
SH

∞

Seminar Report

Introduction to Performance
Engineering in Rust

Lars Quentin

MatrNr: 21774184

Supervisor: Dr. Artur Wachtel

Georg-August-Universität Göttingen
Campus-Institut Data Science / GWDG

October 1, 2023



Abstract
Due to its high safety focus for a modern systems programming language, Rust is a
promising choice for performance-critical applications in the field of High Performance
Computing (HPC). This report covers an introduction to the methodology of perfor-
mance engineering using Rust’s still-developing ecosystem. It was done using the concept
of problem-based learning, where, using the example of quadratic matrix multiplication,
many concepts of performance engineering were explored. This report covers micro bench-
marking, full benchmarking, profiling, assembly analysis, compiler optimizations, and an
introduction to single-threaded SIMD parallelism as well as multi-threading. While the
ecosystem is still experimental and ever-changing, the tooling available is already sufficient
for thorough performance analysis.
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Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

X� Not at all

� In brainstorming

� In the creation of the outline

� To create individual passages, altogether to the extent of 0% of the whole text

� For proofreading

� Other, namely: -

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.
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Introduction to Performance Engineering in Rust

1 Introduction
1.1 Motivation

From a programming language perspective, High-Performance Computing (HPC) is dom-
inated by code written in C, C++, or Fortran as these provide the low-level control and
optimization capabilities required for tightly-optimized code. However, as Rust was ini-
tially designed as a modern, memory-safe C++ replacement, it could be a valid choice
for any kind of performance-critical code.

Rather than just providing yet another taxonomy of successful HPC projects in Rust,
this report will give an introduction to the topic of performance engineering in Rust, im-
plicitly covering the current state of the ecosystem while providing a short explanation of
each of the common concepts. Instead of just providing an enumeration of techniques, it
uses Problem-Based Learning (PBL) to introduce the techniques just in time when they
are relevant, providing a more coherent learning progression.

Problem-Based Learning can be difficult. The problem has to be

• Small enough to fit the scope of a report

• Complex enough to cover most of the concepts of real-life performance engineering

• Interesting enough to keep readers engaged in the topic

For this report, we decided to analyze matrix multiplications. More than just a toy
problem, matrix multiplication is at the core of all deep learning frameworks. As the
parameter count steadily increases into the trillions [1], fast matrix multiplications become
evermore important for today’s frameworks.

1.2 Rust

Rust [2] is a systems programming language initially released by Mozilla Research in 2015.
It was designed as a memory-safe alternative for C++ in Servo [3], which is the web ren-
dering engine used in Firefox. Rust’s main goal is to provide memory safety while having
an on-par performance with other systems languages such as C or C++.

Having memory safety is paramount, as most security issues in traditional C/C++
codebases are a result of using a memory-unsafe language. To quote the overview by Alex
Gaynor [4]

• Android [5]: "Our data shows that issues like use-after-free, double-free, and heap
buffer overflows generally constitute more than 65% of High & Critical security bugs
in Chrome and Android."

• Android’s bluetooth and media components [6]: "Use-after-free (UAF), integer over-
flows, and out of bounds (OOB) reads/writes comprise 90% of vulnerabilities with
OOB being the most common."

Section 1 Lars Quentin 1
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• iOS and macOS [7]: "Across the entirety of iOS 12 Apple has fixed 261 CVEs, 173 of
which were memory unsafety. That’s 66.3% of all vulnerabilities." and "Across the
entirety of Mojave Apple has fixed 298 CVEs, 213 of which were memory unsafety.
That’s 71.5% of all vulnerabilities."

• Chrome [8]: "The Chromium project finds that around 70% of our serious security
bugs are memory safety problems."

• Microsoft [9]: "∼70% of the vulnerabilities Microsoft assigns a CVE each year
continue to be memory safety issues"

• Firefox’s CSS subsystem [10]: "If we’d had a time machine and could have written
this component in Rust from the start, 51 (73.9% ) of these bugs would not have
been possible."

• Ubuntu’s Linux kernel [11]: "65% of CVEs behind the last six months of Ubuntu
security updates to the Linux kernel have been memory unsafety."

Furthermore, it is now adapted by many big tech firms such as Amazon [12], Google
[13], Meta [14], and Microsoft [15]. Lastly, in December 2022, it became the first language
besides C and Assembly supported for Linux kernel development [16].

1.2.1 Why Rust is a good fit for HPC

One can think of Rust as a modern dialect of C++ enforced by the compiler. It uses
Resource Acquisition Is Initialization (RAII) internally to ensure memory safety, while
references are roughly equivalent to std::unique_ptr.

Especially relevant is the great interoperability with other languages. It supports easy
integration with C++ using bindgen [17], which is maintained by the Rust core team.
Rust also allows for easy embedding into Python code using PyO3 [18], allowing for highly
performant native extensions.

Furthermore, it allows for very low-level control, even to the extent of bare metal
deployment support. Due to Rust’s aforementioned RAII-alike memory management
model, the runtime does not need for a garbage collector. One can even bring their
own memory allocator and do raw pointer arithmetic if required. Lastly, Rust supports
architecture-based conditional compilation which makes it possible to write fast programs
leveraging modern CPU instructions while providing portable alternatives. To support
bare metal, OS-less development, Rust’s standard library is split into 3 tiers:

• core: The core library provides essential types and functionality that do not require
heap memory allocation.

• alloc: The alloc library builds upon the core library but expects heap allocations,
thus supporting things such as dynamically sized vectors.

• std: The std library is the highest-level tier, requiring not only a memory allocator
but also several OS capabilities such as I/O management.

Section 1 Lars Quentin 2
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Although Rust itself is a relatively new language, its compiler supports most modern
compiler optimizations. This is possible through Low Level Virtual Machine (LLVM).
Instead of producing native assembly for all architectures, the compiler just provides
a LLVM frontend generating LLVM Intermediate Representation (IR) which then gets
translated to native code by LLVM.

Lastly, it supports many modern functional concepts such as immutability by default,
flat traits instead of deep inheritance, exhaustive pattern matching with Algebraic Data
Types (ADTs) sum types as well as providing alternatives to nullability, which is com-
monly known as the billion-dollar mistake [19]. Its language design is in fact so popular
that according to the yearly StackOverflow surveys it was voted as the most loved language
for the 7th year in a row [20].

1.3 Quadratic Matrix Multiplication

Let A,B ∈ Rn×n, n ∈ N. Then the matrix multiplication C ∈ Rn×n is defined as

Cij :=
n∑

k=1

Aik ·Bkj.

One can think of Cij as the dot product of the i-th row of A and the j-th column of B.

1.4 Structure

This report is structured as follows: Section 2 will explore a simplified version of the ma-
trix multiplication problem where the dimension is fixed. Here, the focus will be set on
micro benchmarking, full application benchmarking, and assembly analysis. Section 3 will
then explore the full matrix multiplication, exploring the topics of profiling, compiler opti-
mizations, cache-oblivious algorithms as well as how to benchmark in noisy environments.
Section 4 will provide a short introduction to parallelism. Lastly, section 5 concludes this
report by providing an overview of all shown tools as well as further resources.

2 Fixed Size Matrix Multiplication
To start with a simplified problem, this section focuses on a fixed quadratic matrix size
of n = 3. Using the mathematical definition, this can be trivially implemented:

Section 2 Lars Quentin 3
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1 fn matmul(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>) -> Vec<Vec<f32>> {
2 let mut result = vec![vec![0.0; 3]; 3];
3 for i in 0..3 {
4 for j in 0..3 {
5 for k in 0..3 {
6 result[i][j] += a[i][k] * b[k][j];
7 }
8 }
9 }

10 result
11 }
12 fn driver_code(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>, c: Vec<Vec<f32>>)
13 -> Vec<Vec<f32>> {
14 matmul(matmul(a, b), c) // D := A * B * C
15 }

Listing 1: Naive implementation of a 3× 3 matrix multiplication.

The Vec arguments are currently passed as call-by-value, which means that the vector
struct gets copied onto the function’s stack. Intuitively, this could be improved by using
call-by-reference semantics, which just copies the pointer instead of the underlying data.
Theoretically, this should result in a performance improvement. In reality, it is very hard
to predict actual performance. Thus, some benchmarking is required. To measure the
performance, either micro benchmarking or full application benchmarking can be used.

2.1 Micro benchmarking

Micro benchmarking is the performance evaluation of small isolated functions. In the
Rust ecosystem, there are two obvious solutions for micro benchmarking: Rust’s native
cargo bench as well as criterion.rs, which is the modern canonical benchmark library.

Native Benchmarking Cargo, Rust’s package manager, supports benchmarking na-
tively through the cargo bench [21] subcommand. Unfortunately, this is still experimen-
tal, thus only part of the unstable nightly Rust versions. Furthermore, no clear roadmap
to stability exists [22].

cargo bench is a very lightweight microbenchmarking solution. It provides no inte-
grated regression testing or any kind of visualization or plotting. The 3rd-party cargo-benchcmp
[23] utility can be used to compare different benchmarks.

Criterion The other solution is criterion.rs [24], which is also available in stable
Rust. It uses basic statistical outlier detection to measure regressions and their signifi-
cance. Furthermore, it blocks constant folding using the criterion::black_box, which
is described as a “function that is opaque to the optimizer, used to prevent the compiler
from optimizing away computations in a benchmark” [25]. It automatically generates
HTML reports with plots using gnuplot or plotters. For benchmark comparisons, the
cargo-critcmp [26] program can be used.

Section 2 Lars Quentin 4
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As there is currently no active development in cargo bench, criterion should always
be the preferred solution for micro benchmarking.

2.2 Full Application Benchmarking

There are several solutions for benchmarking whole applications, especially as they are
usually agnostic to the application’s programming language. But to stick to the mod-
ern Rust ecosystem, this report will focus on Hyperfine [27], a very actively developed
command-line benchmarking tool written in Rust.

From a simplified perspective, full application benchmarking is quite trivial. First,
take a timestamp of the current time. Then, run the command to be benchmarked. Af-
terwards, take a new timestamp. The time delta is the benchmark time. But beyond
this core functionality, Hyperfine supports many important and fundamental features for
proper benchmarking and analysis.

Figure 1: An example picture of Hyperfine’s output comparing fd and find [27]

Firstly, Hyperfine supports out-of-the-box statistical analysis and outlier detection.
Since it can be assumed that the program run times are approximately equal, benchmark
times should be normally distributed. Thus, by fitting a normal distribution over all runs
and computing its confidence interval, it can detect any outliers. Secondly, it allows for
warmup runs and cache-clearing commands 1 between each run. Warmup runs are useful
to fill caches such as the page cache for disk I/O. Lastly, it supports further analysis by
providing an export to various formats, such as CSV, JSON, Markdown, or AsciiDoc,
which can then be analyzed programmatically. Hyperfine’s repository contains several
Python scripts for basic visualization [29], which can be used as a starting point for
further analysis.

2.3 Performance Optimization

For the benchmarking, the aforementioned criterion.rs benchmarking framework is
used. The benchmark was done on a Dell Latitude 7420 with an Intel i5-1145G7 and
16GB of LPDDR4 RAM, compiled with rustc 1.72.0. The CPU idle was around 1%.

1such as echo 1 > /proc/sys/vm/drop_caches to free the page cache [28].

Section 2 Lars Quentin 5



Introduction to Performance Engineering in Rust

2.3.1 Call By Reference

Although the data part of Vec<> is stored on the heap2 the stack part is still very complex
since it has to keep track of several things such as the current size and its current maximal
capacity. More importantly, the Vec<> struct has a bigger memory footprint than a
pointer. Thus, using Call-By-Reference should improve the performance by requiring
fewer memory copies! In Rust, this can be archived using the & operator:

1 fn matmul(a: &Vec<Vec<f32>>, b: &Vec<Vec<f32>>) -> Vec<Vec<f32>> {
2 /* Only the signature changes... */
3 }
4 fn driver_code(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>, c: Vec<Vec<f32>>)
5 -> Vec<Vec<f32>> {
6 matmul(matmul(a, b), c) // D := A * B * C
7 }

Listing 2: Changing the signature to Call-By-Reference semantics with references.

Using the default criterion settings 3, the following results were benchmarked:

(a) Call By Value: Mean 307.19ns (b) Call By Reference: Mean 205.58ns

Figure 2: Comparsions of the PDFs computed using KDE for Call-By-Value and Call-
By-Reference.

According to the benchmarks, this change alone resulted in a 49.426% mean increase!
Note that the full metric table is included in the appendix.

There is one more obvious possible improvement to try: In this code, Rust’s Vec<>, a
dynamically sized, heap-allocated vector is used. This could be replaced with a normal
C-type array.

2Since Vec<> are dynamically resizable, the absolute size can’t be known at compile time.
3Default Rust Release build and 100 iterations.
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2.3.2 Primitive Stack Arrays

Compared to static arrays, Vec<> has much more overhead. Firstly, since its size is not
known at compile time, it performs several run-time bounds checks 4. Next, it has to be
heap-allocated, which can be way more expensive and results in worse memory locality.
Lastly, Vec<> is a complex struct with many functions and features, which in turn results
in more computation required.

This is the code using primitive stack arrays instead of the more sophisticated, dy-
namically allocated vectors:

1 fn matmul(a: &[[f32; 3]; 3], b: &[[f32; 3]; 3], result: &mut [ [f32; 3]; 3]) {
2 for i in 0..3 {
3 for j in 0..3 {
4 for k in 0..3 {
5 result[i][j] += a[i][k] * b[k][j];
6 }
7 }
8 }
9 }

10

11 fn driver_code(a: &[[f32; 3]; 3], b: &[[f32; 3]; 3], c: &[[f32; 3]; 3],
12 res_buf: &mut [[f32; 3]; 3]) {
13 let mut temp = [[0.0; 3]; 3];
14 matmul3(a, b, &mut temp);
15 matmul3(&temp, c, res_buf);
16 }

Listing 3: Changing the signature to Call-By-Reference semantics with references.

Here are the results, compared to the initial version:

(a) Call By Value: Mean 307.19ns (b) Primitive Arrays: Mean 7.841ns

Figure 3: Comparsions of the PDFs computed using KDE for the initial version and the
one using primitive arrays.

4This can be partially avoided. For more information, see the Bounds Checks Cookbook [30]
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This results in a staggering 3831.27% mean increase! Once again, note that the full
metric table is included in the appendix.

There are several possible explanations for those results. It could be that the bounds
check prevents instruction pipelining. But the main reason is most likely that the prior
version requires an expensive heap allocation for the return value while the static arrays
are already preallocated on the stack 5. Now that all high-level optimizations are applied,
the next step would be to optimize on the assembly-level. The next section will show how
to use proper tooling for assembly level optimization in Rust.

2.4 Assembly Optimizations

Modern compilers, such as the LLVM based rustc, do a lot of optimization for performance.
This results in vastly different assemblies when comparing unoptimized code (-O0) to their
optimized counterpart (-O3). Thus, it often makes sense to look at the assembly for hot
code paths6. Naively, one could just look at the whole binary and decode the bytes into
their instructions. This is neither useful nor reasonable for large programs to analyze.
Instead, in this section, two different ways to analyze assembly will be analyzed: The
well-known Compiler Explorer [31] as well as the cargo-show-asm crate [32].

Compiler Explorer Compiler Explorer [31] is an online development environment ini-
tially developed by Matt Godbolt, and primarily used for analysis of C and C++ ap-
plications. It was started in 2023 to optimize financial quantitative analysis algorithms.
Compiler Explorer supports over 30 different languages; from typical high-performance
languages such as C, C++, and Fortran, bytecode languages such as Python and Java
to more niche languages such as Haskell and Solidity. Additionally, one can compare
different compilers (for example gcc, clang, and msvc for C applications) and manually
specify different compiler arguments such as -Osize instead of -O3. Since it can also be
hosted on-premise, proprietary and other custom compilers can be added if needed.

Its main feature is the color coding; Compiler Explorer assigns each function line to
a specific color. The same color will then be used in the assembly window, providing
an intuitive mapping and a good overall user experience. Unfortunately, it does not
support multiple files and hasn’t any dependency management 7. To summarize, Compiler
Explorer is the best fit for small, single-file programs. For larger applications, the next
tool can be used.

cargo-show-asm cargo-show-asm [32] is a more minimalist, less polished console ap-
plication for analyzing assembly. It works with any rust code base, no matter the size or
amount of dependencies. Instead of showing the assembler for all functions, one can query
single functions as a CLI parameter. Lastly, instead of the architecture-specific assembler
code, it can also return the LLVM IR instead.

5Further analysis could be done through statistical profiling, which will be explained later. However
since it doesn’t help explain performance engineering concepts, it is left as an exercise to the reader.

6Code paths are ’hot’ when they are executed very frequently, therefore crucial for the overall perfor-
mance.

7However one could work around this restriction by installing all dependencies globally on a self-hosted
instance.
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(a) Compiler Explorer (b) cargo-show-asm

Figure 4: Rust assembly analysis: Compiler explorer and cargo-show-asm.

Next, two common compiler optimizations will be covered: Loop Unrolling and Func-
tion inlining.

2.4.1 Loop Unrolling

On the surface, loop unrolling is a simple concept: If the number of loop iterations is
known at compile time, replicate the inner code that amount of time. This has multiple
benefits. Firstly, it reduces the number of comparisons and jumps made in every iteration.
Secondly, it allows for easier pipelining since there is no need for path prediction anymore!
The main drawback is that code duplication increases binary size.

Looking at the assembly, loop unrolling was already applied in our case. But if the
compiler did not unroll the function, there are two main ways to force it manually:

• Unroll [33] is a Rust macro to unroll the applications at compile time by replacing
the unrolled Rust code in preprocessing. Currently, it can just detect loops with
integer literal bounds.

• For more sophisticated loops, LLVM can be configured to more aggressively apply
loop unrolling. This is controlled by the -unroll-threshold parameter8.

As an important remark, do not manually apply loop unrolling without benchmarking,
as it can worsen performance by consuming too much of the CPU instruction cache.

2.4.2 Function Inlining

The next, very common compiler optimization is function inlining. Instead of jumping
into a subroutine, executing it, and then returning to the previous instructions it places
the assembly of the subroutine into the outer function. On the upside, this eliminates

8So to apply it with rustc, use -C llvm-args=-unroll-threshold=N where N is an integer.
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the calling overhead (such as moving arguments into registers) specified by the calling
convention 9. As already mentioned above, function inlining can also worsen performance
through increased binary size and consequently less efficient cache utilization. In our case,
it was not applied10.

After covering benchmarking and assembly analysis, now the harder problem of vari-
adic size matrix multiplication can be approached!

3 Variadic Size Matrix Multiplication
Now, after having a simplified toy problem, let’s say the following task is given:

“Our department has built a deep learning framework in Rust that inferences too
slowly. Please try to optimize the overall performance of this project”

Before being able to optimize the code, one has to first ask the following question:
Why is it so slow? To answer this question, profiling is needed.

3.1 Profiling

Profiling is used to find out which parts of the program are executed frequently enough
to affect runtime performance11. Since Rust produces normal binaries, most traditional
profilers just work, including common ones such as Linux perf [35] and cachegrind [36].
See the profiling section in the Rust Performance Book for a more exhaustive list [37].

Since rust supports polymorphism12 name mangling occurs. As assembly labels have
to be unique, name mangling is a technique used to map all polymorphic instances of a
function to a unique assembler label. If the profiler doesn’t support unmangling natively,
rustfilt can be used manually [38].

In this chapter, cargo-flamegraph [39] and later iai [40] will be used for profiling.

3.2 Cargo Flamegraph

Cargo flamegraph [39] is a statistical profiler that creates a flamegraph to analyze. In
order to understand the result, one needs to understand how statistical profilers work
internally. A statistical profiler works by interrupting the program randomly using the
kernels interrupt system13. After interrupting, it looks at the stack frame, finding out
which function stack is currently called. This is a single data point. Now, using a Monte
Carlo approach, a statistical profiler can approximate how much time is spent on each

9Interestingly, Rust does not have a default non-FFI calling convention for performance benefits.
Instead, it requires all dependencies to be compiled with the same version, which is the canonical way
when the package manager cargo is used.

10But it can be applied manually with the #[inline(/always/never)] attribute [34].
11So-called hot paths.
12Both ad-hoc polymorphism through traits and parametric polymorphism based on generics.
13Cargo flamegraph uses perf and dtrace internally.
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function by taking many measurements.

A flamegraph is a visualization of the stack frames. The wider the current stack frame,
the more often those functions were called when interrupted. One layer got called by the
layer below. Here is an example of a flamegraph:

Figure 5: An example flamegraph generated from Rust code [39].

For our fictional deep learning framework, let’s assume that the result was a slow
N ×N variadic size matrix multiplication! For the benchmarks, N = 1024 is used.

3.3 Applying Previous Knowledge

Let’s say that the matrix multiplication function looks as follows:

1 fn matmul(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>) -> Vec<Vec<f32>> {
2 let n = a.len();
3 let mut result = vec![vec![0.0; n]; n];
4 for i in 0..n {
5 for j in 0..n {
6 for k in 0..n {
7 result[i][j] += a[i][k] * b[k][j];
8 }
9 }

10 }
11 result
12 }

Listing 4: The unoptimized Rust code providing the variadic size quadratic matrix mul-
tiplication

Applying the knowledge of our previous chapters, it can already be refactored into the
following:
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1 fn matmul(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 for i in 0..n {
3 for j in 0..n {
4 for k in 0..n {
5 result[i * n + j] += a[i * n + k] * b[k * n + j];
6 }
7 }
8 }
9 }

Listing 5: The code optimized analogously to chapter 2.

But before benchmarking this code, there are further free improvements to be had by
configuring the compiler to maximize performance.

3.4 Compiler Optimizations

Several performance optimizations should be enabled if performance is a high priority:

• Release Builds: This is by far the biggest improvement. If one does not use the
release build14 the code is not optimized. This enables several general optimizations
as well as automatic vectorization.

• LLVM Link Time Optimization (LTO): LTO enabled further, intermodular
optimizations during the link stage. While this could improve code by optimizing
beyond library bounds, it increases compile time, which is why it is disabled by
default.

• Compiling for Native Architecture: When compiling for the native architec-
ture15 the compiler can use more specialized instructions that are not available on
every processor such as bigger vector registers for SIMD. Note that this makes the
code incompatible with older processor generations.

• Using a single LLVM codegen unit: Codegen units are analogous to translation
units. This means that, when changing a single file, just the codegen unit in that
file has to be recompiled. Therefore, optimizations can’t be done beyond codegen
unit bounds! Using a single codegen for the whole project allows the compiler
to more aggressively optimize globally. Note that this effectively disables partial
compilations.

• Profile Guided Optimization (PGO): PGO could furthermore be used for more
effective branch prediction16.

14With cargo build –release.
15Using the RUSTFLAGS environment variable, i.e. RUSTFLAGS="-C target-cpu=native" cargo build

–release.
16This is out of the scope of this project, for an introduction see how the compiler team used it on

rustc [41]
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Here are the results, the full table can be found in the appendix:

(a) No compiler optimizations.
Naive code.
Mean: 23.575s

(b) No compiler optimizations.
Optimized code.
Mean: 8.7684s

(c) Compiler optimizations.
Optimized code.
Mean: 3.0708s

Figure 6: Performance comparison between unoptimized code, optimized code and opti-
mized code with compiler optimization enabled.

For the next and last optimization, some further theory is needed.

3.5 Cache-oblivious Algorithms

When doing a standard matrix multiplication C := A · B, A traverses the matrix in
row-major order and B traverses the matrix in column-major order. Since the memory is
aligned in row-major order, in every step of B cache miss happens for large sizes of B.

Figure 7: A visualization of row- and column-major order.

A possible solution could be to compute A · BT instead by transposing B. Then, Cij

is computed as row Ai times row Bj! Unfortunately, since the transpose has to actually
be computed beforehand, this requires Θ(n2) precompute.

Naturally, two questions arise:

1. Does it improve speed?

2. Does it actually reduce cache misses?

Whether it improves speed can easily be benchmarked.
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(a) Compiler optimizations.
Optimized code.
Mean: 3.0708s

(b) Compiler optimizations.
Optimized and transposed code.
Mean: 2.1714s

Figure 8: Performance comparison between unoptimized code, optimized code and opti-
mized code with compiler optimization enabled.

To find out whether it reduces cache misses, iai can be used.

3.6 Iai

Iai [40] is a high-precision, one-shot benchmark framework for Rust code. One-shot
means that the code is only run a single time. This is possible by leveraging cachegrind
[36] under the hood to simulate the CPU and its caches, allowing us to count all cache
accesses. Furthermore, it can be used for Continuous Integration (CI) pipelines since it
solves the noisy-neighbour problem of multiple jobs executed on the same runner. Here
are the results:

1 iai_normal
2 Instructions: 13970975862
3 L1 Accesses: 17192372607
4 L2 Accesses: 1074884737
5 RAM Accesses: 262191
6 Estimated Cycles: 22575972977
7

8 iai_transpose
9 Instructions: 9144912377

10 L1 Accesses: 12838193034
11 L2 Accesses: 68158189
12 RAM Accesses: 328137
13 Estimated Cycles: 13190468774

Listing 6: The results running iai

Here one can see that, although it uses more RAM accesses, it has better L1 and L2
utilization.
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4 A glimpse of (Intra-Node) Parallelism
Rust has many ways to do intra-node parallelism17. One can categorize intra-node paral-
lelism into two categories: Single-thread parallelism using SIMD instructions and multi-
threading. In this chapter, a high-level overview of how to archive both will be given.

4.1 SIMD

While a complete introduction to Single Instruction Multiple Data (SIMD) programming
would be a report on its own18 it is noteworthy to say that Rust has two different ap-
proaches to support SIMD programming. The old, processor-specific API and the new,
portable SIMD API.

Processor-specific API: The processor-specific API is experimental only and classified
as unsafe, i.e. it doesn’t give any memory guarantees. It is composed of the direct low-
level intrinsics provided by the CPU manufacturer and has the same function definitions
as the C API. The only reason to use this API is that it is part of the core instead of the
std library: This means, it does not expect any memory allocator nor any OS syscalls to
work properly and can thus be used for bare metal development.

Portable SIMD: The portable SIMD API is, while also experimental, memory-safe.
Instead of providing instructions for any CPU architecture, it is generalized on a bit level
with types such as std::simd::{f32x8, f64x4, i32x8}. This makes it the preferred
API for non-bare metal programming. It is part of the std library.

Lastly, note that code that does not have those processor features will produce unde-
fined behaviour. There are two ways to mitigate this: If the target architecture is known
at compile time, Rust supports conditional compilation1920 to provide alternatives to
architecture-specific code. If this is not the case, functions such as std::is_x86_feature_detected
can be used. Note that these should not be used in hot loops as they provide a runtime
overhead.

4.2 Multithreading

Rust supports several ways of doing multi-threading. First of all, the standard library
offers many primitives around simple OS threads21 See the “Fearless Concurrency” chapter
of the Rust book for an introduction [45].

17Rust also supports inter-node parallelism using rsmpi [42], a rust-native MPI library compatible with
OpenMPI and MPICH. Unfortunately, this is out of scope here. For more information, see my report on
walky [43], the rusty TSP solver.

18For a great introduction on how to do SIMD in Rust, see the SIMD Rust on Android Talk by
Guillaume Endignoux [44].

19Compile for specific architecture: #[cfg(target_arch="x86_64")]
20Compile for specific feature: #[cfg(target_feature="aes")]
21Rust also supported green threads before 1.0 but they were cut because the scheduling meant that

they were not zero cost.
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Furthermore, Rust provides an async/await pattern for managing async Input / Out-
put (I/O). To enable the usage in many, vastly different environments such as Internet of
Things (IoT), Rust requires the developer to bring their own async runtime. Most projects
use Tokio [46], although other projects such as the simpler smol or fuchsia-async [47]
used in Google Fuchsia. For more information on async/await, see the official async book
[48], the announcement talk from WithoutBoats [49], or fasterthanlime’s “Understanding
Rust futures by going way too deep” [50].

Lastly, there are several utility libraries. Here, the focus will be on rayon because of
its simplicity.

4.2.1 Rayon

Rayon is a high-level parallelism library using dynamically sized thread pools. It guar-
antees data-race freedom by allowing only one thread to write at a time. Its main
features are drop-in parallel iterators: By replacing .iter() with .par_iter, it is possi-
ble to use all functions provided for iterators, such as .map(), .filter(), .reduce() for
typical functional patterns or .join(|| a(), || b() enabling the fork-join computa-
tion model. It is best explained with a code example. To rewrite our function in a more
iterator-based version:

1 fn matmul3(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 result.iter_mut().enumerate().for_each(|(idx, res)| {
3 let i = idx / n;
4 let j = idx % n;
5 *res = (0..n).map(|k| a[i * n + k] * b[k * n + j]).sum();
6 });
7 }

Listing 7: An more functional version of our matrix multiplication

This can be parallelized by only replacing .iter_mut() with .par_iter_mut():

1 fn matmul3(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 result.par_iter_mut().enumerate().for_each(|(idx, res)| {
3 let i = idx / n;
4 let j = idx % n;
5 *res = (0..n).map(|k| a[i * n + k] * b[k * n + j]).sum();
6 });
7 }

Listing 8: The parallelized version, changing a single function call.
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5 Conclusion and Further Ressources
To conclude, although many parts are still experimental, all tooling for proper performance
engineering exists, making Rust a viable programming language for HPC. A summary of
all tools can be found in the appendix.

If one is more interested in performance engineering, the best resource for understand-
ing performance tuning in Rust is the “Rust Performance Book” [51]. To understand more
about performance engineering and the theory behind it, the free online book “Algorith-
mica: Algorithms for Modern Hardware” [52] is a good starting point. Finally, if one is
more interested in inter-node parallelism, the rsmpi library [42] has great examples to get
started.

The full code can be found at https://github.com/lquenti/IntroPerfEng.
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A Measurement Data
A.1 Static Sized

A.1.1 Call By Value

Lower bound Estimate Upper bound
Slope 307.55 ns 310.15 ns 313.04 ns
R2 0.8472829 0.8537299 0.8458089

Mean 304.66 ns 307.19 ns 310.70 ns
Std. Dev. 6.3231 ns 15.613 ns 24.335 ns
Median 301.60 ns 302.08 ns 304.29 ns
MAD 1.9063 ns 3.0129 ns 5.6761 ns

Table 1: Full Data: Call By Value

A.1.2 Call By Reference

Lower bound Estimate Upper bound
Slope 204.67 ns 205.86 ns 207.17 ns
R2 0.9323924 0.9360205 0.9315760

Mean 204.65 ns 205.58 ns 206.62 ns
Std. Dev. 3.5931 ns 5.0447 ns 6.2856 ns
Median 203.75 ns 204.99 ns 205.51 ns
MAD 1.9471 ns 2.8148 ns 3.8151 ns

Table 2: Full Data: Call By Reference

A.1.3 Primitive Arrays

Lower bound Estimate Upper bound
Slope 7.7883 ns 7.8243 ns 7.8659 ns
R2 0.9481791 0.9509154 0.9472358

Mean 7.8054 ns 7.8416 ns 7.8845 ns
Std. Dev. 125.05 ps 202.72 ps 279.05 ps
Median 7.7467 ns 7.7513 ns 7.7607 ns
MAD 16.400 ps 24.632 ps 44.433 ps

Table 3: Full Data: Primitive Arrays
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A.2 Dynamically Sized

A.2.1 No Compiler Optimizations, Naive

Lower bound Estimate Upper bound
R2 0.0129440 0.0134225 0.0129313

Mean 23.550 s 23.575 s 23.600 s
Std. Dev. 111.52 ms 127.82 ms 145.31 ms
Median 23.494 s 23.547 s 23.636 s
MAD 88.492 ms 148.98 ms 181.21 ms

Table 4: Full Data: No Compiler Optimizations, Naive

A.2.2 No Compiler Optimizations, Optimized code

Lower bound Estimate Upper bound
R2 0.0131894 0.0136728 0.0131513

Mean 8.7616 s 8.7684 s 8.7756 s
Std. Dev. 29.949 ms 35.706 ms 40.959 ms
Median 8.7559 s 8.7658 s 8.7735 s
MAD 24.535 ms 30.151 ms 40.061 ms

Table 5: Full Data: No Compiler Optimizations, Optimized Code

A.2.3 Compiler Optimizations, Optimized code

Lower bound Estimate Upper bound
R2 0.1137963 0.1175455 0.1134823

Mean 3.0698 s 3.0708 s 3.0719 s
Std. Dev. 4.2317 ms 5.1644 ms 6.0320 ms
Median 3.0691 s 3.0699 s 3.0710 s
MAD 3.3207 ms 4.2208 ms 5.5206 ms

Table 6: Full Data: Compiler Optimizations, Optimized Code

A.2.4 Compiler Optimizations, Optimized and Transposed code

Lower bound Estimate Upper bound
R2 0.0054076 0.0056054 0.0053917

Mean 2.1711 s 2.1714 s 2.1716 s
Std. Dev. 1.0805 ms 1.3218 ms 1.5562 ms
Median 2.1709 s 2.1713 s 2.1717 s
MAD 1.0773 ms 1.4593 ms 1.6688 ms

Table 7: Full Data: Compiler Optimizations, Optimized and Transposed Code
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B Overview of all tools

Topic Tool
Microbenchmarking Criterion
Application Benchmarking Hyperfine
Assembly Generation Compiler Explorer, cargo show-asm
Loop Unrolling unroll, Compiler Arguments
Function Inlining #[inline]
Statistical Profiling cargo-flamegraph
CI benchmarking iai
SIMD std::simd, core::arch
Intra-Node parallelism rayon
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