
Predator-Prey Relationship in a Closed System

Kimia Taba and Vincent Hasse

17.07.2023 University of Göttingen

SH

∞

)

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Table of contents

1 Our Project

2 Sequential Approach

3 Parallel Approach

4 Benchmarking

5 Conclusion

Kimia Taba and Vincent Hasse University of Göttingen 2 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

The Idea

■ create a simulated environment

■ plants, prey, hunters

■ apply some machine-learning for prey- and hunter-brains -> Python

Kimia Taba and Vincent Hasse University of Göttingen 3 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Outline

■ World: NumPy-Array, int8

▶ 0: Free
▶ 1: Plant
▶ 2: Prey
▶ 3: Hunter
▶ ... 255 different agents possible
▶ initialized randomly at the

beginning of the simulation, based on config-file

■ Agents: Prey and Hunters

▶ can move, eat, breed, die

■ Plants: are just dead or alive, spawn randomly every simulation-step

Kimia Taba and Vincent Hasse University of Göttingen 4 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Pseudo-Code

Sequential-Simulation in Pseudo-Python

pseudo-python

1 for step in range(config.SIMUALTION_STEPS):
2 for everyAgent in dicts:
3 addAge()
4 moveAgent()
5 letItDie(energy, age)
6 letItEat(isFoodAtNewPosition)
7 letItBreed(energy)
8 spawnNewPlants()

based on a dict of hunters and a dict of preys: (ID -> Animal)

Kimia Taba and Vincent Hasse University of Göttingen 5 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

General Idea for the Parallel Approach

■ Split the world in (even) chunks

■ Broadcast world state and Hunter / Prey dicts
to every process

■ Each process calculates changes in the
respective part of the world

■ Report changes to rank0

■ Rank0 gathers changes, creates new world and dicts and broadcasts for
next simulation step

Kimia Taba and Vincent Hasse University of Göttingen 6 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Problems and Solutions

■ Problem: Pickeling & sending of Hunter/ Prey dictionaries is costly

■ Solution: don’t broadcast the dicts

▶ Change dicts from (AnimalID -> Animal) to (position -> Animal)
▶ Report back a numpy array with old Positions (as identifier), new Positions
▶ –> Broadcast world-state from rank0
▶ –> Send changes-array back to rank 0
▶ Only communicate NumPy Arrays

■ Drawback: rank0 has to do all the updating (world, dicts)

Kimia Taba and Vincent Hasse University of Göttingen 7 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Parrallel movement calculation

Movement-Calculation in Python; first part

1 #create lists
2 hunters = []
3 preys = []
4 #loop dependent on rank
5 for x in range((rank-1)*numRows, rank*numRows):
6 for y in range(config.WORLD_SIZE):
7 if world[x][y] == config.IDENT_PREY:
8 preys.append((x,y))
9 elif world[x][y] == config.IDENT_HUNTER:

10 hunters.append((x,y))
11

12 #numslice: number of possible agents in slice +1
13 changes = np.zeros((numSlice, 4), dtype=changes_dtype)
14 changeCounter = 0

Kimia Taba and Vincent Hasse University of Göttingen 8 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Parrallel movement calculation

Movement-Calculation in Python; second part

1 for p in preys:
2 #loop through list and calculate new position
3 path = helper.calculateSteps(p, world, config.IDENT_PLANT)
4 if path != None:
5 changeCounter += 1
6 newPos = (path[1][0], path[1][1])
7 changes[changeCounter][0] = p[0] #save old...
8 changes[changeCounter][1] = p[1]
9 changes[changeCounter][2] = newPos[0] #and new position in array

10 changes[changeCounter][3] = newPos[1]
11 #do the same for hunters
12 #update function only needs to run on the part of the array that...
13 changes[0][0] = changeCounter #...actually contains changes
14 comm.Send(changes, dest=0)

Kimia Taba and Vincent Hasse University of Göttingen 9 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Problems and Solutions

■ Problem: Rank0 has to apply all calculated changes

■ (Partial) Solution: Already apply changes of fastest process while waiting for
callback of the other ranks

rank0 Receive

1 if rank == 0:
2 #process changes from other ranks
3 while received_data < numReceives:
4 changes = np.zeros(**_in respective size_**)
5 #wait for fastest callback
6 comm.Recv(changes, source=MPI.ANY_SOURCE, status=status)
7 #apply changes from data to world
8 world = sWorld.updateWorld(changes)
9 received_data += 1

10 sWorld.finishStep()

Kimia Taba and Vincent Hasse University of Göttingen 10 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Problems and Solutions

■ Problem: When the world gets larger, also the broadcasted
arrays (world, changes) get larger

■ Solution: No solution, it’s implicit to the implementation :(
–> performance limits?

However: keep the memory size of communicated arrays as small as possible:
rank0 Receive

1 # smallest possible datatype for changes array (can be further optimized)
2 if config.WORLD_SIZE * numRows > 255:
3 changes_dtype = np.uint16
4 if config.WORLD_SIZE * numRows > 65535:
5 changes_dtype = np.uint32
6 if config.WORLD_SIZE * numRows > 4294967295:
7 changes_dtype = np.uint64
8 else: changes_dtype = np.uint8
9 #world:10.000 x 10.000; uint8 ~ 95,4MB; changes with n = 50; uint ~7,6MB

Kimia Taba and Vincent Hasse University of Göttingen 11 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Does it work

Yes. Populations are as to expect
according to the Lotka-Volterra Laws:

Kimia Taba and Vincent Hasse University of Göttingen 12 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Base Config

■ World Size=1000, Simulation Steps=100

■ Without Paralleling => World Size = 500 , 10 simulation steps => 47
minutes

Kimia Taba and Vincent Hasse University of Göttingen 13 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Strong Scaling

Keeping the problem size, increase parallelism

Kimia Taba and Vincent Hasse University of Göttingen 14 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Application Performance

Cpu Profiling - rank 0

Kimia Taba and Vincent Hasse University of Göttingen 15 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Application Performance

Visualizing trace - Snakeviz

Kimia Taba and Vincent Hasse University of Göttingen 16 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Application Performance

Other ranks

Kimia Taba and Vincent Hasse University of Göttingen 17 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Weak Scaling

Increase the problem size with parallelism

Kimia Taba and Vincent Hasse University of Göttingen 18 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Future Work

■ Writing report

■ Memory Profiling

■ Change path finding algorithm

Kimia Taba and Vincent Hasse University of Göttingen 19 / 20

Our Project Sequential Approach Parallel Approach Benchmarking Conclusion

Conclusion

■ Goal: Simulating a predator-prey relationship

■ Achieve lots of Performance improvements by using mpi

Kimia Taba and Vincent Hasse University of Göttingen 20 / 20

	Our Project
	Sequential Approach
	Parallel Approach
	Benchmarking
	Conclusion

