulerian cycle. If a vertex has not been visited, add it to the
Hamiltonian cycle. If a vertex has already been visited, simply skip it and proceed with
the next vertex. Such shortcuts exist because the graph is complete, and taking these
shortcuts does not increase the weight of the solution, since the graph is metric whereby
the triangle inequality holds.

Section 2 Lars Quentin, Johann Carl Meyer 13

Rusty Parallel Traveling Salesman Problem Solver

Parallelization There is a parallel implementation using rayon, and one using MPI.
Both only parallelize the improvement of randomized matchings, as in Def. 2.11.

The shared memory implementation distributes all the consecutive pairs of edges be-
tween the available threads, and computes the improved 2-matchings (see Def. 2.10) in
parallel. Then, a new matching is constructed from all partial values of the threads. The
details of synchronization and message passing are handled by the rayon ParallelIterator
implementation.

The MPI-based parallelization uses a different approach: The randomized improve-
ment of the matching is done independently at each process, only at the end the results
are gathered at the root process and the matching with the least cost is chosen. For this,
each process sends the local solution and the corresponding solution weight to the root
process per MPI unicast. This is not optimal, as the optimal solution weight could be
determined by a global reduction, such that only one full solution vector would need to
be sent. Because the Rust MPI interface rsmpi11 does not support the MPI_MAXLOC12

operation at the moment, but the location of the maximum weight is needed, a simple
reduction would not suffice.

2.5 Lower Bound

So far, there are multiple techniques for approximation a solution to the TSP, each result
provides an upper bound on the exact solution. Now comes a brief look at computing
lower bounds to the TSP.

2.5.1 MST Lower Bound

The MST of a graph is, in comparison to the TSP, fairly easy to compute. It turns out,
that the MST provides a lower bound to the TSP in a very natural way.

Theorem 2.12 (MST lower bound). Let G be a weighted, complete graph. Let TG be an
exact solution to the TSP on G, with weight wT . Let M be an MST of G, with weight
wM . Then

wM ≤ wT

holds.

Proof. T is the solution to the TSP on G. By definition, T then is an Eulerian cycle, that
visits each vertex in G exactly once. Therefore, by removing any edge from T , one yields
a spanning tree S of G, with weight wS. By definition,

wM ≤ wS ≤ wT

follows.

2.5.2 1-tree Lower Bound

One can improve upon the MST-based approach, by using a variation of the MST, called
minimum-weight 1-tree.

11This will be introduced in more detail in section 3.4.
12For a description of the operation see [14, section 5.9.4].

Section 2 Lars Quentin, Johann Carl Meyer 14

Rusty Parallel Traveling Salesman Problem Solver

Definition 2.13 (1-tree). See [15, p. 1139]. Let G = (V,E) be a graph. Let {v1, . . . , vn} =
V be some enumeration of all vertices V . Then a 1-tree on G is defined to be

1. a tree, when restricted to the vertices {v2, . . . , vn},

2. and to have exactly one cycle. This cycle goes through vertex v1.

In the extreme case, such a 1-tree can be a cycle in a graph.

Theorem 2.14 (Cycle as a 1-tree). Let G be a Graph, and C be a circle in G. The C is
a 1-tree.

Proof. Let G = (V,E), and let V = {v1, . . . , vn} be some enumeration. Then C|{v2,...,vn}
is a tree. By definition, C contains exactly one cycle, and it goes through v1. Therefore,
all properties of Def. 2.13 apply to C.

The 1-trees for the lower bound must also be of minimal weight.

Definition 2.15 (minimum-weight 1-tree). See [15, p. 1139]. Let G = (V,E) be a
weighted graph. Let {v1, . . . , vn} = V be some enumeration of all vertices V . Then a
minimum-weight 1-tree on G is a 1-tree, that also is

1. an MST when restricted to the vertices {v2, . . . , vn},

2. and the special vertex v1 is connected to the rest of the 1-tree with the two distinct
cheapest edges.

Remark. For every choice of the special vertex v1, there is a possibly distinct minimum-
weight 1-tree. All of these 1-trees can be computed independently of each other, which is
easy to parallelize. This point will be revisited later.

Combining this knowledge, one can now construct a tighter lower bound on the TSP.

Theorem 2.16 (1-tree lower bound). Let G be a weighted, complete graph. Let TG be an
exact solution to the TSP on G, with weight wT . LetM be the set of all minimum-weight
1-trees of G, and let WM be the set of the corresponding weights. Then

max
wM∈WM

wM ≤ wT

holds.

Proof. Let M ∈M with weight wm, s.t.

wM = max
w∈WM

w

. Then, let v1 be the special vertex of M . T is an Eulerian cycle, thus by Theorem 2.14
it is a 1-tree on G, with special vertex v1. Since M has minimal weight,

wM ≤ wT

follows immediately.

Section 2 Lars Quentin, Johann Carl Meyer 15

Rusty Parallel Traveling Salesman Problem Solver

Remark. When removing one edge incident to the special vertex v1 from a 1-tree, one
yields a spanning tree. Thus, the 1-tree lower bound is tighter than the MST lower
bound.

The sequential implementation is straightforward and follows directly from the above-
mentioned definitions. It leverages the fact, that the used implementation of Prim’s
algorithm is capable of ignoring one vertex in a given graph, which is then used to construct
the 1-trees.

There are two parallel implementations provided, one using rayon, and one using MPI.
For rayon, the parallelization is again handled by the ParallelIterator implementa-

tion. For every vertex in the graph there is a minimum-weight 1-tree (see Def. 2.15). In
principle, these 1-trees can be computed in separate threads. At the end, the maximum
of the tree weights is computed over all threads.

The MPI version follows the same idea. Each process knows their rank r and the
size s of the MPI world. Then, the process computes a minimum-weight 1-tree for each
vertex u, where u ≡ r mod s. Afterwards, using an MPI reduction, the maximum over
all processes is collected at the root process.

Section 2 Lars Quentin, Johann Carl Meyer 16

Rusty Parallel Traveling Salesman Problem Solver

3 Implementation
3.1 Rust

Rust [16] is a systems programming language initially released by Mozilla Research in
2015. It was designed as a memory-safe alternative for C++ in Servo [17], which is the
web rendering engine used in Firefox. Rust’s main goal is to provide memory safety while
having an on-par performance with other systems languages such as C or C++. Having
memory safety is paramount; research suggests that in memory-unsafe languages, at least
65% of the security vulnerabilities are caused by memory unsafety. This was discovered
simultaneously at Android [18] [19], iOS and macOS [20], Chrome [21], Microsoft [22],
Firefox [23], and Ubuntu [24].

Specifically, Rust is great for HPC since one can think of it as a modern dialect of
C++ enforced by the compiler. It uses RAII13 internally to ensure memory safety, while
references are roughly equivalent to std::unique_ptr. While Rust’s ecosystem itself is
still maturing, due to its clean Foreign Function Interface (FFI) and simple bidirectional
C++ [25] and Python [26] interoperability allows for seamless integration into a typical
HPC environment. Analogously, while the Rust compiler is comparatively new, it already
supports most compiler optimizations by leveraging Low Level Virtual Machine (LLVM)
as a compiler backend. It is natively compiled without a garbage collector.

Lastly, with its many functional patterns, it is a very loved language by the industry
and developers alike. According to the yearly StackOverflow survey it was voted as the
most loved language for the 7th year in a row [27]. It rapidly gets adopted by big tech
firms such as AWS [28], Google [29], Meta [30], and Microsoft [31] and is even accepted
as a language for the Linux kernel [32].

Walky requires an Minimum Supported Rust Version (MSRV) of 1.70.014. Since MPI
support is hidden behind a feature flag, no MPI is required for compilation.

3.2 Compiler Optimizations

To ensure the best possible performance, the following compiler optimizations were ex-
plicitly enabled:

• Release Builds (-O3): If one does not use the release build15 the code is not
optimized. This enables several general optimizations as well as automatic vector-
ization.

• LLVM Link Time Optimization (LTO): LTO enabled further, intermodular
optimizations during the link stage. While this could improve code by optimizing
beyond library bounds, it increases compile time, which is why it is disabled by
default.

• Compiling for Native Architecture: When compiling for the native architec-
ture16 the compiler can use more specialized instructions that are not available on

13Resource Acquisition Is Initialization (RAII)
14This does not require that 1.70.0 or higher is available as a cluster module because Rust uses rustup

[33] for easy userspace installation management.
15With cargo build ——release.
16Using the RUSTFLAGS environment variable, i.e. RUSTFLAGS="-C target-cpu=native" cargo build

——release.

Section 3 Lars Quentin, Johann Carl Meyer 17

Rusty Parallel Traveling Salesman Problem Solver

every processor such as bigger vector registers for SIMD. Note that this may create
binaries incompatible with other systems.

• Using a single LLVM codegen unit: Codegen units are analogous to translation
units. This means that, when changing a single file, just the codegen unit in that
file has to be recompiled. Therefore, optimizations can’t be done beyond codegen
unit bounds! Using a single codegen for the whole project allows the compiler
to more aggressively optimize globally. Note that this effectively disables partial
compilations.

3.3 Command Line Interface (CLI)

The walky binary implements a Command Line Interface (CLI) using the crate clap,
structured with subcommands.

For the following demonstration of the CLI, the walky binary has been compiled with

1 $ cargo build --release --features mpi

walky displays an overview of its subcommands:

1 $ walky --help
2 A TSP solver written in Rust
3

4 Usage: walky <COMMAND>
5

6 Commands:
7 exact Find the exact best solution to a given TSP instance
8 approx Find an approximate solution to a given TSP instance
9 lower-bound Compute a lower bound cost of a TSP instance

10 help Print this message or the help of the given subcommand(s)
11

12 Options:
13 -h, --help Print help
14 -V, --version Print version

Each subcommand follows the same basic syntax.

1 walky SUBCOMMAND [OPTIONS] <ALGORITHM> <INPUT_FILE>

Users need to specify a subcommand. Then, they can provide optional parameters,
after which they need to specify a concrete algorithm to use and a file path to the input
file. The full help for every subcommand is listed in section B.1.

3.4 Parallelism Libraries

For both shared- and distributed memory parallelism, specialized Rust crates were used:

Shared Memory Parallelism: For shared memory parallelism we used the rayon [34]
crate. Rayon is a high-level parallelism library using dynamically sized thread pools. It
guarantees data-race freedom by allowing only one thread to write at a time. Its main

Section 3 Lars Quentin, Johann Carl Meyer 18

https://crates.io/crates/clap

Rusty Parallel Traveling Salesman Problem Solver

features are drop-in parallel iterators: By replacing .iter() with .par_iter, it is pos-
sible to use all functions provided for iterators, such as .map(), .filter(), .reduce()
for typical functional patterns or .join(|| a(), || b()) enabling the fork-join com-
putation model. Thus, when initially written in an iterator-focused, functional way it
allowed easy parallelization of the previously designed sequential algorithms.

Distributed Memory Parallelism: For distributed memory, multi-node parallelism
the HPC native MPI environment was leveraged using the rsmpi crate [35]. rsmpi is a
Rust-native MPI implementation17 compliant with MPI-3.1. It is tested to be compatible
with OpenMPI, MPICH, and MS-MPI for Windows. It supports most MPI features,
such as blocking and non-blocking point-to-point communication, and most collective
communications such as broadcasts or scatter/gather as well as aggregations such as
reductions.

3.5 Correctness and Tests

To ensure the algorithm’s correctness, both tests and runtime precondition checks were
implemented:

Testing: Traditional testing was done using the cargo-nextest [36] for parallelized unit
tests. The algorithms were tested using pre-computed examples18, working as follows:

1. Generate a metric, fully connected, undirected graph by placing n 2D points onto a
space and calculating their pairwise distance. This ensures the triangle inequality.

2. Solve the TSP for the graph using Python’s battle-tested python-tsp [37].

3. Generate the input and output Rust code for the test cases using Python.

Preconditions: At runtime, the following preconditions are checked at runtime before
any algorithm starts to ensure correctness:

• Fully Connected: The TSP is only defined for fully connected graphs, i.e. every
node has a connection to any other node. This is always true for any real-world
examples with metric spaces.

• Undirectedness: The TSP is also only defined for undirected graphs. This means
that both directions of an edge should have the same cost, i.e. for any two vertices
A,B the edge from A to B should have the same cost as the edge from B to A.

• No Multiedges: Lastly, we require that no multi-edges exist. This means that for
any two edges A and B, there exists only one direct connection.

17With FFI bindings to other implementations through the beforementioned bindgen.
18Note that the Python tooling for the test case generation can still be found in ./utils in the walky

repository

Section 3 Lars Quentin, Johann Carl Meyer 19

Rusty Parallel Traveling Salesman Problem Solver

3.6 CI pipeline

Furthermore, to keep the code quality high, a sophisticated CI pipeline was created,
running on each commit on main as well as any pull request. It consists of the following
steps running in parallel:

• Build: First and foremost, it is checked that the current version builds with release
settings using cargo build. Note that, due to the limited Ubuntu CI runner, the
MPI feature is disabled.

• Tests: Next, the automated unit tests are run using the aforementioned cargo
nextest.

• Formatter: After that, the code formatting is verified using cargo fmt. The
default Rust standard formatting is used.

• Linter: Also, the general linter cargo clippy is run to prevent common mistakes
and ideomatize walky.

• Documentation Linter: Lastly, cargo doc is used to verify and lint our docstring
documentation, on which our HTML-based documentation is based.

3.7 Documentation and Releases

Lastly, to improve the User Experience (UX) for walky, complete documentation and
release management were set in place. Walky uses Semantic Versioning. When releasing
a new version, the following artifacts become available:

• Registry Upload: The source code becomes available at crates.io, which is the
default Rust crate registry. This results in being able to install walky using cargo
install walky.

• Hosted HTML-Documentation: Whenever releasing a new version onto crates.
io, an up-to-date, full test searchable HTML documentation becomes available at
docs.rs19.

19For walky: https://docs.rs/walky/latest/walky/

Section 3 Lars Quentin, Johann Carl Meyer 20

crates.io
crates.io
crates.io
docs.rs
https://docs.rs/walky/latest/walky/

Rusty Parallel Traveling Salesman Problem Solver

4 Performance Analysis / Evaluation
In this section, a performance analysis is done on all algorithms implemented in walky.
Where applicable, problem size scaling, strong scaling, and MPI scaling analysis are done
per algorithm. With problem size scaling, the problem size is increased with a fixed
amount of parallelism while with strong scaling, the parallelism is increased with a fixed
problem size. Due to the missing Score-P support for LLVM and especially cargo, the
MPI analysis was done purely mathematically.

4.1 Cluster Setup

The benchmarks were done on the Scientific Compute Cluster (SCC) at GWDG, the joint
data center of Max Planck Society for the Advancement of Science (MPG) and University
of Göttingen.20. The SCC is a large HPC system, consisting of about 410 compute nodes
with over 18000 CPU cores, 99TB RAM, and 5.2 PiB of storage, split into two filesystems.
For our benchmarks, the so-called amp node type, of which 96 exist at the SCC, was used.
An amp node has two Xeon Platinum 9242 with a total of 48 CPU cores running at a
frequency of 3.8 GHz. Each node has 384 GB of RAM. The jobs were assigned using the
internal SLURM workload manager.

4.2 Vampir-based Analysis of Rust MPI Code

It was initially planned to do the distributed analysis of the MPI code using Vampir [38].
Vampir internally uses Score-P [39] for the generation of trace log files.

Unfortunately, Score-P is not supported by the Rust compiler. While there is literature
to show that Score-P can be integrated into the LLVM ecosystem [40], the source code
was never released. Furthermore, what makes matters worse is that, even if the tool were
published, it is still not trivial to include it into the cargo build process, which is required
for building our third-party dependencies21.

Note that this problem is not just contained to Vampir. Other common analysis tools
such as Scalasca [41] or TAU [42] also rely on Score-P internally.

Therefore, the MPI analysis will be theoretically by mathematically scaling the number
of messages and bytes sent as well as their temporal relationship.

4.3 Exact Solving Benchmarks

4.3.1 Problem Size Scaling

All single threaded iterations of the algorithm, together with the rayon-based multi-
threaded version with 24 threads, were run for 24h on the cluster, sequentially computing
a random graph from size 3 to size 50. Here are the results:

20https://gwdg.de/en/hpc/systems/scc/
21As many modern languages do, Rust does not specify an Application Binary Interface (ABI) and

instead recompiles all subdependencies (for bounds, the C FFI convention is usually used). This means,
that one can’t just link against system-wide libraries as in C.

Section 4 Lars Quentin, Johann Carl Meyer 21

https://gwdg.de/en/hpc/systems/scc/
https://gwdg.de/en/hpc/systems/scc/

Rusty Parallel Traveling Salesman Problem Solver

3 5 7 10 12 14 16 19 21 23
Graph Size (number of vertices)

10 1

100

101

102

103

tim
e

[s
]

Exact Solver Single Node Performance
naive
Fixed Stating Node
Prefix Sum Caching
Naive prune
NN prune

Figure 5

Figure 6: The results of the exact solver. shows all algorithms until the NN prune

3 8 13 18 23 28 33 38 43 48
Graph Size (number of vertices)

10 1

100

101

102

tim
e

[s
]

Exact Solver Single Node Performance
naive
Fixed Stating Node
Prefix Sum Caching
Naive prune
NN prune
MST prune
MST cache
Multithreaded

Figure 7

Figure 8: The results of the exact solver. shows all algorithms with a smaller y-axis

For the full results see Table ?? in the appendix.

Section 4 Lars Quentin, Johann Carl Meyer 22

Rusty Parallel Traveling Salesman Problem Solver

The most important insight is that pruning, especially MST-based pruning, immensely
improves the viability of exact solving. While n = 14 took over 20 minutes with the naïve
version, it was computed in around 0.11 seconds using the optimized pruner. It was
possible to compute n = 50 in around 0.3 seconds22.

Other important insights include the following:

• The prefix sum caching was even slower than the naïve implementation! This was
because we changed from the fast iterative permutation algorithm to recursive enu-
meration. There are several reasons why this is such slow, from function call over-
head to less compiler optimization opportunities to not being tail call optimized.
But by the time naïve pruning was used, it already consistently outperformed the
initial v0 on the randomly generated graphs.

• While pruning generally improves performance, it does not improve performance
deterministically, which is shown in the spikes on less-prunable graphs.

• The MST performance is insanely good. Remember that this is still an O(n!) worse
case algorithm.

• The caching did not improve the previous algorithm enough to justify the added
complexity. In fact, depending on the graph, it could worsen overall performance.

Last but not least, the multithreaded version performed way worse than the sequential
one it was based upon. There are several possible reasons for this behaviour:

• Context-switching and threading overhead caused by the operating system.

• Blocking inter-thread locking on the current best solution, which was in a mutex
that every thread got an atomically reference counted pointer for.

• Worse cache utilization. The more threads run on the system, the more context
switching. Every time the thread is switched, the CPU caches are flushed by the
previous program. Furthermore, hyperthreading always at least halves the cache if
not destroys it completely by two threads greedily competing for it.

4.3.2 Strong Scaling

The strong scaling analysis of the MPI-based, distributed exact solver requires a more
sophisticated analysis. Before looking at the plotted data, let us compare the statically
allocated (V0) algorithm to the dynamically allocated (V1) algorithm:

22The benchmark was stopped at n = 50.

Section 4 Lars Quentin, Johann Carl Meyer 23

Rusty Parallel Traveling Salesman Problem Solver

Type Total Worker V0 µ V0 σ V0 Efficiency V1 µ V1 σ V1 Efficiency
1n2p 2 815.612 0.485 72.093 134.508 0.062 437.148
2n1p 2 815.850 0.453 72.072 134.787 0.091 436.245
1n4p 4 750.874 1.011 39.154 100.460 9.940 292.654
4n1p 4 746.932 0.678 39.361 63.301 0.077 464.451
8n1p 8 19.223 0.075 764.690 38.952 0.069 377.388
1n8p 8 19.401 0.013 757.705 39.311 0.683 373.945
1n16p 16 11.364 0.022 646.768 54.570 0.654 134.691
2n16p 32 50.456 0.534 72.836 70.250 0.566 52.313
4n16p 64 989.302 1.536 1.857 81.203 0.458 22.628

Table 1: The results of the exact MPI solver. Efficiency is computed as prefixes per worker
per second. The type αnβp stands for α computing nodes with β workers per node.

As we can see, the worker topology of the MPI processes did not change performance
significantly. Thus using the smallest mean for any total worker size, we get the following
results:

0 10 20 30 40 50 60
number of processes

0

200

400

600

800

1000

tim
e

[s
]

Exact Solving MPI (n=50)
statically partitioned
dynamically partitioned

Figure 9: The comparison of the statically and dynamically allocated algorithm for dif-
ferent numbers of workers.

One can see that, averaged over all worker sizes, the dynamically partitioned algo-
rithm performed better. This shows that, although more bits are sent, the more efficient
allocation is worth the communication overhead. Furthermore, it is expected that the
dynamically distributed algorithm performs comparatively better with more vertices, as
more vertices increase the likelihood of an unfair static partitioning.

The optimal performance was recorded with the statically partitioned algorithm with
16 workers. Beyond 16 workers, the single coordinator becomes overwhelmed, resulting
in longer waiting times for each worker to report their newly solved prefix.

Section 4 Lars Quentin, Johann Carl Meyer 24

Rusty Parallel Traveling Salesman Problem Solver

Overall, it can be concluded that for smaller problems, the statically partitioned MPI
algorithm should be used, while for large graphs and more workers, the dynamically
partitioned algorithm is preferred.

4.3.3 MPI Analysis

The MPI analysis will be split into the statically partitioned and dynamically partitioned
algorithm:

Statically partitioned Let m be the number of workers, n be the number of vertices
in the graph, and k the length of the prefix. Thus, including prefixes that do not form a
proper subtour, we have

n · (n− 1) · (n− 2) · · · · · (n− k) =
n∏

i=n−k

i

prefixes. No communication is required for the prefix division. After each prefix, the
worker sends 128 bits23 to the coordinator and receives the global maximum back. Thus,
excluding MPI overhead, a total of 256 ·

∏n
i=n−k i bits of data are sent in the actual

computation. In the wrap-up, two broadcasts to m − 1 nodes are done. But since those
do not scale with n, they can be ignored in the overall complexity.

Dynamically partitioned Let m be the number of workers and n be the number of
vertices. The prefix length is fixed to 3. Thus, we have n · (n− 1) · (n− 2) := np prefixes.

Each prefix gets assigned to a worker once, together with the current lowest minimum,
resulting in 3 · 64 + 64 = 256 bits of data per message. For each prefix message to be
sent, they have to be requested first. A request implicitly sends its rank and the current
minimal path, thus 2 · 64 = 128 bits. Therefore, for the actual computation, a total of
np · (128+256) bits are sent. Like with the statically partitioned solver, the wrap-up cost
is independent of the graph size, and can therefore be ignored asymptotically.

4.4 Nearest Neighbour benchmarks

4.4.1 Problem Size Scaling

To compare the single-node sequential algorithm to the multithreaded version, starting
at n = 100, the graph size was increased in steps of 100 up to 3000. The results are as
follows:

23Assuming normal memory alignment.

Section 4 Lars Quentin, Johann Carl Meyer 25

Rusty Parallel Traveling Salesman Problem Solver

102 103

Graph Size (number of vertices)

10 2

10 1

100

101

102
tim

e
[s

]

Nearest Neighbour Single Node Performance
single threaded
multi threaded

Figure 10: Problem Size scaling of the Nearest Neighbour algorithm

As one can see, in the beginning, the multithreading overhead keeps the problems per-
forming more equally. Furthermore, while the multithreading is properly used, both al-
gorithms keep the same asymptotic complexity. Overall, the nearest neighbour algorithm
greatly benefits from multithreading. This was expected, as no inter-thread communi-
cation is required for computing the 1-nearest-neighbours. Furthermore, the minimum
reduction at the end is single threaded in both versions, resulting in no overhead in the
wrap-up.

4.4.2 Strong Scaling

For the MPI analysis, a strong scaling benchmark was used, with a fixed graph size of
n = 3000.

Section 4 Lars Quentin, Johann Carl Meyer 26

Rusty Parallel Traveling Salesman Problem Solver

100 101

number of processes

101

102

tim
e

[s
]

Nearest Neighbour Lower Bound MPI (n=3000)
regression: y (x 1.0)
single node measurement
regression: y (x 0.8)
multi nodes measurement

Figure 11: Strong scaling of the Nearest Neighbour algorithm

As one can see, the algorithm scales well with the amount of nodes. Analogously to
the multithreading version, this was expected, as no inter-node communication is required
for computing the single 1-nearest-neighbours. Furthermore, since the work partitioning
is done locally on each node, no communication is needed for that either. Thus, with only
two collective communications at all, MPI provides very little overhead.

4.4.3 MPI Analysis

Let m be the number of workers and n be the number of vertices.
Since the actual computation does not require any communication, only the wrap-up

sends any data at all, by first ALL_REDUCE the best cost. After that, the best worker
broadcasts the whole path. As the implementation of reductions is MPI-dependent, it
can only be assumed that an ALL_REDUCE at most sends m2 messages. Since it only sends
the current best cost and its rank, it doesn’t scale with the number of vertices and can
therefore be ignored.

The broadcast at the end probably uses a tree structure internally, thus resulting in
n · 64 + 64 bits being sent in log(m) time steps. Therefore, the communication scales
linearly in the number of graph vertices.

Section 4 Lars Quentin, Johann Carl Meyer 27

Rusty Parallel Traveling Salesman Problem Solver

4.5 Christofides benchmarks

4.5.1 Problem Size Scaling

102 103

Graph Size (number of vertices)

10 3

10 2

10 1

100

101

tim
e

[s
]

Christofides Single Node Performance
regression: y (x2.9)
single threaded measurement
multi threaded measurement

Figure 12: Problem Size scaling of the Christofides algorithm

To compare the performance between the single-threaded implementation, and the rayon-
based implementation of the 1-tree lower bound, a problem size scaling analysis is used.

In Figure 12, one can see that the single-threaded implementation has roughly cubic
time complexity, w.r.t. the number of nodes in the input graph.

For the tested graph sizes, the multithreaded implementation has no performance
advantage, even the opposite is the case. The rayon-based implementation has a worse
runtime behaviour on all tested graphs. Note, that the relative penalty diminishes for
larger graphs. For the reasoning, see the analogous problem in 4.3.1.

Section 4 Lars Quentin, Johann Carl Meyer 28

Rusty Parallel Traveling Salesman Problem Solver

4.5.2 Strong Scaling

100 101

number of MPI processes

1070

1080

1090

1100

1110

1120

1130

1140

so
lu

tio
n

we
ig

ht

Christofides solution weight, parallelized with MPI
(number of graph vertices: 2500)

data points median min max 25% to 75% percentile

Figure 13: Strong scaling of the Christofides algorithm

To assess the performance of the MPI-based implementation of the Christofides algorithm,
a strong scaling analysis has been done, see Figure 13.

Note, that the MPI implementation of the Christofides algorithm does not use the
parallelism to compute the result quicker, but rather it uses the parallelism to compute a
more precise result. Hence, the format of the analysis differs from all the other ones.

Especially noticeable is, that the upper outliers get significantly smaller when using
more processes, whereas the outliers to the bottom do not experience any more improve-
ment. This may be caused by worse initial solution guesses having greater potential for
optimization, and with more parallelism it is more likely to find a path for optimiza-
tion. In contrast, good initial guesses have less potential for optimization, whereby added
parallelism cannot help in that case.

4.5.3 MPI Analysis

For the algorithmic description look at the parallelization paragraph in section 2.4.2.
Let p ≥ 2 be the number of MPI processes. Let G = (V,E) be the input graph.

Then, during the execution of the MPI variant of the Christofides algorithm, p−1 tagged

Section 4 Lars Quentin, Johann Carl Meyer 29

Rusty Parallel Traveling Salesman Problem Solver

messages containing an f64 value will be sent, as well as p−1 tagged messages containing a
vector of |V |many usize values. All of these messages will be received by the root process.
This will take the root process O(p · |V |) time, excluding time spent on synchronization,
etc.

4.6 1-tree Lower Bound

4.6.1 Problem Size Scaling

102 103

Graph Size (number of vertices)

10 3

10 2

10 1

100

101

102

tim
e

[s
]

1-tree Lower Bound Single Node Performance
regression: y (x3.1)
single threaded measurement
regression: y (x2.7)
multi threaded measurement

Figure 14: problem size scaling of the 1-tree lower bound

To compare the performance between the single-threaded implementation, and the rayon-
based implementation of the 1-tree lower bound, a problem size scaling analysis comes in
handy.

As seen in Fig. 14, both variants have roughly cubic time complexity, with the multi-
threaded variant being faster by a constant factor. This is an expected result, as the
1-tree lower bound of a graph G = (V,E) essentially involves computing |V | many MSTs
over |V |−1 vertices. As can be seen in section 4.7, for this implementation, the sequential
computation of an MST has quadratic complexity, thus the cubic complexity of the 1-tree
lower bound follows easily. The parallel implementation having a similar complexity, but
being faster by a constant factor is also to be expected since a constant number of MST
computations is done in parallel, and other than that, nothing else is different from the
sequential implementation.

Section 4 Lars Quentin, Johann Carl Meyer 30

Rusty Parallel Traveling Salesman Problem Solver

4.6.2 Strong Scaling

100 101

number of processes

101

102

tim
e

[s
]

1-tree Lower Bound MPI (n=3000)
regression: y (x 1.0)
single node measurement
regression: y (x 0.9)
multi nodes measurement

Figure 15: Strong scaling of the 1-tree lower bound

To analyze, how the MPI implementation of the 1-tree lower bound performs, a strong
scaling analysis is applied.

As seen in Fig. 15, the MPI implementation’s performance is roughly inversely pro-
portional to the number of MPI processes, both when executed on only one host machine,
and when executed on multiple machines in a cluster. This indicates, that the overhead
of the MPI runtime is negligible.

4.6.3 MPI Analysis

For the algorithmic description look at section 2.5.2.
Let p ≥ 2 be the number of MPI processes. Let G = (V,E) be the input graph.

During the execution of the MPI variant of the 1-tree lower bound, there is one MPI com-
munication happening: After all processes have computed a lower bound, the maximum
over all local lower bounds is collected at the root process using an MPI reduce operation.
This operation theoretically only needs O(log p) time, and O(p) many messages, by using
a tree-like communication structure. Practically, the performance of MPI reduction op-
erations is dependent on the concrete MPI implementation [14, section 5.9], but the fact
that the operation has been the subject of research for many years [43] suggests, that the
established MPI implementations optimize the reductions.

Section 4 Lars Quentin, Johann Carl Meyer 31

Rusty Parallel Traveling Salesman Problem Solver

Note, that the cost of the MPI operations is independent of the graph size, it only
depends on the number of available processes.

4.7 MST lower bound

102 103 104

Graph Size (number of vertices)

10 4

10 3

10 2

10 1

100

101

tim
e

[s
]

MST Lower Bound Single Node Performance
regression: y (x2.2)
sequential vector measurement
regression: y (x1.3)
multi threaded measurement
regression: y (x2.1)
sequential queue measurement

Figure 16: problem size scaling of the MST lower bound

The MST calculation has no MPI implementation, so only a problem size scaling analysis
is performed.

There are three different implementations of Prim’s algorithm provided: a sequential,
and a multi-threaded variant using linear search on vectors (see also 2.1), and a sequential
variant using a priority queue24. As the reader can see in Figure 16, the sequential vector-
based algorithm performs best, for all tested inputs, and has roughly quadratic runtime
behaviour, w.r.t. the number of nodes in the input graph.

Interestingly, the priority queue-based implementation is neither quicker nor does it
show slower growth, than the sequential vector-based implementation. This may be ex-
plained with a sub-par third-party implementation of the priority queue data structure,
or with insufficient input size. Note, that the largest tested graph (10,000 vertices) takes
4.6 GiB of disk space in TSPLIB-XML format.

The multithreaded variant does not outperform the sequential vector-based implemen-
tation, though for graphs a little larger than 10,000 vertices it probably would have. It

24The priority queue is provided by the priority-queue crate [44]

Section 4 Lars Quentin, Johann Carl Meyer 32

Rusty Parallel Traveling Salesman Problem Solver

did however scale nearly linearly w.r.t. number of vertices, even though asymptotically,
its runtime behaviour is equivalent to the sequential vector-based implementation. This
may be, because the smaller the graphs are, the more the overhead of multithreading
dominates over the benefit of it.

Section 4 Lars Quentin, Johann Carl Meyer 33

Rusty Parallel Traveling Salesman Problem Solver

5 Challenges and Future Work
5.1 Challenges

Although all goals were met and all algorithms successfully implemented and parallelized,
a few problems arose in development.

Inperformant initial data structures: In walky, graphs are implemented using ad-
jacency matrices instead of adjacency lists. Initially, this was implemented using a nested
Vec<>. This turned out to be very inefficient for multiple reasons:

• Capacity management: Since vectors are dynamically sized, iteratively inserting
elements can result in multiple reallocations with larger capacity.

• Runtime bounds checking: Since their size is not known at compile time, vectors
require a lot of bounds checks, which creates more branching and overall instructions.
See the bounds check cookbook [45] for more information on how to best avoid
bounds checking.

• Memory locality: Since vectors are heap allocated, the inner vectors in a Vec<Vec<T»
struct can be located at significantly different memory distances from one another.
This results in worse data cache utilization and memory prefetching.

Beyond that, it was an overall very naïve implementation. In the current version, we use
the nalgebra crate. It is highly optimized and uses a lot of advanced Rust performance
techniques such as leveraging procedural macros for more compile time utilization, a cus-
tom allocator, and SIMD instructions as well as leveraging the state-of-the-art literature.

Insufficient MPI Language Support: Rust already has great first-class MPI support
using rsmpi [35]. Unfortunately, as already described above, this support does not extend
to MPI benchmarking, as the Rust ecosystem is not yet integrated.

5.2 Future Work

While the goals for this practical were archived, a lot of possible future work is still to be
done. Here are a few of the possible next steps:

• While the exact solving algorithm is already highly optimized from a performance
engineering perspective, it internally still uses the most naïve algorithm resulting in
a theoretical O(n!) worst-case performance. This could be improved by using other
algorithms common in literature such as the classic Θ(2nn2) Held-Karp algorithm
[6].

• Similarly, it is desirable to implement a better algorithm to calculate minimum-
weight maximal matchings. The implemented algorithm is randomized and very
naïve, even though the problem is known to be solvable in polynomial time, e.g. by
the blossom algorithm [46], of which implementations exist [47].

• Analogously, many other useful approximation techniques could be implemented.
Some of them include simulated annealing [48], the Lin-Kernighan heuristic [49], or
an ant colony optimization approach [50].

Section 5 Lars Quentin, Johann Carl Meyer 34

https://github.com/dimforge/nalgebra

Rusty Parallel Traveling Salesman Problem Solver

6 Conclusion
The Travelling Salesman Problem (TSP) is one of the most well-studied problems in
computer science with many real-world applications. In order to solve these problems,
walky, a new Rust-based TSP solver, was created. Walky supports exact solving us-
ing highly optimized sequential and multi-threading algorithms as well as distributed,
MPI-based parallelization. Furthermore, it supports two different approximation algo-
rithms; the simple, easy-to-implement Nearest Neighbour algorithm as well as the sophis-
ticated Christofides algorithm producing a tight upper bound. Additionally, it supports
a sequential, multi-threaded, and distributed lower-bound calculation using two different
lower-bound algorithms. Note that, instead of just being a prototype, walky is fully doc-
umented, well-tested, and officially published as a Rust crate, allowing real-world usage
for any TSPLIB-XML formatted problem.

The benchmarks showed, that pruning vastly increased the performance and thus vi-
ability of exact solving. The usage of dynamic space partitioning improved the scaling of
the distributed memory algorithm. The nearest neighbour approximation, due to its mini-
mal communication, scaled nearly optimal. They also showed, that the 1-tree lower-bound
greatly benefits from parallelism. Christofides algorithm in its randomized implementa-
tion is a very quick approximation to the TSP, the randomized approximation can be
made more reliable by utilizing parallelism. For the MST computation, the graphs tested
in this setting were too small to benefit from parallelism, though the benchmarks indicated
that for larger graphs a parallel implementation of Prim’s algorithm would outperform
its sequential counterpart.

Lastly, walky also proved that Rust is viable for distributed, MPI-based computation
and implementing optimized, efficient algorithms and data structures. It shows that Rust
is a sufficient programming language for developing HPC applications.

Section 6 Lars Quentin, Johann Carl Meyer 35

Rusty Parallel Traveling Salesman Problem Solver

References
[1] Yin Song et al. Solving the Traveling Salesperson Problem with deep reinforcement

learning on Amazon SageMaker | AWS Open Source Blog. en. Sept. 2021. url:
https://aws.amazon.com/de/blogs/opensource/solving-the-traveling-
salesperson - problem - with - deep - reinforcement - learning - on - amazon -
sagemaker/ (visited on 05/15/2023).

[2] Reducible. The Traveling Salesman Problem: When Good Enough Beats Perfect. en.
July 2022. url: https://www.youtube.com/watch?v=GiDsjIBOVoA (visited on
10/02/2023).

[3] TSP Applications. en. 2007. url: https://www.math.uwaterloo.ca/tsp/apps/
index.html (visited on 10/05/2023).

[4] Thomas H. Cormen et al. “Introduction to algorithms”. eng. In: Fourth edition.
Type: Band. Cambridge, Massachusetts: The MIT Press, 2022. isbn: 9780262046305
| 978-0-262-04630-5 | 026204630X | 0-262-04630-X. url: http://www.gbv.de/dms/
weimar/toc/1767218192_toc.pdf.

[5] Gerhard Reinelt. TSPLIB. url: http : / / comopt . ifi . uni - heidelberg . de /
software/TSPLIB95/ (visited on 10/10/2023).

[6] Michael Held and Richard M. Karp. “A Dynamic Programming Approach to Se-
quencing Problems”. In: Journal of the Society for Industrial and Applied Mathe-
matics 10.1 (1962), pp. 196–210. issn: 0368-4245. url: https://www.jstor.org/
stable/2098806 (visited on 10/06/2023).

[7] Jon Bentley. Lecture 21: Tuning a TSP Algorithm \textbar Performance Engineer-
ing of Software Systems. 2018. url: https://ocw.mit.edu/courses/6-172-
performance- engineering- of- software- systems- fall- 2018/resources/
lecture-21-tuning-a-tsp-algorithm/ (visited on 10/06/2023).

[8] Nayuki. Next lexicographical permutation algorithm. June 2018. url: https://www.
nayuki.io/page/next-lexicographical-permutation-algorithm (visited on
06/28/2023).

[9] rustc-hash. Oct. 2023. url: https://github.com/rust-lang/rustc-hash (visited
on 10/06/2023).

[10] Nicos Christofides. “Worst-Case Analysis of a New Heuristic for the Travelling Sales-
man Problem”. en. In: Operations Research Forum 3.1 (Feb. 1976), p. 20. issn:
2662-2556. doi: 10.1007/s43069-021-00101-z. url: https://link.springer.
com/10.1007/s43069-021-00101-z (visited on 06/26/2023).

[11] Eric W. Weisstein. Matching. en. Text. Publisher: Wolfram Research, Inc. url:
https://mathworld.wolfram.com/Matching.html (visited on 10/10/2023).

[12] Carl Hierholzer. “Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren.” de. In: Mathematische Analen.VI. Band. 1. Heft
(1873), pp. 30–32. url: https://www.digizeitschriften.de/id/235181684_
0006%7Clog12?tify=%7B%22pages%22%3A%5B36%5D%2C%22pan%22%3A%7B%22x%
22%3A0.53%2C%22y%22%3A0.786%7D%2C%22view%22%3A%22export%22%2C%
22zoom%22%3A0.37%7D (visited on 10/02/2023).

Section 6 Lars Quentin, Johann Carl Meyer 36

https://aws.amazon.com/de/blogs/opensource/solving-the-traveling-salesperson-problem-with-deep-reinforcement-learning-on-amazon-sagemaker/
https://aws.amazon.com/de/blogs/opensource/solving-the-traveling-salesperson-problem-with-deep-reinforcement-learning-on-amazon-sagemaker/
https://aws.amazon.com/de/blogs/opensource/solving-the-traveling-salesperson-problem-with-deep-reinforcement-learning-on-amazon-sagemaker/
https://www.youtube.com/watch?v=GiDsjIBOVoA
https://www.math.uwaterloo.ca/tsp/apps/index.html
https://www.math.uwaterloo.ca/tsp/apps/index.html
http://www.gbv.de/dms/weimar/toc/1767218192_toc.pdf
http://www.gbv.de/dms/weimar/toc/1767218192_toc.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.jstor.org/stable/2098806
https://www.jstor.org/stable/2098806
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/lecture-21-tuning-a-tsp-algorithm/
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/lecture-21-tuning-a-tsp-algorithm/
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/lecture-21-tuning-a-tsp-algorithm/
https://www.nayuki.io/page/next-lexicographical-permutation-algorithm
https://www.nayuki.io/page/next-lexicographical-permutation-algorithm
https://github.com/rust-lang/rustc-hash
https://doi.org/10.1007/s43069-021-00101-z
https://link.springer.com/10.1007/s43069-021-00101-z
https://link.springer.com/10.1007/s43069-021-00101-z
https://mathworld.wolfram.com/Matching.html
https://www.digizeitschriften.de/id/235181684_0006%7Clog12?tify=%7B%22pages%22%3A%5B36%5D%2C%22pan%22%3A%7B%22x%22%3A0.53%2C%22y%22%3A0.786%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.37%7D
https://www.digizeitschriften.de/id/235181684_0006%7Clog12?tify=%7B%22pages%22%3A%5B36%5D%2C%22pan%22%3A%7B%22x%22%3A0.53%2C%22y%22%3A0.786%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.37%7D
https://www.digizeitschriften.de/id/235181684_0006%7Clog12?tify=%7B%22pages%22%3A%5B36%5D%2C%22pan%22%3A%7B%22x%22%3A0.53%2C%22y%22%3A0.786%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.37%7D
https://www.digizeitschriften.de/id/235181684_0006%7Clog12?tify=%7B%22pages%22%3A%5B36%5D%2C%22pan%22%3A%7B%22x%22%3A0.53%2C%22y%22%3A0.786%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.37%7D

Rusty Parallel Traveling Salesman Problem Solver

[13] “Algorithms for Eulerian Trails and Cycle Decompositions, Maze Search Algo-
rithms”. In: Eulerian Graphs and Related Topics. Annals of Discrete Mathematics
50 (1991). Ed. by Herbert Fleischner. ISSN: 0167-5060, pp. X.1–X.34. issn: 0167-
5060. doi: https://doi.org/10.1016/S0167-5060(08)70158-4. url: https:
//www.sciencedirect.com/science/article/pii/S0167506008701584.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. en.
June 2015. url: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf.

[15] Michael Held and Richard M. Karp. “The Traveling-Salesman Problem and Min-
imum Spanning Trees”. en. In: Operations Research 18.6 (Dec. 1970), pp. 1138–
1162. issn: 0030-364X, 1526-5463. doi: 10.1287/opre.18.6.1138. url: https:
/ / pubsonline . informs . org / doi / 10 . 1287 / opre . 18 . 6 . 1138 (visited on
05/09/2023).

[16] Rust Programming Language. url: https://www.rust- lang.org/ (visited on
08/15/2023).

[17] The Servo Project Developers. Servo, the parallel browser engine. url: https :
//servo.org/ (visited on 08/15/2023).

[18] Evgenii Stepanov. Detecting Memory Corruption Bugs With HWASan. Feb. 2020.
url: https://android- developers.googleblog.com/2020/02/detecting-
memory-corruption-bugs-with-hwasan.html (visited on 08/15/2023).

[19] Stoep. Queue the Hardening Enhancements. May 2019. url: https://security.
googleblog.com/2019/05/queue-hardening-enhancements.html (visited on
08/15/2023).

[20] Paul Kehrer. Memory Unsafety in Apple’s Operating Systems. July 2019. url:
https://langui.sh/2019/07/23/apple-memory-safety/ (visited on 08/15/2023).

[21] Memory safety. url: https://www.chromium.org/Home/chromium-security/
memory-safety/ (visited on 08/15/2023).

[22] Gavin Thomas. A proactive approach to more secure code \textbar MSRC Blog
\textbar Microsoft Security Response Center. July 2019. url: https : / / msrc .
microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
(visited on 08/15/2023).

[23] Diane Hosfelt. Implications of Rewriting a Browser Component in Rust – Mozilla
Hacks - the Web developer blog. Feb. 2019. url: https://hacks.mozilla.org/
2019/02/rewriting-a-browser-component-in-rust (visited on 08/15/2023).

[24] Geoffrey Thomas [@geofft]. Some unofficial @LazyFishBarrel stats from @alex_gaynor
and myself: 65% of CVEs behind the last six months of Ubuntu security updates to
the Linux kernel have been memory unsafety. May 2019. url: https://twitter.
com/geofft/status/1132739184060489729 (visited on 08/15/2023).

[25] Jyun-Yan You. bindgen. Aug. 2023. url: https://github.com/rust-lang/rust-
bindgen (visited on 08/15/2023).

[26] PyO3 Project and Contributors. PyO3. Aug. 2023. url: https://github.com/
PyO3/pyo3 (visited on 08/15/2023).

[27] Stack Overflow Developer Survey 2023. 2023. url: https://survey.stackoverflow.
co/2023 (visited on 08/28/2023).

Section 6 Lars Quentin, Johann Carl Meyer 37

https://doi.org/https://doi.org/10.1016/S0167-5060(08)70158-4
https://www.sciencedirect.com/science/article/pii/S0167506008701584
https://www.sciencedirect.com/science/article/pii/S0167506008701584
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1287/opre.18.6.1138
https://pubsonline.informs.org/doi/10.1287/opre.18.6.1138
https://pubsonline.informs.org/doi/10.1287/opre.18.6.1138
https://www.rust-lang.org/
https://servo.org/
https://servo.org/
https://android-developers.googleblog.com/2020/02/detecting-memory-corruption-bugs-with-hwasan.html
https://android-developers.googleblog.com/2020/02/detecting-memory-corruption-bugs-with-hwasan.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://langui.sh/2019/07/23/apple-memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust
https://twitter.com/geofft/status/1132739184060489729
https://twitter.com/geofft/status/1132739184060489729
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://github.com/PyO3/pyo3
https://github.com/PyO3/pyo3
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023

Rusty Parallel Traveling Salesman Problem Solver

[28] Matt Asay. Why AWS loves Rust, and how we’d like to help \textbar AWS Open
Source Blog. Nov. 2020. url: https://aws.amazon.com/blogs/opensource/why-
aws-loves-rust-and-how-wed-like-to-help/ (visited on 08/15/2023).

[29] Welcome to Comprehensive Rust - Comprehensive Rust. url: https://google.
github.io/comprehensive-rust/ (visited on 08/15/2023).

[30] Garcia Garcia. Programming languages endorsed for server-side use at Meta. July
2022. url: https://engineering.fb.com/2022/07/27/developer- tools/
programming-languages-endorsed-for-server-side-use-at-meta/ (visited
on 08/15/2023).

[31] jirehl. Microsoft Azure CTO Wants to Replace C and C++ With Rust \textbar
The Software Report. Oct. 2022. url: https://www.thesoftwarereport.com/
microsoft-azure-cto-wants-to-replace-c-and-c-with-rust/ (visited on
08/15/2023).

[32] Thomas Claburn. Linus Torvalds says Rust is coming to the Linux kernel. June
2022. url: https://www.theregister.com/2022/06/23/linus_torvalds_rust_
linux_kernel/ (visited on 08/15/2023).

[33] rustup.rs - The Rust toolchain installer. url: https://rustup.rs/ (visited on
10/06/2023).

[34] Rayon. Oct. 2023. url: https : / / github . com / rayon - rs / rayon (visited on
10/06/2023).

[35] MPI bindings for Rust. Oct. 2023. url: https://github.com/rsmpi/rsmpi (visited
on 10/06/2023).

[36] Nextest. Oct. 2023. url: https://github.com/nextest-rs/nextest (visited on
10/06/2023).

[37] Fillipe Goulart. Python TSP Solver. Oct. 2023. url: https : / / github . com /
fillipe-gsm/python-tsp (visited on 10/06/2023).

[38] Vampir 10.3. url: https://vampir.eu/ (visited on 10/10/2023).

[39] Andreas Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time In-
frastructure for Periscope, Scalasca, TAU, and Vampir”. en. In: Tools for High Per-
formance Computing 2011. Ed. by Holger Brunst et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 79–91. isbn: 978-3-642-31475-9 978-3-642-31476-6. doi:
10.1007/978-3-642-31476-6_7. url: http://link.springer.com/10.1007/
978-3-642-31476-6_7 (visited on 10/10/2023).

[40] Ronny Tschüter et al. An LLVM Instrumentation Plug-in for Score-P. en. Dec. 2017.
doi: 10.1145/3148173.3148187. url: https://arxiv.org/abs/1712.01718v1
(visited on 10/10/2023).

[41] Scalasca. url: https://www.scalasca.org/ (visited on 10/10/2023).

[42] TAU - Tuning and Analysis Utilities -. url: https://www.cs.uoregon.edu/
research/tau/home.php (visited on 10/10/2023).

Section 6 Lars Quentin, Johann Carl Meyer 38

https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://google.github.io/comprehensive-rust/
https://google.github.io/comprehensive-rust/
https://engineering.fb.com/2022/07/27/developer-tools/programming-languages-endorsed-for-server-side-use-at-meta/
https://engineering.fb.com/2022/07/27/developer-tools/programming-languages-endorsed-for-server-side-use-at-meta/
https://www.thesoftwarereport.com/microsoft-azure-cto-wants-to-replace-c-and-c-with-rust/
https://www.thesoftwarereport.com/microsoft-azure-cto-wants-to-replace-c-and-c-with-rust/
https://www.theregister.com/2022/06/23/linus_torvalds_rust_linux_kernel/
https://www.theregister.com/2022/06/23/linus_torvalds_rust_linux_kernel/
https://rustup.rs/
https://github.com/rayon-rs/rayon
https://github.com/rsmpi/rsmpi
https://github.com/nextest-rs/nextest
https://github.com/fillipe-gsm/python-tsp
https://github.com/fillipe-gsm/python-tsp
https://vampir.eu/
https://doi.org/10.1007/978-3-642-31476-6_7
http://link.springer.com/10.1007/978-3-642-31476-6_7
http://link.springer.com/10.1007/978-3-642-31476-6_7
https://doi.org/10.1145/3148173.3148187
https://arxiv.org/abs/1712.01718v1
https://www.scalasca.org/
https://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/tau/home.php

Rusty Parallel Traveling Salesman Problem Solver

[43] Khalid Hasanov and Alexey Lastovetsky. “Hierarchical Optimization of MPI Reduce
Algorithms”. en. In: Parallel Computing Technologies. Ed. by Victor Malyshkin.
Vol. 9251. Series Title: Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2015, pp. 21–34. isbn: 978-3-319-21908-0 978-3-319-21909-7.
doi: 10.1007/978-3-319-21909-7_3. url: https://hcl.ucd.ie/system/
files/pact2015reduce.pdf (visited on 10/10/2023).

[44] garro95. PriorityQueue. Feb. 2023. url: https://github.com/garro95/priority-
queue.

[45] Sergey "Shnatsel" Davidoff. Recipes for avoiding bounds checks in Rust. original-
date: 2022-12-11T19:15:16Z. Oct. 2023. url: https://github.com/Shnatsel/
bounds-check-cookbook (visited on 10/10/2023).

[46] Vladimir Kolmogorov. “Blossom V: a new implementation of a minimum cost perfect
matching algorithm”. en. In: Math. Prog. Comp. 1.1 (July 2009), pp. 43–67. issn:
1867-2949, 1867-2957. doi: 10.1007/s12532-009-0002-8. url: http://link.
springer.com/10.1007/s12532-009-0002-8 (visited on 10/10/2023).

[47] Vladimir Kolmogorov. Blossom V implementation. url: https://pub.ista.ac.
at/~vnk/software.html (visited on 10/10/2023).

[48] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated An-
nealing”. In: Science 220.4598 (May 1983). Publisher: American Association for the
Advancement of Science, pp. 671–680. doi: 10.1126/science.220.4598.671. url:
https://www.science.org/doi/10.1126/science.220.4598.671 (visited on
10/10/2023).

[49] S. Lin and B. W. Kernighan. “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2 (Apr. 1973). Publisher: INFORMS,
pp. 498–516. issn: 0030-364X. doi: 10.1287/opre.21.2.498. url: https://
pubsonline.informs.org/doi/10.1287/opre.21.2.498 (visited on 10/10/2023).

[50] Shu-Chuan Chu, John F. Roddick, and Jeng-Shyang Pan. “Ant colony system with
communication strategies”. In: Information Sciences 167.1 (Dec. 2004), pp. 63–
76. issn: 0020-0255. doi: 10.1016/j.ins.2003.10.013. url: https://www.
sciencedirect . com / science / article / pii / S0020025503004110 (visited on
10/10/2023).

Section Lars Quentin, Johann Carl Meyer 39

https://doi.org/10.1007/978-3-319-21909-7_3
https://hcl.ucd.ie/system/files/pact2015reduce.pdf
https://hcl.ucd.ie/system/files/pact2015reduce.pdf
https://github.com/garro95/priority-queue
https://github.com/garro95/priority-queue
https://github.com/Shnatsel/bounds-check-cookbook
https://github.com/Shnatsel/bounds-check-cookbook
https://doi.org/10.1007/s12532-009-0002-8
http://link.springer.com/10.1007/s12532-009-0002-8
http://link.springer.com/10.1007/s12532-009-0002-8
https://pub.ista.ac.at/~vnk/software.html
https://pub.ista.ac.at/~vnk/software.html
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/10.1126/science.220.4598.671
https://doi.org/10.1287/opre.21.2.498
https://pubsonline.informs.org/doi/10.1287/opre.21.2.498
https://pubsonline.informs.org/doi/10.1287/opre.21.2.498
https://doi.org/10.1016/j.ins.2003.10.013
https://www.sciencedirect.com/science/article/pii/S0020025503004110
https://www.sciencedirect.com/science/article/pii/S0020025503004110

Rusty Parallel Traveling Salesman Problem Solver

A Work sharing
This report and the walky software were written by Lars Quentin and Johann Carl Meyer.
The work was distributed as follows.

A.1 Lars Quentin

The following algorithms were researched, implemented, documented, and analysed by
Lars Quentin:

• all iterations and versions of the exact solvers

• the nearest neighbour approximation

Furthermore, Lars Quentin worked on

• designing and implementing the walky CLI,

• maintaining good code quality by integrating a CI pipeline and doing manual work
on the walky repository.

• Writing benchmarking scripts and test graph generation tools.

The following chapters were written by Lars Quentin:

• 2.2 Exact and Approximate Solving

• 2.3 Exact Solving

• 2.4.1 Nearest Neighbour

• 3 Implementation (excluding 3.3 Command Line Interfaces (CLI)

• 4.1 Cluster Setup

• 4.2 Vampir-based Analysis of Rust MPI Code

• 4.3 Exact Solving Benchmarks

• 4.4 Nearest Neighbour Benchmarks

• 5 Challenges and Future Work

• 6 Conclusion

All chapters were thoroughly reviewed by Johann Carl Meyer.

Section A Lars Quentin, Johann Carl Meyer A1

Rusty Parallel Traveling Salesman Problem Solver

A.2 Johann Carl Meyer

The following algorithms were researched, implemented, documented, and analysed by
Johann Carl Meyer:

• all MST implementations

• all Christofides implementations

• all 1-tree lower bound implementations

• the TSPLIB-XML parser

The following chapters were written by Johann Carl Meyer:

• 1. Introduction

• 2.1 Minimum Spanning Tree

• 2.4.2 Christofides Algorithm

• 2.5 Lower Bound

• 3.3 Command Line Interface (CLI)

• 4.5 Christofides Benchmarks

• 4.6 1-tree Lower Bound

• 4.7 MST lower bound

All chapters were thoroughly reviewed by Lars Quentin.

B Code samples
B.1 walky subcommands

The walky exact subcommand is used to call an exact solver.

1 $ walky exact --help
2 Find the exact best solution to a given TSP instance
3

4 Usage: walky exact [OPTIONS] <ALGORITHM> <INPUT_FILE>
5

6 Arguments:
7 <ALGORITHM>
8 The Algorithm to use
9

10 Possible values:
11 - v0: Testing each possible (n!) solutions
12 - v1: Fixating the first Element, so testing ((n-1)!) solutions
13 - v2: Recursive Enumeration; Keep the partial sums cached
14 - v3: Stop if partial sum is worse than previous best
15 - v4: Stop if partial sum + greedy nearest neighbour graph is bigger than

current optimum↪→

Section B Lars Quentin, Johann Carl Meyer A2

Rusty Parallel Traveling Salesman Problem Solver

16 - v5: As V5, but use an MST instead of NN-graph as a tighter bound
17 - v6: Cache MST distance once computed
18

19 <INPUT_FILE>
20 Path to the TSPLIB-XML file
21

22 Options:
23 -p, --parallelism <PARALLELISM>
24 Whether to solve it sequential or parallel
25

26 [default: single-threaded]
27

28 Possible values:
29 - single-threaded: Run in a single threaded
30 - multi-threaded: Run in multiple threads on a single node
31 - mpi: Run on multiple nodes. Requires MPI
32

33 -h, --help
34 Print help (see a summary with '-h')
35

36 -V, --version
37 Print version

The walky approx subcommand is used to call an approximate solver.

1 $ walky approx --help
2 Find an approximate solution to a given TSP instance
3

4 Usage: walky approx [OPTIONS] <ALGORITHM> <INPUT_FILE>
5

6 Arguments:
7 <ALGORITHM>
8 The Algorithm to use
9

10 Possible values:
11 - nearest-neighbour: Starting at each vertex, always visiting the lowest

possible next vertex↪→

12 - christofides: The Christofides(-Serdyukov) algorithm
13

14 <INPUT_FILE>
15 Path to the TSPLIB-XML file
16

17 Options:
18 -p, --parallelism <PARALLELISM>
19 Whether to solve it sequential or parallel
20

21 [default: single-threaded]
22

23 Possible values:
24 - single-threaded: Run in a single threaded
25 - multi-threaded: Run in multiple threads on a single node
26 - mpi: Run on multiple nodes. Requires MPI
27

28 -l, --lower-bound <LOWER_BOUND>
29 Whether to also compute a lower_bound. Optional
30

31 Possible values:

Section B Lars Quentin, Johann Carl Meyer A3

Rusty Parallel Traveling Salesman Problem Solver

32 - one-tree: The one tree lower bound
33 - mst: The MST lower bound
34 - mst-queue: The MST lower bound, computed with prims algorithm using a

priority queue↪→

35

36 -h, --help
37 Print help (see a summary with '-h')
38

39 -V, --version
40 Print version

The walky lower-bound subcommand is used to compute a lower bound of the input
graph.

1 $ walky lower-bound --help
2 Compute a lower bound cost of a TSP instance
3

4 Usage: walky lower-bound [OPTIONS] <ALGORITHM> <INPUT_FILE>
5

6 Arguments:
7 <ALGORITHM>
8 The Algorithm to use
9

10 Possible values:
11 - one-tree: The one tree lower bound
12 - mst: The MST lower bound
13 - mst-queue: The MST lower bound, computed with prims algorithm using a

priority queue↪→

14

15 <INPUT_FILE>
16 Path to the TSPLIB-XML file
17

18 Options:
19 -p, --parallelism <PARALLELISM>
20 Whether to solve it sequential or parallel
21

22 [default: single-threaded]
23

24 Possible values:
25 - single-threaded: Run in a single threaded
26 - multi-threaded: Run in multiple threads on a single node
27 - mpi: Run on multiple nodes. Requires MPI
28

29 -h, --help
30 Print help (see a summary with '-h')
31

32 -V, --version
33 Print version

Section C Lars Quentin, Johann Carl Meyer A4

Rusty Parallel Traveling Salesman Problem Solver

C Tabular Results Exact Solving

n v0 v1 v2 v3 v4 v5 v6 MT
3 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.117
4 0.125 0.125 0.125 0.125 0.124 0.124 0.125 0.117
5 0.125 0.125 0.125 0.125 0.125 0.125 0.124 0.116
6 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.116
7 0.124 0.125 0.124 0.125 0.125 0.125 0.124 0.116
8 0.124 0.124 0.126 0.124 0.125 0.124 0.124 0.116
9 0.125 0.123 0.182 0.133 0.127 0.123 0.123 0.116
10 0.172 0.126 0.784 0.241 0.173 0.123 0.123 0.116
11 0.714 0.176 7.995 0.387 0.131 0.123 0.123 0.117
12 7.709 0.758 101.020 3.577 0.326 0.123 0.124 0.118
13 104.572 8.218 1422.181 12.063 0.264 0.123 0.123 0.117
14 1674.600 119.378 74.933 0.672 0.124 0.124 0.117
15 1754.863 17.168 0.124 0.124 0.123 0.117
16 284.757 0.145 0.124 0.124 0.117
17 1026.435 3.249 0.124 0.124 0.117
18 64.765 0.133 0.134 0.127
19 1.315 0.123 0.123 0.118
20 0.706 0.124 0.124 0.119
21 0.600 0.128 0.127 0.122
22 6.252 0.131 0.131 0.125
23 31.762 0.131 0.129 0.123
24 0.478 0.133 0.135 0.129
25 5.612 0.132 0.132 23.120
26 1.346 0.131 0.132 10.335
27 28.855 0.140 0.142 24.383
28 95.776 0.132 0.132 12.981
29 15.390 0.136 0.136 20.802
30 64.813 0.137 0.137 671.546
31 35.070 0.140 0.140 283.184
32 38.425 0.140 0.141 51.635
33 29.138 0.145 0.144 55.689
34 357.331 0.151 0.153 105.007
35 912.095 0.163 0.163 1054.830
36 0.153 0.152 87.845
37 0.189 0.193 277.350
38 1.810 1.535
39 0.166 0.167
40 0.206 0.207
41 0.204 0.208
42 0.201 0.205
43 0.272 0.282
44 0.200 0.202
45 0.236 0.241
46 0.305 0.315

Section C Lars Quentin, Johann Carl Meyer A5

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Travelling Salesman Problem Definition
	Why is TSP interesting?
	The Implementation of this Project

	Goals and Contributions

	Methodology
	Minimum Spanning Tree
	Prim's Algorithm

	Exact and Approximate Solving
	Exact Solving
	Sequential Algorithms
	Prefix Space Partitioning
	Shared Memory Parallelization
	Statically Partitioned Distributed Memory Parallelization
	Dynamically Partitioned Distributed Memory Parallelization

	Approximate Solving
	Nearest Neighbour
	Christofides Algorithm

	Lower Bound
	MST Lower Bound
	1-tree Lower Bound

	Implementation
	Rust
	Compiler Optimizations
	Command Line Interface (CLI)
	Parallelism Libraries
	Correctness and Tests
	CI pipeline
	Documentation and Releases

	Performance Analysis / Evaluation
	Cluster Setup
	Vampir-based Analysis of Rust MPI Code
	Exact Solving Benchmarks
	Problem Size Scaling
	Strong Scaling
	MPI Analysis

	Nearest Neighbour benchmarks
	Problem Size Scaling
	Strong Scaling
	MPI Analysis

	Christofides benchmarks
	Problem Size Scaling
	Strong Scaling
	MPI Analysis

	1-tree Lower Bound
	Problem Size Scaling
	Strong Scaling
	MPI Analysis

	MST lower bound

	Challenges and Future Work
	Challenges
	Future Work

	Conclusion
	References
	Work sharing
	Lars Quentin
	Johann Carl Meyer

	Code samples
	walky subcommands

	Tabular Results Exact Solving

