
Rusty Parallel Traveling Salesman Problem Solver

walky walky

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Institute for Computer Science

03.07.2023 Practical Course on High-Performance Computing

SH

∞

https://github.com/lquenti/walky

)

https://github.com/lquenti/walky

Introduction Exact Solving Approximation Conclusion

Table of contents

1 Introduction

2 Exact Solving

3 Approximation

4 Conclusion

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 2 / 46

Introduction Exact Solving Approximation Conclusion

Goals

1 Develop a CLI tool compatible with current state-of-the-art research

2 Performance and Efficiency

▶ Create a blazingly fast software package
▶ Provide a 100% pure Rust alternative to classical solvers
▶ Support both shared and distributed memory parallelization
▶ Achieve full documentation coverage
▶ Achieve high unit test coverage

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 3 / 46

Introduction Exact Solving Approximation Conclusion

Goals

1 Develop a CLI tool compatible with current state-of-the-art research

2 Performance and Efficiency

▶ Create a blazingly fast software package
▶ Provide a 100% pure Rust alternative to classical solvers
▶ Support both shared and distributed memory parallelization
▶ Achieve full documentation coverage
▶ Achieve high unit test coverage

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 3 / 46

Introduction Exact Solving Approximation Conclusion

Goals (cont.)

3 Exact Solving

▶ Implement a simple, exact solver for the TSP
▶ Offer several optimized versions
▶ Create a shared memory parallelized verion
▶ Develop a distributed memory, MPI-based parallelized solver

4 Approximation Tactics

▶ Include a trivial, easy to parallelize tactic and
▶ A sophisticated, state of the art tactic
▶ For both:

• Provide a shared memory parallelized solver
• Provide a distributed memory, MPI based parallelized solver

5 Lower Bound Calculation for TSP

▶ Provide a sequential implementation
▶ Develop a parallelized implementation using MPI

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 4 / 46

Introduction Exact Solving Approximation Conclusion

Goals (cont.)

3 Exact Solving

▶ Implement a simple, exact solver for the TSP
▶ Offer several optimized versions
▶ Create a shared memory parallelized verion
▶ Develop a distributed memory, MPI-based parallelized solver

4 Approximation Tactics

▶ Include a trivial, easy to parallelize tactic and
▶ A sophisticated, state of the art tactic
▶ For both:

• Provide a shared memory parallelized solver
• Provide a distributed memory, MPI based parallelized solver

5 Lower Bound Calculation for TSP

▶ Provide a sequential implementation
▶ Develop a parallelized implementation using MPI

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 4 / 46

Introduction Exact Solving Approximation Conclusion

Goals (cont.)

3 Exact Solving

▶ Implement a simple, exact solver for the TSP
▶ Offer several optimized versions
▶ Create a shared memory parallelized verion
▶ Develop a distributed memory, MPI-based parallelized solver

4 Approximation Tactics

▶ Include a trivial, easy to parallelize tactic and
▶ A sophisticated, state of the art tactic
▶ For both:

• Provide a shared memory parallelized solver
• Provide a distributed memory, MPI based parallelized solver

5 Lower Bound Calculation for TSP

▶ Provide a sequential implementation
▶ Develop a parallelized implementation using MPI

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 4 / 46

Introduction Exact Solving Approximation Conclusion

Organizational Remark

Targeted Credits for this course:

■ Lars: 9C

■ Johann: 6C

See also https://hps.vi4io.org/_media/teaching/summer_term_2023/
pchpc/pchpcassignment.pdf for expected work depending on the targeted
credits.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 5 / 46

https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc/pchpcassignment.pdf
https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc/pchpcassignment.pdf

Introduction Exact Solving Approximation Conclusion

Travelling Salesman Problem Definition

user "Kapitän Nemo" https://commons.wikimedia.org/w/
index.php?curid=5584283

"Given a list of cities and the dis-
tances between each pair of cities,
what is the shortest possible route
that visits each city exactly once
and returns to the origin city?"
[song_solving_2021]

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 6 / 46

https://commons.wikimedia.org/w/index.php?curid=5584283
https://commons.wikimedia.org/w/index.php?curid=5584283

Introduction Exact Solving Approximation Conclusion

Travelling Salesman Problem Definition

■ input graph

▶ weighted, non-negative
▶ undirected
▶ complete (fully connected)

■ output restrictions:

▶ tour (cycle that visits every vertex)
▶ use any edge at most one time

■ problem: find a legal output that has minimal (cumulative) edge weight

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 7 / 46

Introduction Exact Solving Approximation Conclusion

Travelling Salesman Problem Definition

■ input graph

▶ weighted, non-negative
▶ undirected
▶ complete (fully connected)

■ output restrictions:

▶ tour (cycle that visits every vertex)
▶ use any edge at most one time

■ problem: find a legal output that has minimal (cumulative) edge weight

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 7 / 46

Introduction Exact Solving Approximation Conclusion

Travelling Salesman Problem Definition

■ input graph

▶ weighted, non-negative
▶ undirected
▶ complete (fully connected)

■ output restrictions:

▶ tour (cycle that visits every vertex)
▶ use any edge at most one time

■ problem: find a legal output that has minimal (cumulative) edge weight

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 7 / 46

Introduction Exact Solving Approximation Conclusion

Why is TSP interesting?

■ well studied

■ NP-complete → ressource intensive

■ intuitive to understand

■ practical applications (see Concorde TSP Solver)

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 8 / 46

https://en.wikipedia.org/wiki/Concorde_TSP_Solver

Introduction Exact Solving Approximation Conclusion

Why is TSP interesting?

■ well studied

■ NP-complete → ressource intensive

■ intuitive to understand

■ practical applications (see Concorde TSP Solver)

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 8 / 46

https://en.wikipedia.org/wiki/Concorde_TSP_Solver

Introduction Exact Solving Approximation Conclusion

Our Implementation

■ Publicly available on GitHub

■ can be found on at https://crates.io/crates/walky/

■ licensed under the MIT open source license

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 9 / 46

https://crates.io/crates/walky/

Introduction Exact Solving Approximation Conclusion

Naïve Approach

■ Test out all possible paths

■ Keep the shortest one

■ Using Fast iterative enumeration
algorithm [nayuki_next_nodate]

■ First Optimization: Fixate the first
element!

■ Complexity: Θ(n!)

1 fn iterative_solver<T>(graph_matrix: &T) -> Solution
2 where
3 T: AdjacencyMatrix,
4 {
5 let n = graph_matrix.dim();
6 let mut best_permutation: Path = (0..n).collect();
7 let mut best_cost = f64::INFINITY;
8
9 let mut curr = best_permutation.clone();

10 while next_permutation(&mut curr[1..]) {
11 let cost = graph_matrix.evaluate_circle(&curr);
12 if cost < best_cost {
13 best_cost = cost;
14 best_permutation = curr.clone();
15 }
16 }
17 (best_cost, best_permutation)
18 }

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 10 / 46

Introduction Exact Solving Approximation Conclusion

Naïve Approach

■ Test out all possible paths

■ Keep the shortest one

■ Using Fast iterative enumeration
algorithm [nayuki_next_nodate]

■ First Optimization: Fixate the first
element!

■ Complexity: Θ(n!)

1 fn iterative_solver<T>(graph_matrix: &T) -> Solution
2 where
3 T: AdjacencyMatrix,
4 {
5 let n = graph_matrix.dim();
6 let mut best_permutation: Path = (0..n).collect();
7 let mut best_cost = f64::INFINITY;
8
9 let mut curr = best_permutation.clone();

10 while next_permutation(&mut curr[1..]) {
11 let cost = graph_matrix.evaluate_circle(&curr);
12 if cost < best_cost {
13 best_cost = cost;
14 best_permutation = curr.clone();
15 }
16 }
17 (best_cost, best_permutation)
18 }

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 10 / 46

Introduction Exact Solving Approximation Conclusion

Cache Prefix Sums

■ After every path, we compute the
tour

■ Reuse partial computations

■ While enumerating, keep prefix as
long as possible

▶ Recursive enumeration!

1 def rec_enum(xs, n):
2 """Recursively enumerate xs"""
3 if len(xs) == n:
4 print(xs)
5 for i in range(n):
6 if i not in xs:
7 rec_enum(xs + [i], n)

But do we actually have to look at every solution?

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 11 / 46

Introduction Exact Solving Approximation Conclusion

Cache Prefix Sums

■ After every path, we compute the
tour

■ Reuse partial computations

■ While enumerating, keep prefix as
long as possible

▶ Recursive enumeration!

1 def rec_enum(xs, n):
2 """Recursively enumerate xs"""
3 if len(xs) == n:
4 print(xs)
5 for i in range(n):
6 if i not in xs:
7 rec_enum(xs + [i], n)

But do we actually have to look at every solution?

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 11 / 46

Introduction Exact Solving Approximation Conclusion

Cache Prefix Sums

■ After every path, we compute the
tour

■ Reuse partial computations

■ While enumerating, keep prefix as
long as possible

▶ Recursive enumeration!

1 def rec_enum(xs, n):
2 """Recursively enumerate xs"""
3 if len(xs) == n:
4 print(xs)
5 for i in range(n):
6 if i not in xs:
7 rec_enum(xs + [i], n)

But do we actually have to look at every solution?

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 11 / 46

Introduction Exact Solving Approximation Conclusion

Pruning
V1: Stop what doesn’t work!

■ Use the partial sum

■ Lower bound: Previous best

■ if (partial_sum <= prev_best)

rec_enum(...)

V2: Nearest Neighbour (NN)

■ prune if (partial_sum +
lower_bound) of remaining
vertices

■ Lower bound:

▶ Connect every vertex to the
nearest one!

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 12 / 46

Introduction Exact Solving Approximation Conclusion

Pruning
V1: Stop what doesn’t work!

■ Use the partial sum

■ Lower bound: Previous best

■ if (partial_sum <= prev_best)

rec_enum(...)

V2: Nearest Neighbour (NN)

■ prune if (partial_sum +
lower_bound) of remaining
vertices

■ Lower bound:

▶ Connect every vertex to the
nearest one!

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 12 / 46

Introduction Exact Solving Approximation Conclusion

Pruning
V1: Stop what doesn’t work!

■ Use the partial sum

■ Lower bound: Previous best

■ if (partial_sum <= prev_best)

rec_enum(...)

V2: Nearest Neighbour (NN)

■ prune if (partial_sum +
lower_bound) of remaining
vertices

■ Lower bound:

▶ Connect every vertex to the
nearest one!

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 12 / 46

Introduction Exact Solving Approximation Conclusion

Pruning (cont.)

V3: Minimal Spanning Tree (MST)

■ Same idea

■ Use Minimal Spanning Tree of
remaining vertices

■ NN < MST < TSP

V4: Caching

■ Cache the MST in a HashMap

■ Using a non-cryptographic
HashMap

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 13 / 46

Introduction Exact Solving Approximation Conclusion

Pruning (cont.)

V3: Minimal Spanning Tree (MST)

■ Same idea

■ Use Minimal Spanning Tree of
remaining vertices

■ NN < MST < TSP

V4: Caching

■ Cache the MST in a HashMap

■ Using a non-cryptographic
HashMap

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 13 / 46

Introduction Exact Solving Approximation Conclusion

Pruning (cont.)

V3: Minimal Spanning Tree (MST)

■ Same idea

■ Use Minimal Spanning Tree of
remaining vertices

■ NN < MST < TSP

V4: Caching

■ Cache the MST in a HashMap

■ Using a non-cryptographic
HashMap

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 13 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 4 5 6 7 8 9 10 11 12 13
Graph Size

0

20

40

60

80

100

t

Exact Solver Single Node
Naive

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 14 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 4 5 6 7 8 9 10 11 12 13 14
Graph Size

0

20

40

60

80

100

t

Exact Solver Single Node
Naive
Fixed Starting Node

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 15 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 4 5 6 7 8 9 10 11 12 13 14
Graph Size

0

20

40

60

80

100

t

Exact Solver Single Node
Naive
Fixed Starting Node
Prefix Sum Caching

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 16 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 4 5 6 7 8 9 10 11 12 13 14 15
Graph Size

0

20

40

60

80

100

t

Exact Solver Single Node
Naive
Fixed Starting Node
Prefix Sum Caching
Naive prune

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 17 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Graph Size

0

20

40

60

80

100

t

Exact Solver Single Node
Naive
Fixed Starting Node
Prefix Sum Caching
Naive prune
NN prune

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 18 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 8 13 18 23 28 33 38 43 48
Graph Size

0

2

4

6

8

10

t

Exact Solver Single Node
naive
Fixed Stating Node
Prefix Sum Caching
Naive prune
NN prune
MST prune

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 19 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 8 13 18 23 28 33 38 43 48
Graph Size

0

2

4

6

8

10

t

Exact Solver Single Node
naive
Fixed Stating Node
Prefix Sum Caching
Naive prune
NN prune
MST prune
MST cache

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 20 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Threading

Algorithm

1 Spawn n threads

2 Divide the prefix space locally, i-th thread gets i-th chunk

3 Compute next prefix (with MST lower bound)

4 Update local optimum shared with all threads

5 GOTO 3 until done with chunk

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 21 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarking Results

3 8 13 18 23 28 33 38 43 48
Graph Size

0

2

4

6

8

10

t

Exact Solver Single Node
naive
Fixed Stating Node
Prefix Sum Caching
Naive prune
NN prune
MST prune
MST cache
Multithreaded

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 22 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI

Computation

■ One coordinator, n− 1 worker

■ Prefix chunk division like threaded

■ After each prefix, the worker reports current best cost to coordinator

■ Coordinator answers with global best cost

▶ Tightest possible bound for pruning

■ At the end, worker tells coordinator that its done and waits at barrier

■ After all are done, coordinator joins the barrier

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 23 / 46

Introduction Exact Solving Approximation Conclusion

MPI (cont.)

Joining the local optima

■ After all are done, the coordinator broadcasts

▶ which rank won
▶ and the minimal cost

■ That rank then broadcasts the full path

▶ This is an traffic efficiency optimization!

Now every process knows the best cost and path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 24 / 46

Introduction Exact Solving Approximation Conclusion

MPI (cont.)

Joining the local optima

■ After all are done, the coordinator broadcasts

▶ which rank won
▶ and the minimal cost

■ That rank then broadcasts the full path

▶ This is an traffic efficiency optimization!

Now every process knows the best cost and path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 24 / 46

Introduction Exact Solving Approximation Conclusion

MPI (cont.)

Joining the local optima

■ After all are done, the coordinator broadcasts

▶ which rank won
▶ and the minimal cost

■ That rank then broadcasts the full path

▶ This is an traffic efficiency optimization!

Now every process knows the best cost and path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 24 / 46

Introduction Exact Solving Approximation Conclusion

MPI (cont.)

Joining the local optima

■ After all are done, the coordinator broadcasts

▶ which rank won
▶ and the minimal cost

■ That rank then broadcasts the full path

▶ This is an traffic efficiency optimization!

Now every process knows the best cost and path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 24 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarks

0 10 20 30 40 50 60
number of processes

0

200

400

600

800

1000

tim
e

[s
]

Exact Solving MPI (n=50)
statically partitioned
dynamically partitioned

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 25 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour

Single Nearest Neighbour

1 Start at a random node

2 Check distances to all unvisited nodes

3 Go to the one with the shortest distance

4 GOTO 2 until all nodes are visited

Nearest Neighbour

■ Do Single NN for every starting node

■ Choose the best

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 26 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour

Single Nearest Neighbour

1 Start at a random node

2 Check distances to all unvisited nodes

3 Go to the one with the shortest distance

4 GOTO 2 until all nodes are visited

Nearest Neighbour

■ Do Single NN for every starting node

■ Choose the best

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 26 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour (cont.)

Single Threaded

1 n_random_numbers(0, graph_matrix.dim(), n)
2 .into_iter()
3 .map(|k| single_nearest_neighbour(graph_matrix, k))
4 .min_by_key(|&(distance, _)| OrderedFloat(distance))
5 .unwrap()
6

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 27 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour (cont.)

Multi Threaded

1 n_random_numbers(0, graph_matrix.dim(), n)
2 .into_par_iter()
3 .map(|k| single_nearest_neighbour(graph_matrix, k))
4 .min_by_key(|&(distance, _)| OrderedFloat(distance))
5 .unwrap()
6

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 28 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarks

102 103

Graph Size (number of vertices)

10 2

10 1

100

101

102

tim
e

[s
]

Nearest Neighbour Single Node Performance
single threaded
multi threaded

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 29 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour: MPI

■ Divide number of nodes into equal chunks

■ Every process computes their chunks

■ MPI_Allreduce the cost (and keep rank)

■ Winner rank MPI_Bcast the solution path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 30 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour: MPI

■ Divide number of nodes into equal chunks

■ Every process computes their chunks

■ MPI_Allreduce the cost (and keep rank)

■ Winner rank MPI_Bcast the solution path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 30 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour: MPI

■ Divide number of nodes into equal chunks

■ Every process computes their chunks

■ MPI_Allreduce the cost (and keep rank)

■ Winner rank MPI_Bcast the solution path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 30 / 46

Introduction Exact Solving Approximation Conclusion

Nearest Neighbour: MPI

■ Divide number of nodes into equal chunks

■ Every process computes their chunks

■ MPI_Allreduce the cost (and keep rank)

■ Winner rank MPI_Bcast the solution path.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 30 / 46

Introduction Exact Solving Approximation Conclusion

Benchmarks

100 101

number of processes

101

102

tim
e

[s
]

Nearest Neighbour Lower Bound MPI (n=3000)
regression: y (x 1.0)
single node measurement
regression: y (x 0.8)
multi nodes measurement

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 31 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST

2 calculate a matching in the complete graph of minimum weight, over all
vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides

• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph

4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph

5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm

■ Assumption: the input graph is metric, i.e. the triangle inequality holds

■ the algorithm goes as following [christofides_worst-case_1976]:

1 calculate the MST
2 calculate a matching in the complete graph of minimum weight, over all

vertices, that have odd degree in the MST

• see also next slides
• parallelization: mostly in this step

3 combine the MST and the matching into one multigraph
4 find an eulerian cycle through the multigraph
5 make the eulerian cycle hamiltonian

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 32 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Where To Find A Matching?

Complete input graph with highlighted MST:
1

2

34

5

Vertices with odd degree: 1,2,3,4. ↪→ Find a matching over these vertices
(blue):

1

2

34

5

Note: edge weights are left out for simplicity
Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 33 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Finding A Matching

Finding a minimum cost matching:

■ exact solution:

▶ uses a sophisticated algorithm (the blossom algorithm)
▶ hard to parallelize
▶ slow (uses a lot of HashSets)

■ randomized approximate solution:

▶ idea: guess a matching and do some randomized improvements.
Repeat this and take the best matching

▶ easy to implement
▶ easy to parallelize

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 34 / 46

https://en.wikipedia.org/wiki/Blossom_algorithm

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Finding A Matching

Finding a minimum cost matching:

■ exact solution:

▶ uses a sophisticated algorithm (the blossom algorithm)
▶ hard to parallelize
▶ slow (uses a lot of HashSets)

■ randomized approximate solution:

▶ idea: guess a matching and do some randomized improvements.
Repeat this and take the best matching

▶ easy to implement
▶ easy to parallelize

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 34 / 46

https://en.wikipedia.org/wiki/Blossom_algorithm

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Randomly Finding A Matching

Finding a matching: the graph is complete & has even amount of vertices (trivial)

1 Given the list of all vertices [0,1,2,3,4,5,6,7]

2 randomly scramble the list: [2,1,0,3,7,5,6,4]

3 interpret the list as a matching: [[2,1], [0,3], [7,5], [6,4]]

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 35 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Improving A Matching Of 4 Vertices

Improving a matching on 4 vertices: easy: only 3 cases to consider:

1

2

3

4 , or

1

2

3

4 or

1

2

3

4

Chose the matching with the lowest cost.

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 36 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Randomly Improving A Matching

Improving a matching:
improve pairs of edges:

1 Given a matching [[2,1], [0,3], [7,5], [6,4]]

2 randomly scramble the list: [[7,5], [0,3], [2,1], [6,4]]

3 consider consecutive blocks of two edges: [7,5], [0,3] and [2,1], [6,4]

4 for a block of two edges, consider the other two possible matchings among
the four vertices, are they better? Given: [7,5], [0,3] consider [7,0], [5,3]
and [7,3], [5,0]

5 repeat with step 2

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 37 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Randomly Improving A Matching In Parallel

Parallelize the randomized algorithm: do the same thing many times in parallel

1 each process: generates a random matching, and randomly improves it

2 then: pick the best result and return it

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 38 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Benchmarking

Christofides algorithm does not benefit from parallelization w.r.t. execution time:

102 103

Graph Size (number of vertices)

10 3

10 2

10 1

100

101

tim
e

[s
]

Christofides Single Node Performance
regression: y (x2.9)
single threaded measurement
multi threaded measurement

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 39 / 46

Introduction Exact Solving Approximation Conclusion

Christofides Algorithm: Benchmarking

Christofides algorithm does slightly benefit w.r.t. solution weight:

100 101

number of MPI processes

1070

1080

1090

1100

1110

1120

1130

1140

so
lu

tio
n

we
ig

ht

Christofides solution weight, parallelized with MPI
(number of graph vertices: 2500)

data points median min max 25% to 75% percentile

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 40 / 46

Introduction Exact Solving Approximation Conclusion

How To Get A 1-tree Lower Bound?

Start with an MST over n− 1 edges (here vertex 4 is left out):
1

2

34

5

Then add the remaining vertex, and the two edges with lowest cost adjacent to
that vertex:

1

2

34

5

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 41 / 46

Introduction Exact Solving Approximation Conclusion

Lower Bound With 1-tree on TSP

■ any 1-tree weight is a lower bound on the TSP solution
[held_traveling-salesman_1970]

■ |V| 1-trees to check independently

■ very easy to parallelize

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 42 / 46

Introduction Exact Solving Approximation Conclusion

1-tree Lower Bound Benchmarking

The 1-tree lower bound benefits from parallelization:

102 103

Graph Size (number of vertices)

10 3

10 2

10 1

100

101

102

tim
e

[s
]

1-tree Lower Bound Single Node Performance
regression: y (x3.1)
single threaded measurement
regression: y (x2.7)
multi threaded measurement

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 43 / 46

Introduction Exact Solving Approximation Conclusion

1-tree Lower Bound Benchmarking

The 1-tree lower bound benefits from parallelization:

100 101

number of processes

101

102

tim
e

[s
]

1-tree Lower Bound MPI (n=3000)
regression: y (x 1.0)
single node measurement
regression: y (x 0.9)
multi nodes measurement

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 44 / 46

Introduction Exact Solving Approximation Conclusion

Future Work

Exact Solver: Dynamic Load Distribution

■ Pruning makes the actual work load unpredictable

■ Instead of dividing chunks, the coordinator gives out work dynamically

■ Pro: More equal work distribution

■ Contra: More communication

More MPI analysis and performance tuning

■ Especially using Vampir

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 45 / 46

Introduction Exact Solving Approximation Conclusion

Future Work

Exact Solver: Dynamic Load Distribution

■ Pruning makes the actual work load unpredictable

■ Instead of dividing chunks, the coordinator gives out work dynamically

■ Pro: More equal work distribution

■ Contra: More communication

More MPI analysis and performance tuning

■ Especially using Vampir

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 45 / 46

Introduction Exact Solving Approximation Conclusion

Contribution
1 Developed a CLI tool compatible with TSPLIB

2 Provided a software that is
▶ Blazingly fast
▶ Pure Rust (compatible with C-based MPI flavours)
▶ Supports shared- and distributed memory parallelization
▶ Well documented and thoroughly tested

3 Including an exact solver
▶ With several pruning-based optimizations
▶ Both shared- and distributed memory parallelized

4 And multiple approximate solvers
▶ Including the easy to parallelize "Nearest Neighbour" method
▶ Supporting the sophisticated "Christofides" algorithm
▶ Both shared- and distributed memory parallelized

5 Implemented the 1-tree lower bound
▶ Utilized shared- and distributed memory parallelization

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 46 / 46

Introduction Exact Solving Approximation Conclusion

Contribution
1 Developed a CLI tool compatible with TSPLIB
2 Provided a software that is

▶ Blazingly fast
▶ Pure Rust (compatible with C-based MPI flavours)
▶ Supports shared- and distributed memory parallelization
▶ Well documented and thoroughly tested

3 Including an exact solver
▶ With several pruning-based optimizations
▶ Both shared- and distributed memory parallelized

4 And multiple approximate solvers
▶ Including the easy to parallelize "Nearest Neighbour" method
▶ Supporting the sophisticated "Christofides" algorithm
▶ Both shared- and distributed memory parallelized

5 Implemented the 1-tree lower bound
▶ Utilized shared- and distributed memory parallelization

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 46 / 46

Introduction Exact Solving Approximation Conclusion

Contribution
1 Developed a CLI tool compatible with TSPLIB
2 Provided a software that is

▶ Blazingly fast
▶ Pure Rust (compatible with C-based MPI flavours)
▶ Supports shared- and distributed memory parallelization
▶ Well documented and thoroughly tested

3 Including an exact solver
▶ With several pruning-based optimizations
▶ Both shared- and distributed memory parallelized

4 And multiple approximate solvers
▶ Including the easy to parallelize "Nearest Neighbour" method
▶ Supporting the sophisticated "Christofides" algorithm
▶ Both shared- and distributed memory parallelized

5 Implemented the 1-tree lower bound
▶ Utilized shared- and distributed memory parallelization

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 46 / 46

Introduction Exact Solving Approximation Conclusion

Contribution
1 Developed a CLI tool compatible with TSPLIB
2 Provided a software that is

▶ Blazingly fast
▶ Pure Rust (compatible with C-based MPI flavours)
▶ Supports shared- and distributed memory parallelization
▶ Well documented and thoroughly tested

3 Including an exact solver
▶ With several pruning-based optimizations
▶ Both shared- and distributed memory parallelized

4 And multiple approximate solvers
▶ Including the easy to parallelize "Nearest Neighbour" method
▶ Supporting the sophisticated "Christofides" algorithm
▶ Both shared- and distributed memory parallelized

5 Implemented the 1-tree lower bound
▶ Utilized shared- and distributed memory parallelization

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 46 / 46

Introduction Exact Solving Approximation Conclusion

Contribution
1 Developed a CLI tool compatible with TSPLIB
2 Provided a software that is

▶ Blazingly fast
▶ Pure Rust (compatible with C-based MPI flavours)
▶ Supports shared- and distributed memory parallelization
▶ Well documented and thoroughly tested

3 Including an exact solver
▶ With several pruning-based optimizations
▶ Both shared- and distributed memory parallelized

4 And multiple approximate solvers
▶ Including the easy to parallelize "Nearest Neighbour" method
▶ Supporting the sophisticated "Christofides" algorithm
▶ Both shared- and distributed memory parallelized

5 Implemented the 1-tree lower bound
▶ Utilized shared- and distributed memory parallelization

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 46 / 46

Introduction Exact Solving Approximation Conclusion

References

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel Practical Course on High-Performance Computing 47 / 46

	Introduction
	Exact Solving
	Approximation
	Christofides Algorithm
	1-tree lower bound

	Conclusion

