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Maximum Flow Problem

■ Our simplified definition:
’The Maximum Flow problem is about
finding the maximum possible flow through a flow network’
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Example

■ Suppose that we have a network
with 4 nodes

■ We want to transfer data from the
source (S) to the target (t)

■ Each edge has limited flow capacity
for data propagation
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Example: Assumptions

■ Flow on a node cannot exceed its capacity

■ The total incoming and outgoing flow
equals on each node (conservation of flow)

■ There could be several paths of our (data)
flow routed through
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Example: One Solution

■ One possible way is to split flow across
multiple paths (blue and red)

■ Incoming Flow to t is 10

■ Is this the maximum flow achievable?
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Example: Optimal Solution

■ We can also pass flow = 15

■ Solution: pass 10 from s to 2, and use the
edge 2-3 for the excessive flow

■ The sum of incoming flows at t equals 15
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Motivation and applications

■ The problem has many applications in real world. Following are 2 examples

1 Circulation with Demands:

▶ A collection of supply nodes that want to ship products or goods
▶ A collection of demand nodes that want to receive the products

2 Airline scheduling

▶ Adjusting the number of passengers and the amount of loading on air networks
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Motivation and applications

■ It can also be used in IO problems and optimization

▶ Task scheduling

▶ Data transfer

▶ Network Routing
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Dinitz’s Algorithm - Overview

■ One of the several algorithms used for solving the max flow problem

■ Invented by Yefim Dinitz in 1970,

▶ Prior to Edmonds-Karp algorithm, some internal similarities exist
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Dinitz’s Algorithm – Advantages

■ Better runtime complexity than Ford-Fulkerson and Edmonds-Karp

▶ O(V2E) compared to O(VE2) for Edmonds-Karp
▶ This improves scalability significantly for dense graphs

■ Relatively easy to implement

■ Uses so-called level graphs and the concept of blocking flow

▶ This helps to achieve its superior performance
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Dinitz’s Algorithm – How it works

1 Initially, the source is labelled 0 and other
vertices are labelled -1
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Dinitz’s Algorithm – How it works

2 Each unvisited child of vertex u with label i,
receives label i+1 (BFS)
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Dinitz’s Algorithm – How it works

3 For the paths in order of the labels, the
algorithm finds the min capacity

▶ Finding the paths with DFS method
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■ The flow is 5+5=10
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Dinitz’s Algorithm – How it works

4 The capacities get updated, and the min
flow is added to total flow
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Dinitz’s Algorithm – How it works

5 The procedure iterates for updated,
residual graph
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Dinitz’s Algorithm – How it works

5 The procedure iterates for updated,
residual graph

0 1 2 3 Path order

s a b t min{10,5,15 }=5

■ The flow is 10+5=15
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C - The Programming Language of Choice

■ C is used as the programming language of choice

▶ Fine-grained options for performance tuning and native bindings for OpenMPI
▶ Many POSIX-compatible libraries available for further architectural tailoring

■ Main challenge: robust and scalable memory management

▶ Point of ongoing optimisation
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Implementing Dinitz’s Algorithm in C

■ In the 1970s, B. Cherkassy proposed good coding practices for graph algos

■ For Dinitz’s Algorithm, some of these practices were followed
▶ No level graph is built, manage level (aka label) array where:

• level[v] = level of vertex v

▶ Our DFS-implementation ignores saturated edges and equally levelled edges
▶ No edge removals take place
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Implementing Dinitz’s Algorithm in C

■ Object-like and edge-based approach to graph processing

▶ Using an adjacency list for storing the edges of each vertex
▶ Adjacency matrix transformation possible for parallel approaches

■ Implementing BFS using TAIL queue macros provided by the BSD sys library

▶ No other external libraries needed right now, might change finally
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Implementing Dinitz’s Algorithm in C

■ Right now, graphs are parsed as .csv files

▶ But: not a robust way of processing graphs comprising of millions of nodes
▶ Moving forward, we’ll switch to .json files for storing our graphs
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Preliminary Evaluation of Sequential Implementation

Runtime scaling over an increasing number of vertices
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Preliminary Evaluation of Sequential Implementation

Runtime scaling over an increasing number of edges (base: 1000 vertices)
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Parallelization Ideas

■ Dinitz’s algo is (on a very basic level) a modified combination of BFS & DFS

▶ Extra parameters make parallelising DFS difficult
▶ However, BFS can be parallelised quite nicely
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Parallelization Ideas – BFS

■ BFS can be parallelized in a variety of ways, depending on the target graph

▶ Classical top-down approach for low-diameter (sparse) graphs
▶ Bottom-up approach for high-diameter graphs (children search for parents)
▶ Dynamic optimization algo combining TD/BU depending on the graph

■ Partitioning has to be done to allow for parallelization

▶ 1D (which we used) and 2D (splitting adjacency matrix among CPUs)
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Parallelization Ideas – BFS

First off: Schematics of a process
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Parallelization Ideas – BFS
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Parallelization ideas – BFS

■ As seen in the model, each vertex with a shared neighbour owner processes

▶ Vertices might be checked more than once (possibly by all the processes!)
▶ Here using the bottom-up approach mentioned can mitigate revisiting vertices
▶ Each process can also benefit from multithreading via OpenMP or Pthreads

■ 2D partitioning is more scalable overall

▶ Adjacency matrices are very space-efficient (basically bitmaps)
▶ Libraries such as GSL (GNU Scientific Library) offer efficient linear algebra ops

■ BUT: 1D partitioning is easier to implement quickly and correctly
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Parallelization Ideas – DFS

■ DFS is described as a nightmare for parallel processing"

■ We can parallelize finding the shortest augmenting paths

▶ Updating and calculation of minimal flow capacity cannot be done in parallel

■ Not as straightforward as BFS since flow capacities actually matter here

▶ Can’t visit edges in parallel if we don’t know about their residual flow capacity
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Challenges with constructing Big Graphs

■ An average graph with 1 million nodes can have 300 billion(3 × 1011) edges

■ Can’t be held by each CPU in local memory

▶ partitioning and memory management are important

■ Not all graphs are processed equally

▶ proper data structures (bitmaps, adjacency matrices, etc.) are important

■ To address this problem we will use partitioning and dynamic optimization
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What we are still working on

■ Refining memory management to make memory accesses more local

■ Parallelising each step of the algorithm at least somewhat meaningfully

▶ find a way to combine flow management and existing ideas for parallel DFS

■ Evaluate performance more rigorously

▶ More data, relevant graph types (e.g. small-world graphs)

■ Implementing a robust way of generating and processing large graphs
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What we might tackle if there is time

■ Implementing a 2D partitioned approach with adjacency matrices

■ Further increasing the performance of our parallelised code

▶ BFS: Implement dynamic optimisation combining top-down/bottom-up
▶ Decreasing IO overhead through the use of multithreading for sequential parts
▶ Maybe also using an external memory algo for more memory access locality

■ Using OpenMP to decrease communication overhead on multicore systems
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