
VISUALIZATION OF CIRCLE COLLISIONS 
USING QUAD- AND OCTA-TREES

HPC-PROJECT

BY ELIAH AND EVGENI



PRESENTATION OUTLINE

MOTIVATION PROBLEM 
DESCRIPTION

APPROACHES PERFORMANCE 
ANALYSIS

CONCLUSION OUTLOOK



MOTIVATION

• Physics Simulations

• Swarm Robotics 

• Drones, Cars

• Computer Games

• It's fun



PROBLEM DESCRIPTION

2D INSTEAD OF 3D

We reduced the dimensions to 2

COLLISIONS

Check the collision between circles and with 

the wall

All circles have the same size and same mass

THE AMOUNT OF CIRCLES

The amount of cirlces increases the amount 

of collision checks drastically



APPROACHES



NAÏVE IMPLEMENTATION

Main Loop

for i from 0 to numCircles-1:

| for j from i + 1 to numCircles:

| | checkCollision(i, j)

for i from 0 to numCircles:

| move(i)

Check Collision

if distance(circle1, circle2) < 2r:

| calcVelocities(circle1, circle2)

| resolveOverlap(circle1, circle2)

Approaches



NAÏVE – WITH MPI

• Parallelize the outer main loop

• Each process only calculates the collisions for its own circles

Rank 0 Rank 1 Rank 2

Rank 0

Rank 1

Rank 2

Main Loop

h = numCircles / world_size

for i from rank * h to (rank+1) * h:

| for j from 0 to numCircles:

| | checkCollision(i, j)

for i from 0 to numCircles:

| move(i)

MPI_Allgather(&circles[rank * h], h)

Approaches



NAÏVE – WORKLOAD DISTRIBUTION

• Most of the calculation is in the 

checkCollisions function

• Communication is only a 

small overhead

Approaches



THE TREE

• Split field in cells

• Assign circles to cells

• Check collisions in every cell

Benefits Drawbacks

Less collision checks Tree creation

Approaches



STATIC TREE

Add Circle To Tree (circle, cell)

if cell.isLeaf:

| if cell.numCirclesInCell < 2:

| | cell.circles.append(circle)

| else:

| | split(cell)

| | addCircleToTree(circle, cell)

else:

| for i from 0 to 4:

| | if circleOverCell(circle, subcell[i])

| | | addCircleToTree(circle, subcell[i])

Approaches



STATIC TREE - WORKLOAD DISTRIBUTION

• Main workload on tree building

• checkCollision needs much less time

• Wasteful to delete the tree and rebuild 

it for every frame

Approaches



DYNAMIC TREE

The idea:

• Don't reconstruct the tree

→ Reuse and update: split/collapse

• Don't "waste" perfectly fine subtrees

Problems:

• Implementation

• Recursive functions are harder to 

debug

• Exception thrown multiple iterations 

after error occured

Approaches



DYNAMIC TREE -
WORKLOAD DISTRIBUTION

• The dynamic functions are costing a lot 

of time

• Multiple tree traversals per frame

• There might be a better implementation 

we haven't found yet

Approaches



MPI WITH TREES

• Split the window in multiple subfields

• Assign one to each process

• Every process manages a tree with dimensions 

of its subfield

• Process 0 coordinates circle distribution

Window subfields with 

process numbers

0 1 2

3 4

Approaches



Rank 0: coordination + calculation

U
p
d
a
te

• Prepare circle array for 

each process

• Distribute circles

• Update Tree

• Receive circles of each 

process

• Draw all circles

Send

Rank 1 to n: calculation

• Receive Circles

• Update Tree

• Send Circles
Send

U
p
d
a
te

Approaches



PERFORMANCE COMPARISON



• Naïve works slower than both 

tree approaches

• With more circles the fps 

improvement gets smaller

• Dynamic tree shows best results

Performance comparison

Stat



• The naïve implementation

scales nearly optimal

• Both trees do not scale

• The tree solutions get worse 

with more processes

Performance comparison

Stat



THE PROBLEM (STATIC TREE)

• All processes are waiting until 

process 0 distributes updated circles

• The overhead for process 0 is 

bigger than the time advantage we 

get with less collision checks

• Only if number of circles is low

Performance comparison



STATIC TREE

• static tree approach works better with 

less processes

• Even if we increase the amount of 

circles

• At around 100k circles we get a turn 

point

• The collision check gets more complex 

compared to the work process 0 gets

Performance comparison





CONCLUSION

Trees:

• Trees work way better in single process 

applications

• MPI is harder to implement and scales 

worse

• Should be used in single or with low 

amount of processes

Naïve:

• Gets slow with growing circle amounts

• Scales nearly optimal with increasing 

process size

• Should be used if you have a high 

amount of processes



OUTLOOK

• Different circle sizes and differente masses

• Find a better dynamic tree implmentation

• Find a better way of circles coordination (direct messaging)

• Find a better implementation where processes get a circle range 

instead of subfields

• Reduces message, comparable with the naïve messaging

• Scales better if circles are not equally distributed (e.g. gravity)


	Folie 1:  Visualization of Circle Collisions using Quad- and Octa-trees
	Folie 2: Presentation outline
	Folie 3: Motivation
	Folie 4: PROBLEM DESCRIPTION 
	Folie 5: Approaches
	Folie 6: Naïve Implementation
	Folie 7: Naïve – With mpi
	Folie 8: Naïve – Workload distribution
	Folie 9: The tree
	Folie 10: Static tree
	Folie 11: Static Tree - Workload distribution
	Folie 12: dynamic tree
	Folie 13: Dynamic Tree - Workload distribution
	Folie 14: MPI WITH TREES
	Folie 15
	Folie 16: Performance Comparison
	Folie 17
	Folie 18
	Folie 19: The problem (Static Tree)
	Folie 20: Static Tree
	Folie 21
	Folie 22: Conclusion
	Folie 23: outlook

