
Rust for HPC Applications

An Practical Introduction in Rust Performance Engineering

Lars Quentin

GWDG / CIDAS

29.06.2023 Recent Trends in High-Performance Data Analytics

SH

∞

lquenti.de

)

lquenti.de

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Overview

1 Introduction

2 Simplified Problem

3 Real Problem

4 Parallelism

5 Conclusion

Lars Quentin Recent Trends in High-Performance Data Analytics 2 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Learning Objectives

� Why Rust is a good fit for HPC.

� How to do the following things in Rust:

I Microbenchmarking
I Full Application Benchmarking
I Analyze generated Assembly
I Compiler Optimizations
I Statistical Profiling
I CI benchmarking
I Parallelism

Lars Quentin Recent Trends in High-Performance Data Analytics 3 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend

� Many modern concepts from functional programming
I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Why Rust is a good fit for HPC

� Its like modern C++ enforced by the compiler
I RAII-based memory management
I References are like std::unique_ptr

� Great Python / C++ interoperability

� Allows for very low level control; even supports bare metal deployment.

� Mature compiler optimizations through LLVM backend
� Many modern concepts from functional programming

I immutability by default
I Traits/typeclasses instead of inheritance
I exhaustive pattern matching
I Algebraic data types
I No Nullability

� Developers’ most loved language for the 7th year according to
StackOverflow [1]

Lars Quentin Recent Trends in High-Performance Data Analytics 4 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Problem: Quadratic Matrix multiplication

Let A,B ∈ Rn×n,n ∈ N. Then C ∈ Rn×n is
defined as

Cij :=
n∑

k=1

Aik · Bkj

i.e. Cij is the dot product of the i-th row
of A and the j-th column of B.

[2]

Lars Quentin Recent Trends in High-Performance Data Analytics 5 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Simplified Problem: 3× 3 Matrix

First Implementation

1 fn matmul(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>) -> Vec<Vec<f32>> {
2 let mut result = vec![vec![0.0; 3]; 3];
3 for i in 0..3 {
4 for j in 0..3 {
5 for k in 0..3 {
6 result[i][j] += a[i][k] * b[k][j];
7 }
8 }
9 }

10 result
11 }
12 fn driver_code(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>, c: Vec<Vec<f32>>)
13 -> Vec<Vec<f32>> {
14 matmul(matmul(a, b), c) // D := A * B * C
15 }

Lars Quentin Recent Trends in High-Performance Data Analytics 6 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Microbenchmarking

Native Benchmarking: cargo bench [3]

� Not stable (nightly only)

� No regression testing or visualizations

� No clear roadmap to become stable [4]

� cargo-benchcmp [5] for comparing benchmarks

criterion.rs [6]

� Uses statistical analysis for regression significance

� Blocks constant folding

� HTML report with plotting through gnuplot [7]

� cargo-critcmp for comparing benchmarks [8]

Lars Quentin Recent Trends in High-Performance Data Analytics 7 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Microbenchmarking

Native Benchmarking: cargo bench [3]

� Not stable (nightly only)

� No regression testing or visualizations

� No clear roadmap to become stable [4]

� cargo-benchcmp [5] for comparing benchmarks

criterion.rs [6]

� Uses statistical analysis for regression significance

� Blocks constant folding

� HTML report with plotting through gnuplot [7]

� cargo-critcmp for comparing benchmarks [8]

Lars Quentin Recent Trends in High-Performance Data Analytics 7 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Benchmarking Full Applications

Hyperfine [9]

� Statistical analysis / outlier
detection

� Warmup runs

� Cache clearing commands available

� Export to different formats such as
JSON or CSV

� Supports parametrized benchmarks

� Various Pythonscripts for
visualization

[9]

Lars Quentin Recent Trends in High-Performance Data Analytics 8 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Benchmarking Results (-O3)

Mean Std. Dev Median

Call By Reference 202.31 ns 3.5063 ns 201.96 ns

Call By Value 318.48 ns 12.173 ns 314.59 ns

Total Improvements:
Mean: 57.42%
Median: 55.77%

Lars Quentin Recent Trends in High-Performance Data Analytics 9 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Next Improvement: Static Stack Arrays

Static Stack Arrays

1 pub fn matmul(a: &[[f32; 3]; 3], b: &[[f32; 3]; 3],
2 result: &mut [[f32; 3]; 3]) {
3 for i in 0..3 {
4 for j in 0..3 {
5 for k in 0..3 {
6 result[i][j] += a[i][k] * b[k][j];
7 }
8 }}}

Mean Std. Dev Median

Call By Value 318.48 ns 12.173 ns 314.59 ns

Static Arrays 8.0685 ns 254.42 ps 8.0121 ns

Total Improvements:
Mean: 3847.2%
Median: 3826.44%

Lars Quentin Recent Trends in High-Performance Data Analytics 10 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Assembly 1: Compiler Explorer [10]

Lars Quentin Recent Trends in High-Performance Data Analytics 11 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Assembly 2: cargo-show-asm [11]

� Allows to view Assembly or LLVM-IR

� Can query single functions

� Can also resolve trait
implementations

Lars Quentin Recent Trends in High-Performance Data Analytics 12 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Assembly 3: Loop Unrolling and Function Inlining

Loop Unrolling

� Was already applied in our case

� Tooling: unroll [12] provides a macro for creating unrolled rust code.

� For dynamic length loops: -C llvm-args="-unroll-threshold=N"

I Do not apply without benchmarking!

Function Inlining

� Was not applied in our case

� But compiler hints exist: #[inline(/always/never)] [13]

Lars Quentin Recent Trends in High-Performance Data Analytics 13 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Assembly 3: Loop Unrolling and Function Inlining

Loop Unrolling

� Was already applied in our case

� Tooling: unroll [12] provides a macro for creating unrolled rust code.

� For dynamic length loops: -C llvm-args="-unroll-threshold=N"

I Do not apply without benchmarking!

Function Inlining

� Was not applied in our case

� But compiler hints exist: #[inline(/always/never)] [13]

Lars Quentin Recent Trends in High-Performance Data Analytics 13 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Introduction Real Problem

� Task: You get introduced to a scientific problem which is too slow.

� Why is this so slow?

� How do I figure this out?

� Solution: Profiling

Lars Quentin Recent Trends in High-Performance Data Analytics 14 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Introduction Real Problem

� Task: You get introduced to a scientific problem which is too slow.

� Why is this so slow?

� How do I figure this out?

� Solution: Profiling

Lars Quentin Recent Trends in High-Performance Data Analytics 14 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Introduction Real Problem

� Task: You get introduced to a scientific problem which is too slow.

� Why is this so slow?

� How do I figure this out?

� Solution: Profiling

Lars Quentin Recent Trends in High-Performance Data Analytics 14 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Introduction Real Problem

� Task: You get introduced to a scientific problem which is too slow.

� Why is this so slow?

� How do I figure this out?

� Solution: Profiling

Lars Quentin Recent Trends in High-Performance Data Analytics 14 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Profiling

� Since Rust produces normal binaries, most profilers just work.
I Including:

• perf [14]
• cachegrind [15]
• ...

I rustfilt [16] can demangle all symbols.

� Here, we will use cargo-flamegraph [17] and later iai [18].

Lars Quentin Recent Trends in High-Performance Data Analytics 15 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Profiling

� Since Rust produces normal binaries, most profilers just work.
I Including:

• perf [14]
• cachegrind [15]
• ...

I rustfilt [16] can demangle all symbols.

� Here, we will use cargo-flamegraph [17] and later iai [18].

Lars Quentin Recent Trends in High-Performance Data Analytics 15 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Cargo flamegraph

� Statistical Profiler

I Interrupts randomly
I Looks at the stack
I Then it can approximate how

much time is spent in each
function

� Uses perf internally

Our Result: Lets assume the problem
was a quadratic n× n matrix
multiplication!
For the benchmarks, we assume
n = 1024.

Lars Quentin Recent Trends in High-Performance Data Analytics 16 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Unoptimized code

Unoptimized Version

1 fn matmul1(a: Vec<Vec<f32>>, b: Vec<Vec<f32>>) -> Vec<Vec<f32>> {
2 let n = a.len();
3 let mut result = vec![vec![0.0; n]; n];
4 for i in 0..n {
5 for j in 0..n {
6 for k in 0..n {
7 result[i][j] += a[i][k] * b[k][j];
8 }
9 }

10 }
11 result
12 }

Lars Quentin Recent Trends in High-Performance Data Analytics 17 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Applying our previous knowledge

First optimized Version

1 fn matmul2(a: &[f32], b: &[f32]) -> Vec<f32> {
2 let n = (a.len() as f32).sqrt() as usize;
3 let mut result = vec![0.0; n * n];
4 for i in 0..n {
5 for j in 0..n {
6 for k in 0..n {
7 result[i * n + j] += a[i * n + k] * b[k * n + j];
8 }
9 }

10 }
11 result
12 }

Lars Quentin Recent Trends in High-Performance Data Analytics 18 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Compiler Optimizations!

� Using a Release build (-O3)

� LLVM Link Time Optimization (LTO)

� Using the native Architecture

� LLVM Single Code Unit

Out of scope:

� Profile Guided Optimization (PGO)

1 [profile.release]
2 opt-level = 3
3 lto = true
4 codegen-units = 1

Lars Quentin Recent Trends in High-Performance Data Analytics 19 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

First Results

Mean Std. Dev Median Mean Improvement

Unoptimized 34.192s 76.206ms 34.177s

Optimized 11.875s 96.287ms 11.856s 187.93%

Compiler 3.0426s 13.525ms 3.0450s 1023.78%

Lars Quentin Recent Trends in High-Performance Data Analytics 20 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

First Results (cont.)

Lars Quentin Recent Trends in High-Performance Data Analytics 21 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Cache-oblivious algorithms [20]

Standard Matrix Multiplication A · B
� Traverses A row-major order

� Traverses B column-major order

I Every step of B we get a cache
miss

� Solution: Transpose B

� Cij becomes row Ai times row Bj

� Requires Θ(n2) precompute.

I Does it improve speed?
I Does it reduce cache misses?

[19]
Lars Quentin Recent Trends in High-Performance Data Analytics 22 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Cache-oblivious algorithms (cont.)

Does it improve Speed?

� Lets benchmark it:

Mean Median

Row-major 2.9668s 2.9661s

Col-major 2.1689s 2.1686s

Does it reduce cache misses?

� This is more complex

� For this, we have to simulate the
caches

� This can be done using cachegrind
[15].

Lars Quentin Recent Trends in High-Performance Data Analytics 23 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Cache-oblivious algorithms (cont.)

Does it improve Speed?

� Lets benchmark it:

Mean Median

Row-major 2.9668s 2.9661s

Col-major 2.1689s 2.1686s

Does it reduce cache misses?

� This is more complex

� For this, we have to simulate the
caches

� This can be done using cachegrind
[15].

Lars Quentin Recent Trends in High-Performance Data Analytics 23 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Iai [18]

� Based on cachegrind

� Emulating the CPU and its caches

� Precise single-shot measurements

� Main usecase in CI systems

1 iai_normal
2 Instructions: 13970975862
3 L1 Accesses: 17192372607
4 L2 Accesses: 1074884737
5 RAM Accesses: 262191
6 Estimated Cycles: 22575972977
7

8 iai_transpose
9 Instructions: 9144912377

10 L1 Accesses: 12838193034
11 L2 Accesses: 68158189
12 RAM Accesses: 328137
13 Estimated Cycles: 13190468774

� Unclear, requires further investigation.

Lars Quentin Recent Trends in High-Performance Data Analytics 24 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Iai [18]

� Based on cachegrind

� Emulating the CPU and its caches

� Precise single-shot measurements

� Main usecase in CI systems

1 iai_normal
2 Instructions: 13970975862
3 L1 Accesses: 17192372607
4 L2 Accesses: 1074884737
5 RAM Accesses: 262191
6 Estimated Cycles: 22575972977
7

8 iai_transpose
9 Instructions: 9144912377

10 L1 Accesses: 12838193034
11 L2 Accesses: 68158189
12 RAM Accesses: 328137
13 Estimated Cycles: 13190468774

� Unclear, requires further investigation.

Lars Quentin Recent Trends in High-Performance Data Analytics 24 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

SIMD

Old API

� Experimental only; Unsafe

� Low level Platform-Specific structs

� Direct Intrincics translation

� Intel Documentation [21]:

I __mmask32 _kadd_mask32
(__mmask32 a, __mmask32 b)

� Rust port [22]:

I unsafe fn _kadd_mask32(a:
__mmask32, b: __mmask32) ->
__mmask32

Portable SIMD

� Experimental only, Safe

� Generalized on bit width level

I std::simd::{f32x8, f64x4,
i32x8}

� Conditional Compilation [23] with

I #[cfg(target_arch="x86_64")]
I #[cfg(target_feature="aes")]

� Conditional Execution [24] with
std::is_x86_feature_detected
(runtime)

Unable to port due to missing documentation

Lars Quentin Recent Trends in High-Performance Data Analytics 25 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

SIMD

Old API

� Experimental only; Unsafe

� Low level Platform-Specific structs

� Direct Intrincics translation

� Intel Documentation [21]:

I __mmask32 _kadd_mask32
(__mmask32 a, __mmask32 b)

� Rust port [22]:

I unsafe fn _kadd_mask32(a:
__mmask32, b: __mmask32) ->
__mmask32

Portable SIMD

� Experimental only, Safe

� Generalized on bit width level

I std::simd::{f32x8, f64x4,
i32x8}

� Conditional Compilation [23] with

I #[cfg(target_arch="x86_64")]
I #[cfg(target_feature="aes")]

� Conditional Execution [24] with
std::is_x86_feature_detected
(runtime)

Unable to port due to missing documentation

Lars Quentin Recent Trends in High-Performance Data Analytics 25 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

SIMD

Old API

� Experimental only; Unsafe

� Low level Platform-Specific structs

� Direct Intrincics translation

� Intel Documentation [21]:

I __mmask32 _kadd_mask32
(__mmask32 a, __mmask32 b)

� Rust port [22]:

I unsafe fn _kadd_mask32(a:
__mmask32, b: __mmask32) ->
__mmask32

Portable SIMD

� Experimental only, Safe

� Generalized on bit width level

I std::simd::{f32x8, f64x4,
i32x8}

� Conditional Compilation [23] with

I #[cfg(target_arch="x86_64")]
I #[cfg(target_feature="aes")]

� Conditional Execution [24] with
std::is_x86_feature_detected
(runtime)

Unable to port due to missing documentation

Lars Quentin Recent Trends in High-Performance Data Analytics 25 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Rayon [25]

� High-Level Parallelism Library

� Gurantees data-race freedom

� Main Feature: Parallel Iterators

I Just replace .iter() with .par_iter()
I Same functionality as sequential if the iterator has no side effects
I Support for High-Level functions

• .map(), .filter(), .reduce() . . .

I Low level primitives such as .join():

• .join(|| a(), || b())
• May run in parallel
• Based on if idle cores are available

Lars Quentin Recent Trends in High-Performance Data Analytics 26 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Rayon (cond.)

Unported Code (no transpose)

1 fn matmul3(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 for i in 0..n {
3 for j in 0..n {
4 for k in 0..n {
5 result[i * n + j] += a[i * n + k] * b[k * n + j];
6 }
7 }
8 }
9 }

Lars Quentin Recent Trends in High-Performance Data Analytics 27 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Rayon (cond.)

Ported to Iterators

1 fn matmul3(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 result.iter_mut().enumerate().for_each(|(idx, res)| {
3 let i = idx / n;
4 let j = idx % n;
5 *res = (0..n).map(|k| a[i * n + k] * b[k * n + j]).sum();
6 });
7 }

Lars Quentin Recent Trends in High-Performance Data Analytics 28 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Rayon (cond.)

Ported to Iterators and Parallelized!

1 fn matmul3(a: &[f32], b: &[f32], result: &mut [f32], n: usize) {
2 result.par_iter_mut().enumerate().for_each(|(idx, res)| {
3 let i = idx / n;
4 let j = idx % n;
5 *res = (0..n).map(|k| a[i * n + k] * b[k * n + j]).sum();
6 });
7 }

Lars Quentin Recent Trends in High-Performance Data Analytics 29 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Further Ressources

� The Rust Performance Book [13]

I Bounds checking
I I/O
I Perf linter clippy
I Type sizes

� Algorithmica: Algorithms for Modern Hardware [26]

� rsmpi [27]

I Pure Rust implementation
I Compatible with

• OpenMPI
• MPICH
• MS-MPI (Windows)

Lars Quentin Recent Trends in High-Performance Data Analytics 30 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Further Ressources

� The Rust Performance Book [13]

I Bounds checking
I I/O
I Perf linter clippy
I Type sizes

� Algorithmica: Algorithms for Modern Hardware [26]

� rsmpi [27]

I Pure Rust implementation
I Compatible with

• OpenMPI
• MPICH
• MS-MPI (Windows)

Lars Quentin Recent Trends in High-Performance Data Analytics 30 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Further Ressources

� The Rust Performance Book [13]

I Bounds checking
I I/O
I Perf linter clippy
I Type sizes

� Algorithmica: Algorithms for Modern Hardware [26]

� rsmpi [27]

I Pure Rust implementation
I Compatible with

• OpenMPI
• MPICH
• MS-MPI (Windows)

Lars Quentin Recent Trends in High-Performance Data Analytics 30 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Summary

� Rust is viable for HPC, although still experimental

� There are many flags for compiler tuning
� The following tools are available for HPC:

Topic Tool

Microbenchmarking Criterion

Application Benchmarking Hyperfine

Assembly Generation Compiler Explorer, cargo show-asm

Loop Unrolling unroll, Compiler Arguments

Function Inlining #[inline]

Statistical Profiling cargo-flamegraph

CI benchmarking iai

SIMD std::simd, core::arch

Intra-Node parallelism rayon

Lars Quentin Recent Trends in High-Performance Data Analytics 31 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Summary

� Rust is viable for HPC, although still experimental
� There are many flags for compiler tuning

� The following tools are available for HPC:

Topic Tool

Microbenchmarking Criterion

Application Benchmarking Hyperfine

Assembly Generation Compiler Explorer, cargo show-asm

Loop Unrolling unroll, Compiler Arguments

Function Inlining #[inline]

Statistical Profiling cargo-flamegraph

CI benchmarking iai

SIMD std::simd, core::arch

Intra-Node parallelism rayon

Lars Quentin Recent Trends in High-Performance Data Analytics 31 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Summary

� Rust is viable for HPC, although still experimental
� There are many flags for compiler tuning
� The following tools are available for HPC:

Topic Tool

Microbenchmarking Criterion

Application Benchmarking Hyperfine

Assembly Generation Compiler Explorer, cargo show-asm

Loop Unrolling unroll, Compiler Arguments

Function Inlining #[inline]

Statistical Profiling cargo-flamegraph

CI benchmarking iai

SIMD std::simd, core::arch

Intra-Node parallelism rayon

Lars Quentin Recent Trends in High-Performance Data Analytics 31 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

Summary

� Rust is viable for HPC, although still experimental
� There are many flags for compiler tuning
� The following tools are available for HPC:

Topic Tool

Microbenchmarking Criterion

Application Benchmarking Hyperfine

Assembly Generation Compiler Explorer, cargo show-asm

Loop Unrolling unroll, Compiler Arguments

Function Inlining #[inline]

Statistical Profiling cargo-flamegraph

CI benchmarking iai

SIMD std::simd, core::arch

Intra-Node parallelism rayon

Lars Quentin Recent Trends in High-Performance Data Analytics 31 / 31

Introduction Simplified Problem Real Problem Parallelism Conclusion References

References I

Stack Overflow Developer Survey 2022. Stack Overflow. URL:
https://survey.stackoverflow.co/2022/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2022 (visited on 06/08/2023).

File:Matrix multiplication diagram svg:User:BilouSee below. Schematic depiction of the matrix product
AB of two matrices A and B. Oct. 4, 2010. URL:
https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg (visited on
06/08/2023).

cargo bench - The Cargo Book. URL:
https://doc.rust-lang.org/cargo/commands/cargo-bench.html (visited on 06/08/2023).

Stabilize #[bench] and Bencher? · Issue #66287 · rust-lang/rust. GitHub. URL:
https://github.com/rust-lang/rust/issues/66287 (visited on 06/08/2023).

Andrew Gallant. cargo benchcmp. May 14, 2023. URL:
https://github.com/BurntSushi/cargo-benchcmp (visited on 06/08/2023).

Brook Heisler. Criterion.rs. original-date: 2014-05-26T14:14:22Z. June 8, 2023. URL:
https://github.com/bheisler/criterion.rs (visited on 06/08/2023).

Lars Quentin Recent Trends in High-Performance Data Analytics 32 / 31

https://survey.stackoverflow.co/2022/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2022
https://survey.stackoverflow.co/2022/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2022
https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://github.com/rust-lang/rust/issues/66287
https://github.com/BurntSushi/cargo-benchcmp
https://github.com/bheisler/criterion.rs

Introduction Simplified Problem Real Problem Parallelism Conclusion References

References II

gnuplot. URL: http://www.gnuplot.info/ (visited on 06/08/2023).

Andrew Gallant. critcmp. May 19, 2023. URL: https://github.com/BurntSushi/critcmp (visited on
06/08/2023).

David Peter. hyperfine. Version 1.16.1. Mar. 2023. URL: https://github.com/sharkdp/hyperfine
(visited on 06/08/2023).

Matt Godbolt. Compiler Explorer. URL: https://godbolt.org/ (visited on 06/08/2023).

gnzlbg. cargo-asm. original-date: 2018-02-13T19:38:49Z. June 6, 2023. URL:
https://github.com/gnzlbg/cargo-asm (visited on 06/08/2023).

unroll. GitLab. June 6, 2022. URL: https://gitlab.com/elrnv/unroll (visited on 06/08/2023).

Nicholas Nethercote. The Rust Performance Book. URL:
https://nnethercote.github.io/perf-book/ (visited on 06/08/2023).

Perf Wiki. URL: https://perf.wiki.kernel.org/index.php/Main_Page (visited on 06/08/2023).

Valgrind. URL: https://valgrind.org/ (visited on 06/08/2023).

Lars Quentin Recent Trends in High-Performance Data Analytics 33 / 31

http://www.gnuplot.info/
https://github.com/BurntSushi/critcmp
https://github.com/sharkdp/hyperfine
https://godbolt.org/
https://github.com/gnzlbg/cargo-asm
https://gitlab.com/elrnv/unroll
https://nnethercote.github.io/perf-book/
https://perf.wiki.kernel.org/index.php/Main_Page
https://valgrind.org/

Introduction Simplified Problem Real Problem Parallelism Conclusion References

References III

Ted Mielczarek. luser/rustfilt. original-date: 2016-05-13T17:00:31Z. May 19, 2023. URL:
https://github.com/luser/rustfilt (visited on 06/08/2023).

[cargo-]flamegraph. original-date: 2019-03-07T16:31:30Z. June 8, 2023. URL:
https://github.com/flamegraph-rs/flamegraph (visited on 06/08/2023).

Brook Heisler. Iai. original-date: 2021-01-02T20:54:31Z. June 7, 2023. URL:
https://github.com/bheisler/iai (visited on 06/08/2023).

Cmglee. English: Illustration of row- and column-major order by CMG Lee. URL:
https://commons.wikimedia.org/wiki/File:Row_and_column_major_order.svg (visited on
06/13/2023).

Matteo Frigo et al. “Cache-Oblivious Algorithms”. In: ACM Transactions on Algorithms 8.1 ().

Intel Intrinsics Guide. Intel. URL:
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html (visited on
06/19/2023).

_kadd_mask32 in core::arch::x86_64 - Rust. URL:
https://doc.rust-lang.org/core/arch/x86_64/fn._kadd_mask32.html (visited on 06/19/2023).

Lars Quentin Recent Trends in High-Performance Data Analytics 34 / 31

https://github.com/luser/rustfilt
https://github.com/flamegraph-rs/flamegraph
https://github.com/bheisler/iai
https://commons.wikimedia.org/wiki/File:Row_and_column_major_order.svg
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://doc.rust-lang.org/core/arch/x86_64/fn._kadd_mask32.html

Introduction Simplified Problem Real Problem Parallelism Conclusion References

References IV

Conditional compilation - The Rust Reference. URL:
https://doc.rust-lang.org/reference/conditional-compilation.html (visited on 06/19/2023).

is_x86_feature_detected in std - Rust. URL:
https://doc.rust-lang.org/std/macro.is_x86_feature_detected.html (visited on 06/19/2023).

Rayon. original-date: 2014-10-02T15:38:05Z. June 19, 2023. URL:
https://github.com/rayon-rs/rayon (visited on 06/19/2023).

Sergey Slotin. Algorithmica. URL: https://en.algorithmica.org/ (visited on 06/19/2023).

MPI bindings for Rust. original-date: 2015-07-21T20:51:28Z. June 15, 2023. URL:
https://github.com/rsmpi/rsmpi (visited on 06/19/2023).

Lars Quentin Recent Trends in High-Performance Data Analytics 35 / 31

https://doc.rust-lang.org/reference/conditional-compilation.html
https://doc.rust-lang.org/std/macro.is_x86_feature_detected.html
https://github.com/rayon-rs/rayon
https://en.algorithmica.org/
https://github.com/rsmpi/rsmpi

	Introduction
	Simplified Problem
	Real Problem
	Parallelism
	Conclusion
	References

