
Parallelization of Maximum Flow Problem on Big Graphs

A Status Report

Jonas Hafermas - Zoya Masih

Institute for Computer Science / GWDG

July 17, 2023 Parallelization of Maximum Flow Problem

SH

∞

)



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 2 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of Contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 3 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Maximum Flow Problem

■ Our simplified definition:
’The Maximum Flow problem is about
finding the maximum possible flow through a flow network’

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 4 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Example

■ Suppose that we have a network
with 4 nodes

■ We want to transfer data from the
source (S) to the target (t)

■ Each edge has limited flow capacity
for data propagation

2

S t

3

5

10

15

5

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 5 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Example: Assumptions

■ Flow on a node cannot exceed its capacity

■ The total incoming and outgoing flow
equals on each node (conservation of flow)

■ There could be several paths of our (data)
flow routed through

2

S t

3

5

10

15

5

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 6 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Example: One Solution

■ One possible way is to split flow across
multiple paths (blue and red)

■ Incoming Flow to t is 10

■ Is this the maximum flow achievable?

2

S t

3

5

5
5

15

5

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 7 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Example: Optimal Solution

■ We can also pass flow = 15

■ Solution: pass 10 from s to 2, and use the
edge 2-3 for the excessive flow

■ The sum of incoming flows at t equals 15

2

S t

3

5

10

5

5

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 8 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Motivation and applications

■ The problem has many applications in real world. Following are 2 examples

1 Circulation with Demands:

▶ A collection of supply nodes that want to ship products or goods
▶ A collection of demand nodes that want to receive the products

2 Airline scheduling

▶ Adjusting the number of passengers and the amount of loading on air networks

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 9 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Motivation and applications

■ It can also be used in IO problems and optimization

▶ Task scheduling

▶ Data transfer

▶ Network Routing

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 10 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of Contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 11 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm - Overview

■ One of the several algorithms used for solving the max flow problem

■ Invented by Yefim Dinitz in 1970,

▶ Prior to Edmonds-Karp algorithm, some internal similarities exist

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 12 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – Advantages

■ Better runtime complexity than Ford-Fulkerson and Edmonds-Karp

▶ O(V2E) compared to O(VE2) for Edmonds-Karp
▶ This improves scalability significantly for dense graphs

■ Relatively easy to implement

■ Uses so-called level graphs and the concept of blocking flow

▶ This helps to achieve its superior performance

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 13 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

1 Initially, the source is labelled 0 and other
vertices are labelled -1

-1 a

0 s -1 t

-1 b

5

10
5

15

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 14 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

2 Each unvisited child of vertex u with label i,
receives label i+1 (BFS)

a 1

0 s t 2

b 1

5

10
5

15

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 15 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

3 For the paths in order of the labels, the
algorithm finds the min capacity

▶ Finding the paths with DFS method

0 1 2 Path order

s a t min{10,5}=5

s b t min{5,10}=5

■ The flow is 5+5=10

a 1

0 s t 2

b 1

5

10
5

15

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 16 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

3 For the paths in order of the labels, the
algorithm finds the min capacity

▶ Finding the paths with DFS method

0 1 2 Path order

s a t min{10,5}=5

s b t min{5,10}=5

■ The flow is 5+5=10

a 1

0 s t 2

b 1

5

10
5

15

10

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 16 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

4 The capacities get updated, and the min
flow is added to total flow

a 1

0 s t 2

b 1

0

5
0

15

5

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 17 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

5 The procedure iterates for updated,
residual graph

-1 a

0 s -1 t

-1 b

5

15

5

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 18 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Dinitz’s Algorithm – How it works

5 The procedure iterates for updated,
residual graph

0 1 2 3 Path order

s a b t min{10,5,15 }=5

■ The flow is 10+5=15

1 a

0 s 3 t

2 b

5

15

5

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 19 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of Contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 20 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

C - The Programming Language of Choice

■ C is used as the programming language of choice

▶ Fine-grained options for performance tuning and native bindings for OpenMPI
▶ Many POSIX-compatible libraries available for further architectural tailoring

■ Main challenge: robust and scalable memory management

▶ Point of ongoing optimisation

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 21 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Implementing Dinitz’s Algorithm in C

■ In the 1970s, B. Cherkassy proposed good coding practices for graph algos

■ For Dinitz’s Algorithm, some of these practices were followed
▶ No level graph is built, manage level (aka label) array where:

• level[v] = level of vertex v

▶ Our DFS-implementation ignores saturated edges and equally levelled edges
▶ No edge removals take place

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 22 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Implementing Dinitz’s Algorithm in C

■ Object-like and edge-based approach to graph processing

▶ Using an adjacency list for storing the edges of each vertex
▶ Adjacency matrix transformation possible for parallel approaches

■ Implementing BFS using TAIL queue macros provided by the BSD sys library

▶ No other external libraries needed right now, might change finally

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 23 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Implementing Dinitz’s Algorithm in C

■ Right now, graphs are parsed as .csv files

▶ But: not a robust way of processing graphs comprising of millions of nodes
▶ Moving forward, we’ll switch to .json files for storing our graphs

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 24 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Preliminary Evaluation of Sequential Implementation

Runtime scaling over an increasing number of vertices

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 25 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Preliminary Evaluation of Sequential Implementation

Runtime scaling over an increasing number of edges (base: 1000 vertices)

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 26 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of Contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 27 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas

■ Dinitz’s algo is (on a very basic level) a modified combination of BFS & DFS

▶ Extra parameters make parallelising DFS difficult
▶ However, BFS can be parallelised quite nicely

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 28 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

■ BFS can be parallelized in a variety of ways, depending on the target graph

▶ Classical top-down approach for low-diameter (sparse) graphs
▶ Bottom-up approach for high-diameter graphs (children search for parents)
▶ Dynamic optimization algo combining TD/BU depending on the graph

■ Partitioning has to be done to allow for parallelization

▶ 1D (which we used) and 2D (splitting adjacency matrix among CPUs)

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 29 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

First off: Schematics of a process

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 30 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 31 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 32 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 33 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – BFS

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 34 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization ideas – BFS

■ As seen in the model, each vertex with a shared neighbour owner processes

▶ Vertices might be checked more than once (possibly by all the processes!)
▶ Here using the bottom-up approach mentioned can mitigate revisiting vertices
▶ Each process can also benefit from multithreading via OpenMP or Pthreads

■ 2D partitioning is more scalable overall

▶ Adjacency matrices are very space-efficient (basically bitmaps)
▶ Libraries such as GSL (GNU Scientific Library) offer efficient linear algebra ops

■ BUT: 1D partitioning is easier to implement quickly and correctly

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 35 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Parallelization Ideas – DFS

■ DFS is described as a nightmare for parallel processing"

■ We can parallelize finding the shortest augmenting paths

▶ Updating and calculation of minimal flow capacity cannot be done in parallel

■ Not as straightforward as BFS since flow capacities actually matter here

▶ Can’t visit edges in parallel if we don’t know about their residual flow capacity

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 36 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Table of Contents

1 Recap: Max Flow Problem

2 Dinitz’s Algorithm

3 Sequential implementation and Evaluation

4 Parallelization Ideas

5 Challenges and Outlook

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 37 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

Challenges with constructing Big Graphs

■ An average graph with 1 million nodes can have 300 billion(3 × 1011) edges

■ Can’t be held by each CPU in local memory

▶ partitioning and memory management are important

■ Not all graphs are processed equally

▶ proper data structures (bitmaps, adjacency matrices, etc.) are important

■ To address this problem we will use partitioning and dynamic optimization

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 38 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

What we are still working on

■ Refining memory management to make memory accesses more local

■ Parallelising each step of the algorithm at least somewhat meaningfully

▶ find a way to combine flow management and existing ideas for parallel DFS

■ Evaluate performance more rigorously

▶ More data, relevant graph types (e.g. small-world graphs)

■ Implementing a robust way of generating and processing large graphs

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 39 / 40



Recap: Max Flow Problem Dinitz’s Algorithm Sequential implementation and Evaluation Parallelization Ideas Challenges and Outlook

What we might tackle if there is time

■ Implementing a 2D partitioned approach with adjacency matrices

■ Further increasing the performance of our parallelised code

▶ BFS: Implement dynamic optimisation combining top-down/bottom-up
▶ Decreasing IO overhead through the use of multithreading for sequential parts
▶ Maybe also using an external memory algo for more memory access locality

■ Using OpenMP to decrease communication overhead on multicore systems

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 40 / 40



References

References

Beamer, S., K. Asanović, and D. Patterson. “Direction-Optimizing Breadth-First Search”. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis. SC ’12. Salt
Lake City, Utah: IEEE Computer Society Press, 2012. ISBN: 9781467308045.

Beamer, S., A. Buluç, et al. Distributed Memory Breadth-First Search Revisited: Enabling Bottom-Up Search.
Tech. rep. UCB/EECS-2013-2. EECS Department, University of California, Berkeley, Jan. 2013. URL:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-2.html.

Buluç, A. and K. Madduri. “Parallel Breadth-First Search on Distributed Memory Systems”. In: Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and Analysis. SC
’11. Seattle, Washington: Association for Computing Machinery, 2011. ISBN: 9781450307710. DOI:
10.1145/2063384.2063471. URL: https://doi.org/10.1145/2063384.2063471.

Dinitz, E. A. “Algorithm for solution of a problem of maximum flow in a network with power estimation”. In:
Doklady Akademii Nauk SSSR 11 (1970), pp. 1277–1280.

Goldreich, O., A. L. Rosenberg, and A. L. Selman. Theoretical Computer Science: Essays in Memory of Shimon
Even. Springer, pp. 218–240.

Kumar, R. and V. N. Vipin. “Parallel depth first search. Part I. Implementation”. In: International Journal of
Parallel Programming 16 (Dec. 1987), pp. 479–499. URL: https://rdcu.be/dgUPq.

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 41 / 40

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-2.html
https://doi.org/10.1145/2063384.2063471
https://doi.org/10.1145/2063384.2063471
https://rdcu.be/dgUPq


References

References

■ https://en.wikipedia.org/wiki/Maximum_flow_problem

■ https://www.geeksforgeeks.org/dinics-algorithm-maximum-flow/

■ https://gitlab.gwdg.de/jonas.hafermas/max_flow_hpc

■ https://www.researchgate.net/publication/331967163_Airline_

Scheduling_with_Max_Flow_algorithm/citation/download

■ http://worldcomp-proceedings.com/proc/p2013/PDP3767.pdf

Jonas Hafermas - Zoya Masih Parallelization of Maximum Flow Problem 42 / 40

 https://en.wikipedia.org/wiki/Maximum_flow_problem
 https://www.geeksforgeeks.org/dinics-algorithm-maximum-flow/
https://gitlab.gwdg.de/jonas.hafermas/max_flow_hpc 
 https://www.researchgate.net/publication/331967163_Airline_Scheduling_with_Max_Flow_algorithm/citation/download
 https://www.researchgate.net/publication/331967163_Airline_Scheduling_with_Max_Flow_algorithm/citation/download
 http://worldcomp-proceedings.com/proc/p2013/PDP3767.pdf

	Recap: Max Flow Problem
	Dinitz's Algorithm
	Sequential implementation and Evaluation
	Parallelization Ideas
	Challenges and Outlook
	Appendix
	References


