

Institute for Computer Science



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

# Rusty Parallel Traveling Salesman Problem Solver

walky walky

Practical Course on High-Performance Computing

#### Table of contents

- 1 Introduction
- 2 Exact Solving
- 3 Approximation
- 4 Conclusion

#### Goals



#### Goals

- 1 Develop a CLI tool compatible with current state-of-the-art research
- 2 Performance and Efficiency
  - Create a blazingly fast software package
  - Provide a 100% pure Rust alternative to classical solvers
  - Support both shared and distributed memory parallelization
  - Achieve full documentation coverage
  - Achieve high unit test coverage

## Goals (cont.)

#### 3 Exact Solving

- Implement a simple, exact solver for the TSP
- Offer several optimized versions
- Create a shared memory parallelized verion
- Develop a distributed memory, MPI-based parallelized solver

# Goals (cont.)

#### 3 Exact Solving

- Implement a simple, exact solver for the TSP
- Offer several optimized versions
- Create a shared memory parallelized verion
- Develop a distributed memory, MPI-based parallelized solver
- 4 Approximation Tactics
  - Include a trivial, easy to parallelize tactic and
  - A sophisticated, state of the art tactic
  - For both:
    - · Provide a shared memory parallelized solver
    - Provide a distributed memory, MPI based parallelized solver

# Goals (cont.)

#### 3 Exact Solving

- Implement a simple, exact solver for the TSP
- Offer several optimized versions
- Create a shared memory parallelized verion
- Develop a distributed memory, MPI-based parallelized solver
- 4 Approximation Tactics
  - Include a trivial, easy to parallelize tactic and
  - A sophisticated, state of the art tactic
  - For both:
    - Provide a shared memory parallelized solver
    - Provide a distributed memory, MPI based parallelized solver
- 5 Lower Bound Calculation for TSP
  - Provide a sequential implementation
  - Develop a parallelized implementation using MPI

### **Organizational Remark**

Targeted Credits for this course:

- Lars: 9C
- Johann: 6C

See also https://hps.vi4io.org/\_media/teaching/summer\_term\_2023/ pchpc/pchpcassignment.pdf for expected work depending on the targeted credits. Exact Solving

Approximation

Conclusion

### Travelling Salesman Problem Definition



"Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" [song\_solving\_2021]

Conclusion

# Travelling Salesman Problem Definition

#### input graph

- weighted, non-negative
- undirected
- complete (fully connected)

Conclusion

## Travelling Salesman Problem Definition

#### input graph

- weighted, non-negative
- undirected
- complete (fully connected)
- output restrictions:
  - tour (cycle that visits every vertex)
  - use any edge at most one time

Conclusion

# Travelling Salesman Problem Definition

#### input graph

- weighted, non-negative
- undirected
- complete (fully connected)
- output restrictions:
  - tour (cycle that visits every vertex)
  - use any edge at most one time
- problem: find a legal output that has minimal (cumulative) edge weight

## Why is TSP interesting?

#### well studied

- **NP-complete**  $\rightarrow$  ressource intensive
- intuitive to understand

## Why is TSP interesting?

#### well studied

- NP-complete → ressource intensive
- intuitive to understand
- practical applications (see Concorde TSP Solver)

### Our Implementation

- Publicly available on GitHub
- can be found on at https://crates.io/crates/walky/
- licensed under the MIT open source license

## Naïve Approach

- Test out all possible paths
- Keep the shortest one
- Using Fast iterative enumeration algorithm [nayuki\_next\_nodate]
- First Optimization: Fixate the first element!
- Complexity:  $\Theta(n!)$

Δ

6

7

11

13

# Naïve Approach

- Test out all possible paths
- Keep the shortest one
- Using Fast iterative enumeration algorithm [nayuki\_next\_nodate]
- First Optimization: Fixate the first element!
- Complexity:  $\Theta(n!)$

```
fn iterative_solver<T>(graph_matrix: &T) -> Solution
 2
      where
 3
          T: AdiacencyMatrix.
      Ł
 5
          let n = graph_matrix.dim();
          let mut best_permutation: Path = (0,.n).collect():
          let mut best_cost = f64::INFINITY:
 8
 9
          let mut curr = best_permutation.clone();
10
          while next_permutation(&mut curr[1..]) {
              let cost = graph_matrix.evaluate_circle(&curr);
12
              if cost < best_cost {</pre>
                  best_cost = cost:
14
                  best_permutation = curr.clone():
15
              3
16
17
          (best_cost, best_permutation)
18
      }
```

### **Cache Prefix Sums**

- After every path, we compute the tour
- Reuse partial computations
- While enumerating, keep prefix as long as possible
  - Recursive enumeration!

2

3

4

5

6

7

## Cache Prefix Sums

- After every path, we compute the tour
- Reuse partial computations
- While enumerating, keep prefix as long as possible
  - Recursive enumeration!

def rec\_enum(xs, n):
 """Recursively enumerate xs"""
 if len(xs) == n:
 print(xs)
 for i in range(n):
 if i not in xs:
 rec\_enum(xs + [i], n)

## Cache Prefix Sums

- After every path, we compute the tour
- Reuse partial computations
- While enumerating, keep prefix as long as possible
  - Recursive enumeration!

def rec\_enum(xs, n):
 """Recursively enumerate xs"""
 if len(xs) == n:
 print(xs)
 for i in range(n):
 if i not in xs:
 rec\_enum(xs + [i], n)

But do we actually have to look at every solution?

2

3

4

5

6

7

# Pruning

- V1: Stop what doesn't work!
  - Use the partial sum
  - Lower bound: Previous best

```
if (partial_sum <= prev_best)
rec_enum(...)</pre>
```

# Pruning

- V1: Stop what doesn't work!
  - Use the partial sum
  - Lower bound: Previous best
  - if (partial\_sum <= prev\_best)
    rec\_enum(...)</pre>

#### V2: Nearest Neighbour (NN)

- prune if (partial\_sum + lower\_bound) of remaining vertices
- Lower bound:
  - Connect every vertex to the nearest one!

Exact Solving

Approximation

Conclusion

# Pruning

- V1: Stop what doesn't work!
  - Use the partial sum
  - Lower bound: Previous best
  - if (partial\_sum <= prev\_best)
    rec\_enum(...)</pre>

#### V2: Nearest Neighbour (NN)

- prune if (partial\_sum + lower\_bound) of remaining vertices
- Lower bound:
  - Connect every vertex to the nearest one!



# Pruning (cont.)

#### V3: Minimal Spanning Tree (MST)

- Same idea
- Use Minimal Spanning Tree of remaining vertices
- $\blacksquare NN < MST < TSP$

# Pruning (cont.)

#### V3: Minimal Spanning Tree (MST)

- Same idea
- Use Minimal Spanning Tree of remaining vertices
- $\blacksquare NN < MST < TSP$
- V4: Caching
  - Cache the MST in a HashMap
  - Using a non-cryptographic HashMap

# Pruning (cont.)

#### V3: Minimal Spanning Tree (MST)

- Same idea
- Use Minimal Spanning Tree of remaining vertices
- $\blacksquare NN < MST < TSP$
- V4: Caching
  - Cache the MST in a HashMap
  - Using a non-cryptographic HashMap

















Introduction

Exact Solving

Approximation

Conclusion

## Threading

Algorithm

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Practical Course on High-Performance Computing

## Threading

#### Algorithm

1 Spawn *n* threads

# Threading

#### Algorithm

- 1 Spawn *n* threads
- 2 Divide the prefix space locally, *i*-th thread gets *i*-th chunk
# Threading

### Algorithm

- 1 Spawn *n* threads
- 2 Divide the prefix space locally, *i*-th thread gets *i*-th chunk
- 3 Compute next prefix (with MST lower bound)

# Threading

### Algorithm

- 1 Spawn *n* threads
- 2 Divide the prefix space locally, *i*-th thread gets *i*-th chunk
- 3 Compute next prefix (with MST lower bound)
- 4 Update local optimum shared with all threads

# Threading

### Algorithm

- 1 Spawn *n* threads
- 2 Divide the prefix space locally, *i*-th thread gets *i*-th chunk
- 3 Compute next prefix (with MST lower bound)
- 4 Update local optimum shared with all threads
- 5 G0T0 3 until done with chunk

## **Benchmarking Results**



Computation

• One coordinator, n - 1 worker

- One coordinator, n 1 worker
- Prefix chunk division like threaded

- One coordinator, n 1 worker
- Prefix chunk division like threaded
- After each prefix, the worker reports current best **cost** to coordinator

- One coordinator, n 1 worker
- Prefix chunk division like threaded
- After each prefix, the worker reports current best **cost** to coordinator
- Coordinator answers with global best cost
  - Tightest possible bound for pruning

- One coordinator, n 1 worker
- Prefix chunk division like threaded
- After each prefix, the worker reports current best **cost** to coordinator
- Coordinator answers with global best cost
  - Tightest possible bound for pruning
- At the end, worker tells coordinator that its done and waits at barrier

- One coordinator, n 1 worker
- Prefix chunk division like threaded
- After each prefix, the worker reports current best **cost** to coordinator
- Coordinator answers with global best cost
  - Tightest possible bound for pruning
- At the end, worker tells coordinator that its done and waits at barrier
- After all are done, coordinator joins the barrier

Introduction

Exact Solving

Approximation

Conclusion

### MPI (cont.)

Joining the local optima

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Practical Course on High-Performance Computing

## MPI (cont.)

#### Joining the local optima

#### After all are done, the coordinator broadcasts

- which rank won
- and the minimal cost

# MPI (cont.)

#### Joining the local optima

#### After all are done, the coordinator broadcasts

- which rank won
- and the minimal cost
- That rank then broadcasts the full path
  - This is an traffic efficiency optimization!

# MPI (cont.)

#### Joining the local optima

#### After all are done, the coordinator broadcasts

- which rank won
- and the minimal cost
- That rank then broadcasts the full path
  - This is an traffic efficiency optimization!

Now every process knows the best cost and path.

# Benchmarks



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

## Nearest Neighbour

#### Single Nearest Neighbour

- Start at a random node
- 2 Check distances to all unvisited nodes
- **3** Go to the one with the shortest distance
- 4 G0T0 2 until all nodes are visited

# Nearest Neighbour

#### Single Nearest Neighbour

- Start at a random node
- 2 Check distances to all unvisited nodes
- **3** Go to the one with the shortest distance
- 4 G0T0 2 until all nodes are visited

#### Nearest Neighbour

- Do Single NN for every starting node
- Choose the best

# Nearest Neighbour (cont.)

### Single Threaded

- n\_random\_numbers(0, graph\_matrix.dim(), n)
  - .into\_iter()
- .map(|k| single\_nearest\_neighbour(graph\_matrix, k))
- .min\_by\_key(|&(distance, \_)| OrderedFloat(distance))
  - .unwrap()
- 5 6

2

# Nearest Neighbour (cont.)

### Multi Threaded

- n\_random\_numbers(0, graph\_matrix.dim(), n)
  - .into\_par\_iter()
- .map(|k| single\_nearest\_neighbour(graph\_matrix, k))
- .min\_by\_key(|&(distance, \_)| OrderedFloat(distance))
- 5 .unwrap()
- 6

2

#### Exact Solving

# Benchmarks



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Exact Solving

Approximation

Conclusion

### Nearest Neighbour: MPI

Divide number of nodes into equal chunks

### Nearest Neighbour: MPI

- Divide number of nodes into equal chunks
- Every process computes their chunks

### Nearest Neighbour: MPI

- Divide number of nodes into equal chunks
- Every process computes their chunks
- MPI\_Allreduce the cost (and keep rank)

## Nearest Neighbour: MPI

- Divide number of nodes into equal chunks
- Every process computes their chunks
- MPI\_Allreduce the cost (and keep rank)
- Winner rank MPI\_Bcast the solution path.

### Exact Solving

# Benchmarks



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Assumption: the input graph is metric, i.e. the triangle inequality holds

Assumption: the input graph is metric, i.e. the triangle inequality holds

- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST

- Assumption: the input graph is metric, i.e. the triangle inequality holds
- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST
  - 2 calculate a matching in the complete graph of minimum weight, over all vertices, that have odd degree in the MST
    - see also next slides

- Assumption: the input graph is metric, i.e. the triangle inequality holds
- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST
  - 2 calculate a matching in the complete graph of minimum weight, over all vertices, that have odd degree in the MST
    - see also next slides
    - parallelization: mostly in this step

- Assumption: the input graph is metric, i.e. the triangle inequality holds
- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST
  - 2 calculate a matching in the complete graph of minimum weight, over all vertices, that have odd degree in the MST
    - see also next slides
    - parallelization: mostly in this step
  - **3** combine the MST and the matching into one multigraph

- Assumption: the input graph is metric, i.e. the triangle inequality holds
- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST
  - 2 calculate a matching in the complete graph of minimum weight, over all vertices, that have odd degree in the MST
    - see also next slides
    - parallelization: mostly in this step
  - **3** combine the MST and the matching into one multigraph
  - find an eulerian cycle through the multigraph

- Assumption: the input graph is metric, i.e. the triangle inequality holds
- the algorithm goes as following [christofides\_worst-case\_1976]:
  - 1 calculate the MST
  - 2 calculate a matching in the complete graph of minimum weight, over all vertices, that have odd degree in the MST
    - see also next slides
    - parallelization: mostly in this step
  - 3 combine the MST and the matching into one multigraph
  - 4 find an eulerian cycle through the multigraph
  - 5 make the eulerian cycle hamiltonian

Conclusion

## Christofides Algorithm: Where To Find A Matching?

Complete input graph with highlighted MST:



Vertices with odd degree: 1, 2, 3, 4.  $\hookrightarrow$  Find a matching over these vertices (blue):



Note: edge weights are left out for simplicity

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Practical Course on High-Performance Computing

# Christofides Algorithm: Finding A Matching

Finding a minimum cost matching:

- exact solution:
  - uses a sophisticated algorithm (the blossom algorithm)
  - hard to parallelize
  - slow (uses a lot of HashSets)

# Christofides Algorithm: Finding A Matching

Finding a minimum cost matching:

- exact solution:
  - uses a sophisticated algorithm (the blossom algorithm)
  - hard to parallelize
  - slow (uses a lot of HashSets)
- randomized approximate solution:
  - idea: guess a matching and do some randomized improvements.
    Repeat this and take the best matching
  - easy to implement
  - easy to parallelize

## Christofides Algorithm: Randomly Finding A Matching

Finding a matching: the graph is complete & has even amount of vertices (trivial)

- **1** Given the list of all vertices [0, 1, 2, 3, 4, 5, 6, 7]
- **2** randomly scramble the list: [2, 1, 0, 3, 7, 5, 6, 4]
- **3** interpret the list as a matching: [[2, 1], [0, 3], [7, 5], [6, 4]]
Conclusion

### Christofides Algorithm: Improving A Matching Of 4 Vertices

Improving a matching on 4 vertices: easy: only 3 cases to consider:



Chose the matching with the lowest cost.

# Christofides Algorithm: Randomly Improving A Matching

Improving a matching:

improve pairs of edges:

- **1** Given a matching [[2, 1], [0, 3], [7, 5], [6, 4]]
- 2 randomly scramble the list: [[7,5], [0,3], [2,1], [6,4]]
- 3 consider consecutive blocks of two edges: [7,5], [0,3] and [2,1], [6,4]
- 4 for a block of two edges, consider the other two possible matchings among the four vertices, are they better? Given: [7,5], [0,3] consider [7,0], [5,3] and [7,3], [5,0]
- 5 repeat with step 2

### Christofides Algorithm: Randomly Improving A Matching In Parallel

Parallelize the randomized algorithm: do the same thing many times in parallel

- 1 each process: generates a random matching, and randomly improves it
- 2 then: pick the best result and return it

Approximation

Conclusion

# Christofides Algorithm: Benchmarking

Christofides algorithm does not benefit from parallelization w.r.t. execution time:



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Approximation

Conclusion

# Christofides Algorithm: Benchmarking

Christofides algorithm does slightly benefit w.r.t. solution weight:



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Approximation

Conclusion

### How To Get A 1-tree Lower Bound?

Start with an MST over n - 1 edges (here vertex 4 is left out):



Then add the remaining vertex, and the two edges with lowest cost adjacent to that vertex:



Approximation

Conclusion

### Lower Bound With 1-tree on TSP

### any 1-tree weight is a lower bound on the TSP solution [held\_traveling-salesman\_1970]

- |V| 1-trees to check independently
- very easy to parallelize

Approximation

Conclusion

## 1-tree Lower Bound Benchmarking

The 1-tree lower bound benefits from parallelization:



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

Approximation

Conclusion

# 1-tree Lower Bound Benchmarking

The 1-tree lower bound benefits from parallelization:



Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel

### **Future Work**

#### Exact Solver: Dynamic Load Distribution

- Pruning makes the actual work load unpredictable
- Instead of dividing chunks, the coordinator gives out work dynamically
- Pro: More equal work distribution
- Contra: More communication

### **Future Work**

#### Exact Solver: Dynamic Load Distribution

- Pruning makes the actual work load unpredictable
- Instead of dividing chunks, the coordinator gives out work dynamically
- Pro: More equal work distribution
- Contra: More communication

#### More MPI analysis and performance tuning

Especially using Vampir

1 Developed a CLI tool compatible with TSPLIB

- 1 Developed a CLI tool compatible with TSPLIB
- **2** Provided a software that is
  - Blazingly fast
  - Pure Rust (compatible with C-based MPI flavours)
  - Supports shared- and distributed memory parallelization
  - Well documented and thoroughly tested

- 1 Developed a CLI tool compatible with TSPLIB
- **2** Provided a software that is
  - Blazingly fast
  - Pure Rust (compatible with C-based MPI flavours)
  - Supports shared- and distributed memory parallelization
  - Well documented and thoroughly tested
- Including an exact solver
  - With several pruning-based optimizations
  - Both shared- and distributed memory parallelized

- 1 Developed a CLI tool compatible with TSPLIB
- 2 Provided a software that is
  - Blazingly fast
  - Pure Rust (compatible with C-based MPI flavours)
  - Supports shared- and distributed memory parallelization
  - Well documented and thoroughly tested
- Including an exact solver
  - With several pruning-based optimizations
  - Both shared- and distributed memory parallelized
- 4 And multiple approximate solvers
  - Including the easy to parallelize "Nearest Neighbour" method
  - Supporting the sophisticated "Christofides" algorithm
  - Both shared- and distributed memory parallelized

- 1 Developed a CLI tool compatible with TSPLIB
- 2 Provided a software that is
  - Blazingly fast
  - Pure Rust (compatible with C-based MPI flavours)
  - Supports shared- and distributed memory parallelization
  - Well documented and thoroughly tested
- Including an exact solver
  - With several pruning-based optimizations
  - Both shared- and distributed memory parallelized
- 4 And multiple approximate solvers
  - Including the easy to parallelize "Nearest Neighbour" method
  - Supporting the sophisticated "Christofides" algorithm
  - Both shared- and distributed memory parallelized
- 5 Implemented the 1-tree lower bound
  - Utilized shared- and distributed memory parallelization

Approximation

Conclusion ○○●

## References

Lars Quentin, Johann Carl Meyer, Dr. Artur Wachtel