
Project report

Visualization of Circle Collisions using Quad- and

Octa-trees

prepared by

Eliah Windolph, Evgeni Uschakov

Georg-August-University Göttingen

Course title: Practical Course on High-Performance Computing

Supervisor: Prof. Dr. Julian Kunkel

Submission date: 30.09.2023

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Scope of the project . 2

1.3 Collisions . 2

2 Naive Implementation 5

2.1 Idea . 5

2.2 MPI Extension . 6

3 Static Tree 7

3.1 Idea . 7

3.2 Implementation . 7

4 Dynamic Tree 11

4.1 Idea . 11

4.2 Implementation . 11

4.3 MPI Extension . 12

5 Challenges 14

6 Performance 15

6.1 Naive Implementation . 15

6.2 Static Tree . 16

6.3 Dynamic Tree . 17

6.4 Dynamic Tree with MPI . 18

6.5 Comparison . 19

7 Conclusion 21

7.1 Summary . 21

7.2 Outlook . 21

1 Introduction

1 Introduction

1.1 Motivation

Detecting and handling circle collisions is a computation-intensive task. Due to the underlying processes,

including the calculation of Euclidean distances, formulation and assignment of resulting trajectories, as

well as the resolution of overlaps after collisions, the implementation needs to be addressed with care. As

the number of circles and the subsequent amount of collisions per second increases, the demand for fast,

efficient and reliable algorithms and data structures grows. For that there exists a compelling solution

using spatial trees, such as quad- for 2D and octa-trees for 3D applications, as well as higher-dimensional

trees as needed. This data structure provides a well suited space partitioning approach for this task and

is being used in engineering and robotics for safety and precision when dealing with collision detection as

well as in physical simulations such as n-body simulations. Well-documented tests can provide detailed

insights into further possible improvements of this approach and its impact of adding parallel processes

in Message Passing Interface (MPI) based solutions, enabling an evaluation of the achievable scalability

and efficiency.

1.2 Scope of the project

This project aims to create a physical simulation, but instead of focusing on the correctness and realism,

we focus on the scaling of the simulation. The resulting application should be able to visualize an

n-body simulation with object collision, excluding gravity. For this to be possible we decided for two

simplifications: first, limiting the simulation to two dimensions, and second, exclusively check collisions

between circles for which the collision checks are simpler than for other objects (see chapter 1.3). We

choose C as our programming language since it should be optimal for high performance applications.

We first look into different solutions for performing circle collision and their implementation with MPI. In

chapter 5 we talk about challenges in their development before we move on to the performance chapter.

There we compare the average iterations per second (IPS) achieved with variable amounts of circles,

processes and other parameters, between the introduced implementations. We then look into these

results and show each strengths and weaknesses of our implemented ideas, before giving an outlook of

possible next steps and improvements.

1.3 Collisions

Since we only look at collisions in 2D it is simple to see if two circles collide. We just have to get the

distance between the two centers and check if it is smaller or equal to the sum of the radii of the circles.

Mathematically, it looks like this:√
(c1.x− c2.x)2 + (c1.y − c2.y)2 ≤ c1.r + c2.r (1)

If we now add the simplification that all circles have the same size we get:√
(c1.x− c2.x)2 + (c1.y − c2.y)2 ≤ 2r (2)

2

1 Introduction

Now we know how to check if two circles are colliding, so the next question is how do we solve the

collision impact and calculate the new velocities. For our main objective of analysing the scalability and

efficiency, we use elastic collision, which means no kinetic energy is lost in thermal energy or deformation.

That means: ∑
Ekin =

∑
E′

kin

m1

2
v21 +

m2

2
v22 =

m1

2
v′1

2 +
m2

2
v′2

2

m1

2
(v21 − v′2

2) =
m2

2
(v′2

2 − v22)

(3)

Additionally we know:

∑
p =

∑
p′

m1v1 +m2v2 = m1v
′
1 +m2v

′
2

m1(v1 − v′1) = m2(v
′
2 − v2)

(4)

If we put all of this together and add the simplification that the masses of the two circles are the same

we get the following result:

v′1 = v2

v′2 = v1
(5)

The problem with this is that we only check each frame if two circles collide and change their position

based on the velocity. Therefore it is possible that the circles overlap and become stuck in a deadlock

situation, as the velocities are swapped every frame while the overlap remains unresolved. In order to

circumvent this problem we adjusted the collision calculation.

The following pseudocode shows a vague implementation of our checkCollision function.

3

1 Introduction

1 def checkColission(Circle circle1, Circle cirlce2):

2 double dx = circle2->posX - circle1->posX

3 double dy = circle2->posY - circle1->posY

4 if fabs(dx) > circleSize or fabs(dy) > circleSize then

5 continue

6 end

7 double distSquared = dx * dx + dy * dy

8 if distSquared < circleSize * circleSize then

9 double dist = sqrt(distSquared)

10 double overlap = (circleSize - dist) / 2.0

11 dx /= dist

12 dy /= dist

13

14 circle1->posX -= overlap * dx

15 circle1->posY -= overlap * dy

16 circle2->posX += overlap * dx

17 circle2->posY += overlap * dy

18

19 double dvx = circle2->velX - circle1->velX

20 double dvy = circle2->velY - circle1->velY

21 double dot = dvx * dx + dvy * dy

22

23 circle1->velX += dot * dx

24 circle1->velY += dot * dy

25 circle2->velX -= dot * dx

26 circle2->velY -= dot * dy

27

28 circle1->velX *= friction

29 circle1->velY *= friction

30 circle2->velX *= friction

31 circle2->velY *= friction

32 end

33 function end

In line 4 we make a small check, if the positional distance between the x or y coordinates is bigger than

2 times the radius (circleSize = diameter). If false, the circles cannot collide. We then get over to

check if the two circles collide by using the formula 2 squared. Then we resolve the overlap, change

the velocities and add a friction factor. Even though we technically used elastic collisions we thought

it would make a more interesting simulation if the circles could slow down over time with a optional

parameter friction (for no friction we can set it to 1).

4

2 Naive Implementation

2 Naive Implementation

2.1 Idea

The idea of the naive implementation is to calculate the distances for each circle pair. This is done

efficiently by only checking all circles with the ones having a bigger id than the circle for which we

currently check collisions. This reduces a lot of useless computation. If a circle with id 1 collides with

circle 5, we calculate the collision for both circles by manipulating the velocities and resolving possible

overlaps for both circles at once. Now there is no need to detect the collision between its reverse order,

circle 5 with circle 1. We added this optimization in order to avoid calculating collisions twice for each

circle pair. Another way of solving this problem would be to just change the attributes of the circle

which initiates the check which will be needed later in the MPI versions. This brings us to the following

main loop, shown in pseudocode 1 below.

1 class Naive Implementation:

2 def mainLoop:

3 for i from 0 to numCirlces-1 do

4 for j from i+1 to numCircles do

5 checkCollision(i, j)

6 end

7 end

8 for i from 0 to numCirlces do

9 move(i)

10 end

11 function end

12 class end

Algorithm 1: The naive implementation

Figure 1: Naive Implementation

5

2 Naive Implementation

2.2 MPI Extension

The idea behind its MPI solution is to parallelize the main loop. Instead of iterating over all circles we

split the array into equal sized parts so that each process handles the same amount of circles. Since

every circle calculates the collision with each other circle, we have to make sure that every process has

the newest data from all circles of the current iteration. For that reason, we chose the MPI function

MPI Allgather. Each process sends their section of the circles-array to all other processes, so that every

rank receives all updated data for each section (see figure 2). Furthermore we need to make sure that

our checkCollision implementation only changes the data of the circle which initiated the check and

detect collisions with each other circle (instead of just the ones with higher ids, like in the non-MPI

implementation). Since two circles might be checked by different processes and each process only sends

its own circle data, collisions between two circles from different sections might get lost.

Figure 2: Naive Implementation with MPI

6

3 Static Tree

3 Static Tree

3.1 Idea

The idea behind the static tree approach is to reduce the number of collision checks by introducing space

partitioning. This is done by dividing the whole field into multiple sub-areas. When assigning each circle

to its part on the field, based on its location, we can be certain that circles from different areas are too

far apart from each other in order for collision to occur. Therefore, instead of calculating the distances

between all circles, we reduced the problem by checking circles inside each sub-area, which we from now

on call cell.

The importance of space partitioning becomes clear, when shown as a performance comparison on an

example. Lets assume there are n = 100 circles. The brute force approach would result in n2 = 1002 =

10000 collision checks. Our naive implementation with and without MPI reduces it to n2

2 = 1002

2 = 5000.

When adding rigid space partitioning using a grid of size 5x5, the number of collision checks drops down

to around 5 · 5 · (100
5·5)2

2 = 10000
50 = 200, assuming the circles are equally distributed across the area, and

every circle is inside exactly one grid-cell. When enhancing the resolution of this grid to the point where

the cells have the size of a circle and assigning each circle the location of its respective cell, there are no

collision checks needed, until a circle leaves its cell and overlaps with one that is already occupied. A

good balance between the consumption of memory and the number of collision checks needs to be found

in order for the solutions to work most efficient. A problem following the space partitioning approach

are circles along borders between grid cells. Then all overlapped cells have to calculate the collisions for

these circles. The worst-case scenario occurs, when every circle overlaps with 4 grid cells.

Another issue emerges when the circles are not evenly distributed or many more circles are added. In

that case some cells may need to perform much more work, while others don’t contain any circles. This

issue happens due to the missing load balancing of the static grid approach.

3.2 Implementation

In order to minimize these problems, we need a clever way of achieving a well balanced grid with dynamic

splitting, so that every cell surrounds roughly the same number of circles. For this we use a quad-tree.

In this approach each cell has a position (x,y) and a width and height. Based on this we know the area

each cell covers. Additionally it will store two pointers, one to an array which contains its circles and

one for optional subcells, generated by a split operation.

Before diving into the specifics of our quadtree implementations, a couple topics need to be addressed

first. Performing basic array operations directly on circle objects takes much time. Copying a circle to a

different memory location thousands of times per second seems to be not efficient. To prevent this, the

array elements can be replaced by basic integers being the indices of the circles in a predefined global

array. Since there can only be one version of a circle to draw and perform circle collision with, copying

a circle to a different memory location becomes a simple assignment of an integer to the desired field.

This also reduces the sizes of memory allocations on runtime, which should increase the performance

substantially. Furthermore hashsets can be used for storing distinct circles inside the cells for faster

lookup times.

7

3 Static Tree

We will always have the so named root cell which has position (0,0) and size (ScreenWidth, ScreenHeight).

Adding circles to the tree works by inserting them into the root cells circles array. Once it exceeds a

maximum, a parameter called maxCirclesPerCell, the cell splits by creating four subcells dividing the

area into four parts (see pseudocode 2 and the examples in figures 3 and 4).

1 def split(cell pointer):

2 subcells = createSubcells(cell)

3 for int i = 0; i < cell.numCirclesInCell; i++ do

4 int circle id = cell.circle ids[i]

5 for int j = 0; j < 4; j++ do

6 struct Cell* subcell = &cell.subcells[j]

7 if !isCircleOverlappingCellArea(circle id, subcell) then

8 continue

9 end

10

11 addCircleToCell(circle id, subcell)

12 end

13 end

14 free(cell.circle ids)

15 cell.circle ids = null

16 function end

Algorithm 2: The split function

Figure 3: Before split Figure 4: After split

By doing so we will end up with smaller cells that ideally each contain less circles than our maximum.

If we now add new circles, the root cell will check in which child’s area the circle belongs to and inserts

it there. This part can be seen in pseudocode 3. Note that subcells can split too if they reach their

maximum, becoming parents themselves.

8

3 Static Tree

1 def AddCircleToTree(circle, cell):

2 if cell.isLeaf: then

3 if cell.numCirclesInCell < maxCirlcesPerCell then

4 cell.circles.append(circle)

5 end

6 else

7 split(cell)

8 addCircleToTree(circle, cell)

9 end

10 end

11 else

12 for i from 0 to 4: do

13 if isCircleOverlappingCellArea(circle, cell.subcells[i]) then

14 addCircleToTree(circle, cell.subcells[i])

15 end

16 end

17 end

18 function end

Algorithm 3: Add circle to tree function

Now the main loop consists out of generating the tree by iterating over all circles and adding each to

the root cell. Then it calculates the collisions inside of all generated leaf-cells, updates the velocities and

resolves overlaps, before deleting the tree and repeating this process for every frame.

A full example of the tree structure can be seen in figure 5.

9

3 Static Tree

Figure 5: Visualized tree (maxCirclesPerCell=2, num-
Circles=14)

10

4 Dynamic Tree

4 Dynamic Tree

4.1 Idea

After exploring the static tree approach, it becomes evident that there is no need to always fully re-

build the tree since it creates huge workloads by redundantly performing identical calculations. In

order to achieve a better solution, we thought of a new approach by splitting and collapsing cells, ac-

complishing a dynamic tree capable of autonomously managing its cells. If a cell contains more than

maxCirclesPerCell circles, it splits into four subcells as previously done. However, once one or more

circles leave the area of a parent cell, it collapses, deleting its subcells and merging their circles into

the parent cell. That way it fixes the issue at hand, but other difficulties emerge. In order to detect

collapsable cells, we need to keep track of the amounts of distinct circles inside the parent cell areas. If

a circle moves to the border of multiple cells, it is being stored in each cell it overlaps. That way, each

cell detects collisions but the parent cell might misinterpret the copies as different circles, which leads to

non-collapsing cells.

4.2 Implementation

Everytime we recursively update the tree, each cell checks whether its circles remained inside its area.

Once a leaving circle has been detected, the function deleteCircle is being called on the rootCell. This

deletes the circle from every cell containing it but is not overlapping anymore. Simply removing the circle

from this cells array and then inserting it into other cells would lead to a lot of repeated work. If a circle

leaves two cells at the same time, as shown in figures 3 and 4, both cells detect this leaving circle and

perform identical operations to find the next cell for it. Moreover, once the adding process inserts this

circle into a currently unvisited cell, it will get checked again. So instead we delete outdatedly assigned

circles in every cell that is close to it by using the helper function isCircleCloseToCellArea. After

deleting the circle, it is added to its right cell by the function addCircleToParentCell. This traverses

the tree in bottom-up direction by using a parentCell reference in the subcells. If a circle is still not

in the area of the parentCell, then the counter numCirclesInCell gets reduced by one. If a parentCell

surrounds the circle, it is being inserted there by calling addCircleToCell, which leads to the according

leaf-cell. If only a part of it was inside the parentCell, then a copy must be sent further up the tree

continuing the traversal, until it reaches the rootCell which would be the worst-case. At the end of every

update call, the code compares the numCirclesInCell of the current cell to maxCirclesPerCell. If it

is smaller or equal, then collapse is called on this cell. That way, a problem shows up when circles are

being added to their right circles, which might lead to an unwanted split operation, since some circles

of the splitted and not yet updated cell might have left the parentCell, following up with a collapse

operation once the traversal reaches it. In order to fix this issue, the collapse and split functions would

have to run after udpating the tree. Our tests showed no FPS gain using either approach, since such a

function requires a second traversal of the tree for every frame.

On an addCircleToCell call, the correct cell for the new circle is found in O(log n+ k)(n = number of

leaf-cells, k = number of circles inside the found cell) time, assuming the circles are equally distributed

across the field, since its just one path down the tree and a check if a copy of this circle is already inside

it. The function deleteCircle has in addition to the lookup time, the time complexity O(n) with n

11

4 Dynamic Tree

being the number of circles inside the found cell, due to the removal of a circle and the rearrangement

of the following circles inside the array. The split operation needs to create four sub-cells in a leaf-cell

and insert the circles of it into them in O(n) time. In contrary, the runtime of the collapse function is

more difficult to estimate. Since it could start from any parentCell, it needs to traverse over its whole

sub-tree. Every circle inside the visited leaf-cells need to be inserted into the collapsing cell. Due to the

fact, that we only collapse cells of maxCirclesPerCell circles or less, there are only this many to be

added. So the time complexity in this case is O(n+k) with n being the number of leaf-cells in the sub-tree

and k ≤ maxCirclesPerCell being the number of circles to be inserted. An addCircleToParentCell

call takes the time of iterating the bottom-up path combined with multiple addCircleToCell runs. The

amount of calls is determined by the overlaps of the circle with multiple cells along different paths.

4.3 MPI Extension

We thought of multiple ways on how MPI can improve the performance of our dynamic tree.

One idea is to split the field in multiple areas surrounding parts of the circles. That way we basically

replace the first split of the root cell by manually creating sub-cells operating on different processes.

These can not be collapsed, since they are no real cells but simple rectangular parts of the whole field

managing their own root cells of size (AreaWidth, AreaHeight) at their assigned positions. These areas

are stored inside a processes array, and get synchronized with all processes using MPI Bcast. That way

every process knows the assignments of the areas on the screen to its process ranks. We still need to

communicate which circles are in which area. For this our first approach is to use the process 0 as a

master rank. It will handle the communication and distribute the circles. Each other process calculates

its tree with the circles that are inside their respective area, checks for collisions in their tree, update

the circle positions, and send the updated data back to process 0. This master rank collects all updated

circles, creates the new frame for the visualization, and sends the data back to all processes after assigning

the ranks to each circle based on their new position. This approach has multiple flaws. First of all, the

process 0 has to run through the circle array of each process to update its global circles array. This

scales bad with higher amounts of processes, since in addition to waiting for the master to finish, each

worker process generates multiple MPI calls per frame. Another problem is the missing load balancing

for specific cases. If a lot of circles are in a few areas (i.e. if we add gravity most circles will fall to the

bottom), their processes will have to calculate a lot of collision checks while others run idle. Furthermore

we have a communication bottleneck, since all communication flows through the process 0, instead of

messaging the corresponding processes directly. So another idea is to use direct messaging (DM) for

communicating leaving and entering circles across areas.

12

4 Dynamic Tree

Figure 6: MPI approach visualization with 5 processes

A different approach is comparable with the MPI-version of our naive implementation. Each process

will get an equal amount of circles for which it will calculate the collisions. The drawback is that all

processes need to build the whole tree, even if none of its circles are in sub-trees. Another problem is

that circles do not know in which cells they are, so we have to find the cell in which the circle is, by

traversing trough our tree. This can be solved by adding a mapping from circles to cells. We did however

not implement this version.

13

5 Challenges

5 Challenges

In this chapter we will discuss challenges we had with the project. The main challenges where in the

implementation of the dynamic tree approach. There are many edge cases one has to think about. In

addition to that, exceptions where thrown multiple iterations later than the real error occurred, which

made the debugging process even harder. One small example of one of these edge cases is the following:

Assume a circle is on the edge of two cells, which both have the same parent. Now the circle is leaving

both cells in the same frame like you can see in figure 7.

Figure 7: An example edge case

Our first implementation just checked if a circle left the cell. If it has, we reduce the counter for the

circles and check if the circle also left our parent. If so we reduce its counter as well. We would do

this until we found a cell which contains the circle and return. The problem now is that both cells will

recognize that they lost a circle and will both tell their parent to check if it contains it. The parent will

both times see that the circle in question is out of its scope and reduce the amount of circles by 1, so 2

in total, even though it only lost 1 circle. This would not always throw an exception just yet. Maybe

the parent has still more than maxCirclesPerCell and therefore wont collapse. It may collapse multiple

iterations later which made finding this bug much harder, since everything looked fine apart from the

wrong counter. In addition, this was especially hard to debug in the MPI-versions due to the much more

difficult tracking of variables of multiple processes on runtime.

Another problem occurs on the communication of circles between processes in the MPI-implementation.

A circle is only being sent when it fully leaves the root cell area of a process. While overlapping two

areas, a collision will only be registered by the one process, the circle is assigned to. Circles from different

processes will not affect this circles trajectory on visible collision. But since the diameter is chosen to be

1, and the position difference in the x- and y-axis per update is at most 1, this only occurs if the circles

switch areas at the same position on the border and their decimal place value inconveniently matches.

14

6 Performance

6 Performance

In this chapter we will look at the performance of the different implementations. In order to compare

them we use the average iterations per second (IPS) which is comparable with the more known average

frames per second, but since we did not output the visualization, we chose the former. The time frame

of measuring the IPS starts on the first update call and ends once 5 seconds have passed.

6.1 Naive Implementation

As can be seen in figure 8, most of the workload is caused by collision checks. The communication after

the initialization (the previously mentioned MPI Allgather) needs only a relatively small amount of time.

Figure 8: Naive workload

15

6 Performance

6.2 Static Tree

As figure 9 shows, we greatly reduced the time it takes for performing collision checks and shifted it to-

wards the tree building functions, of which the three biggest are addCircleToCell, isCirlceOverlappingCellArea,

and split.

The reason why addCircleToCell takes so long is, since it needs to traverse the whole tree at least to

one leaf while checking in each recursive call if the circle is in all four possible sub-trees.

Figure 9: Static Tree Workload

The reason why MPI Recv takes up so much time is easier so understand once we take a look at the

workload distribution of the different processes. This can be seen in figure 10.

Figure 10: Static Tree Workload per process

Process 0, which is responsible for the circle distribution, has to do way more work than the other

processes which leads to long waiting times in these. A better way to distribute the circles or the work

could greatly benefit this approach.

16

6 Performance

6.3 Dynamic Tree

Figure 11: Dynamic Tree Workload

As you can see in figure 11 and 12 the dynamic tree approach suffers from the same problem as the

static tree. The work is not balanced well enough so processes are waiting for the new data instead of

calculating the new collisions.

Figure 12: Dynamic Tree Workload per process

17

6 Performance

6.4 Dynamic Tree with MPI

Figure 13: Dynamic Tree DM Workload

As can be seen in figure 13 and 14, the Direct Messaging approach distributes the work much better. In

the beginning, process 0 still distributes all circles to the corresponding circles which means the other

processes have to wait. But after that, the communication is no longer a bottleneck. This means less

idle time which should result in more actual time used for the calculations. The performance gain will

be discussed in the next section.

Figure 14: Dynamic Tree DM Workload per process

18

6 Performance

6.5 Comparison

In all the following tests, we used the average IPS over 5s in order to compare the performance of the

algorithms. A higher IPS counter means the version could in reality create more frames in the same time

and is therefore better.

In the benchmark in figure 15 you can see, we kept the amount of cores fixed at 1 and tested how the

IPS develops if we change the amount of circles. Not surprising is, that all implementations get worse

with more circles, since all the implementations need to handle more circles and check for more collisions.

Additionally we can see that our trees have a big advantage over the naive implementations, which gets

smaller the more circles we get.

The more interesting test case is the one in which we increased the amount of processes to see the

scaling of each approach. The results can be seen in figure 16. The naive approach as well as the

static and dynamic trees actually get worse with more processes. The reason for this is the additional

workload process 0 has to handle. The DM and Hash-set (HS) approaches on the other hand get better

performances with increasing processes. We assume that the peaks come from different loads on the

cluster we ran the benchmarks on. Even tough we ran the benchmarks multiple times we still got peaks.

But we can see a clear performance gain using bigger numbers of processes.

19

6 Performance

20000 40000 60000 80000 100000
Circles

0

200

400

600

800

1000

Av
er

ag
e

IP
S

Single Core
MPI_NewTree_NoOpenGL
MPI_DynTree_NoOpenGL
mpi_without_tree
MPI_DM_DynTreeRef_NoOpenGL
MPI_DM_DynTree_NoOpenGL
MPI_DM_DynTreeRef_HS_NoOpenGL

Figure 15: Single core comparison

5 10 15 20 25 30
Processes

0

2000

4000

6000

8000

Av
er

ag
e

IP
S

Multi Core

Figure 16: Multi core comparison

20

7 Conclusion

7 Conclusion

7.1 Summary

We first gave a small analysis of our problem and our simplifications. Then we explained our 3 different

versions for the collision handling, namely the naive, static tree, and dynamic tree implementation. We

explained the advantages and disadvantages of each version and provided an insight into their perfor-

mances. We looked at the implementation in the single process as well as in the multi process case

in addition to a variable circle amount to get a better understanding of the scaling of each approach.

Furthermore we looked at the workload distribution to identify flaws and possible improvements. The

following visual 17 shows our final result with 1 million circles. The circles are barely visible at such high

numbers and the red lines represent the borders of the processes.

Figure 17: Final result

7.2 Outlook

As mentioned earlier, some parts of the code could be improved or get some more attention by further

analyzing the reachable IPS. Examples are the order of the collision and split operations inside the update

function of the dynamic tree as well as a deeper dive into the hash-set solution, since it was expected to

show more noticeable improvements.

Splitting cells in four equal parts is not always the best solution of performing space partitioning. It

might be more efficient to split cells at high concentrated circle locations inside it. That way there are

much less split operations needed, since it always divides the cells space based on its circles distribution.

All solutions can be coded into 3-dimensional versions by changing the tree from having 4 to 8 sub-cells

and the formulas of the circle collision. In addition, the visuals need to be implemented as well.5

21

	Introduction
	Motivation
	Scope of the project
	Collisions

	Naive Implementation
	Idea
	MPI Extension

	Static Tree
	Idea
	Implementation

	Dynamic Tree
	Idea
	Implementation
	MPI Extension

	Challenges
	Performance
	Naive Implementation
	Static Tree
	Dynamic Tree
	Dynamic Tree with MPI
	Comparison

	Conclusion
	Summary
	Outlook

