GEORG-AUGUST-UNIVERSITAT
=\ GOTTINGEN & e

HPS
Kimia Taba and Vincent Hasse

Predator-Prey Relationship in a Closed System

17.07.2023 University of Goéttingen

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
[e]e] (o] 0000000 000000 [e]e]

Table of contents

Our Project
Sequential Approach
Parallel Approach
Benchmarking

Conclusion

Kimia Taba and Vincent Hasse University of Gottingen 2/20

Our Project Sequential Approach
L Je] (o]

Conclusion

The Idea

M create a simulated environment
B plants, prey, hunters

B apply some machine-learning for prey- and hunter-brains -> Python

Kimia Taba and Vincent Hasse University of Gottingen 3/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
oe

Outline

Day 37 0f 500
Plants: 4000

M World: NumPy-Array, int8 i
» 0O: Free o .
: Plant
: Prey
: Hunter
. 255 different agents possible
| |n|t|aI|zed randomly at the
beginning of the simulation, based on config-file

B Agents: Prey and Hunters
» can move, eat, breed, die
B Plants: are just dead or alive, spawn randomly every simulation-step

vVvyvyy
w N

Kimia Taba and Vincent Hasse University of Gottingen 4/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
L]

Pseudo-Code

Sequential-Simulation in Pseudo-Python

pseudo-python

for step in range(config.SIMUALTION_STEPS):
for everyAgent in dicts:
addAge()
moveAgent()
letItDie(energy, age)
letItEat(isFoodAtNewPosition)
letItBreed(energy)
spawnNewPlants ()

® N oA W N e

based on a dict of hunters and a dict of preys: (ID -> Animal)

Kimia Taba and Vincent Hasse University of Gottingen 5/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
9000000

General Idea for the Parallel Approach

Split the world in (even) chunks

Broadcast world state and Hunter / Prey dicts
to every process

B Each process calculates changes in the
respective part of the world

B Report changes to rank0

B RankO gathers changes, creates new world and dicts and broadcasts for
next simulation step

Kimia Taba and Vincent Hasse University of Gottingen 6/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
0®@00000

Problems and Solutions

B Problem: Pickeling & sending of Hunter/ Prey dictionaries is costly

B Solution: don’t broadcast the dicts
» Change dicts from (AnimallD -> Animal) to (position -> Animal)
» Report back a numpy array with old Positions (as identifier), new Positions
» -> Broadcast world-state from rankO
» —> Send changes-array back to rank 0
» Only communicate NumPy Arrays

B Drawback: rank0 has to do all the updating (world, dicts)

Kimia Taba and Vincent Hasse University of Gottingen 7120

Our Project

Sequential Approach Parallel Approach
(o] 00e0000

Conclusion

Parrallel movement calculation

© ® N o g W N e

e e =
B W N = O

Movement-Calculation in Python; first part

#create lists
hunters = [1]
preys = [1]
#loop dependent on rank
for x in range((rank-1)xnumRows, rankxnumRows) :
for y in range(config.WORLD_SIZE):
if world[x][y] == config.IDENT_PREY:
preys.append((x,y))
elif world[x][y] == config.IDENT_HUNTER:
hunters.append((x,y))

#numslice: number of possible agents in slice +1
changes = np.zeros((numSlice, 4), dtype=changes_dtype)
changeCounter = 0

Kimia Taba and Vincent Hasse University of Gottingen

8/20

Our Project Sequential Approach Parallel Approach
[e]e] (o] 000e000

Conclusion

Parrallel movement calculation

Movement-Calculation in Python; second part

1 for p in preys:
2 #loop through list and calculate new position

3 path = helper.calculateSteps(p, world, config.IDENT_PLANT)
4 if path != None:

5 changeCounter += 1

6 newPos = (path[1][0], path[1][1])

7

8

9

changes[changeCounter][0] plo] #save old. ..

changes[changeCounter][1] = pl[1]
changes[changeCounter][2] = newPos[0] #and new position in array
10 changes[changeCounter][3] = newPos[1]

11 #do the same for hunters

12 #update function only needs to run on the part of the array that...

13 changes[0]1[0] = changeCounter #...actually contains changes
14 comm.Send(changes, dest=0)

Kimia Taba and Vincent Hasse University of Gottingen 9/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
0000e00

Problems and Solutions

B Problem: RankO has to apply all calculated changes

B (Partial) Solution: Already apply changes of fastest process while waiting for
callback of the other ranks

rank0 Receive

if rank ==
#process changes from other ranks
while received_data < numReceives:
changes = np.zeros(**_in respective size_xx)
#wait for fastest callback
comm.Recv(changes, source=MPI.ANY_SOURCE, status=status)
#apply changes from data to world
world = sWorld.updateWorld(changes)
received_data += 1
10 sWorld.finishStep()

© ® N o O W N e

Kimia Taba and Vincent Hasse University of Gottingen 10/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
00000e0

Problems and Solutions

B Problem: When the world gets larger, also the broadcasted
arrays (world, changes) get larger
B Solution: No solution, it’s implicit to the implementation :(
—> performance limits?
However: keep the memory size of communicated arrays as small as possible:

rank0 Receive

1 # smallest possible datatype for changes array (can be further optimized)
2 if config.WORLD_SIZE * numRows > 255:

3 changes_dtype = np.uintl6

4 if config.WORLD_SIZE * numRows > 65535:

5 changes_dtype = np.uint32

6 if config.WORLD_SIZE * numRows > 4294967295:

7 changes_dtype = np.uint64

8 else: changes_dtype = np.uint8

9 #world:10.000 x 10.000; uint8 ~ 95,4MB; changes with n = 50; uint ~7,6MB

Kimia Taba and Vincent Hasse University of Gottingen 11/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
[e]e] (o] 000000e 000000 [e]e]

Does it work

Populations over time
66880 — Plants
— Prey
60192 —— Hunters

53504 A

46816 -

40128 A

on

Yes. Populations are as to expect ‘
according to the Lotka-Volterra Laws:

33440 A

Populati

26752

20064 -

13376

6688

T T T T T
0 200 400 600 800 1000
Simulation Step

Kimia Taba and Vincent Hasse University of Gottingen 12/20

Our Project Sequential Approach

Benchmarking Conclusion
900000 [e]e]

Base Config

B World Size=1000, Simulation Steps=100

B Without Paralleling => World Size = 500, 10 simulation steps => 47
minutes

Kimia Taba and Vincent Hasse University of Gottingen 13/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
> oo

[e]e] 0000000 0@0000 [e]e]

Strong Scaling

Keeping the problem size, increase parallelism

Execution time by increasing processes

4500

3500

3000

2500

2000

execution time in second

1500

1000

500

2 4 6 8 10 12 14 16 18 20 22 24
number of processes

Kimia Taba and Vincent Hasse University of Gottingen 14/20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

[e]e] 0000000 00e000 [e]e]

Application Performance

Cpu Profiling - rank 0

ateWorld [~:0:<method ‘Recy’ of‘moidpy MPL.Comm' cbjects>
J

k. h
)
100

Fanw \ 16
/g

s N\ 268
e\ 10

simor 14 fishStep simWold 6 updateorc | ~0<method 'Recy' of ‘mpidoy MPI Comm' ooec's> simiord GiupcareWord [~0:<method ‘Recy’ of‘mpidoy MPI Camm' objects>
BE 2% P

8 1152% 5.38% 1% H3%

0%) 10384 (5438%) 0 (143%) (0354
500 0 U

J5i% \ 15T
/e \ b

fams \ 1o
J AT\ 187108

simioid:136:voveHunter

Kimia Taba and Vincent Hasse University of Gottingen 15/20

Our Project
[e]e]

Sequential Approach
o]

Parallel Approach
0000000

Benchmarking

000e@00

Conclusion

[e]e]

Application Performance

Visualizing trace - Snakeviz

nealls tottime percall cumtime percall fllename:lineno(function)
2400 1807 007778 1807 007778 ~0(<method Recy’ of ‘mpidpy.MPL.Comm' objects>)
2385217 1023 429¢05 1023 429¢.05 helper.py:28(getClosestOfType)
2400 6041 0.02517 9931 0.04138 simWorld.py:96(update World)
2947538 1917 6.503¢-00 2352 7.979¢-00 simWorldpy:121(movePrey)
100 1385 ns2 1152 simWorld.py:03(spawnPlants)
1557040 1357 1538 9.872¢-00 simWorld.py:136(moveHunter)
100 7.346 2501 02561 simWorld.py:169(spawnOffspring)
8599850 5251 1393 1.62¢-00 prey.py:11(brecd)
6487818 3.575 5.448 1302¢-00 random.py:290(randrange)
0487818 3.504 5.4016-07 4872 7.51607 random.py:237(_randbelow_with_getrandbits)
4973284 2077 417607 2077 417607 animal py:12(sctPosition)

Kimia Taba and Vincent Hasse

University of Gottingen

16/20

Sequential Approa
(o]

Application Performance

Other ranks

2

Kimia Taba and Vincent Hasse

University of Gottingen

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion
[e]e] o] 0000000 O0000e [e]e]

Weak Scaling

Increase the problem size with parallelism

Execution time by increasing processes and world size

8000

6000

execution time in second

H
g

2000

2 4 8 16 24

Kimia Taba and Vincent Hasse University of Gottingen 18/20

Conclusion

Our Project Sequential Approach
Oc o L Je]

oo

Future Work

B Writing report
B Memory Profiling
B Change path finding algorithm

Kimia Taba and Vincent Hasse University of Gottingen 19/20

Conclusion

Our Project Sequential Approach
oo o oe

Conclusion

B Goal: Simulating a predator-prey relationship

B Achieve lots of Performance improvements by using mpi

Kimia Taba and Vincent Hasse University of Gottingen 20/20

	Our Project
	Sequential Approach
	Parallel Approach
	Benchmarking
	Conclusion

