
SH

∞

Seminar Report

ZombieSim HPC Project Report

Abdullah Amawi
MatrNr: 11849696

Maaike Bierenbroodspot
MatrNr: 21622215

Supervised by: Prof. Dr. Julian Kunkel

Georg-August-Universität Göttingen
Institute of Computer Science

September 30, 2022

Abstract
In recent years, High-Performance-Computing(HPC) has been, and still is one of the top
fields of computing in both research and industry due to its importance of utilization
in many other fields that it supports, such as genomics, astrophysics, machine learning,
big data and analysis, weather and climate sciences, and much more. This results that
HPC is a highly important field in utilizing and researching it due to this importance
of its usage in many crucial fields that needs HPC support for its own advancement.
Because of the importance of the field of HPC, we aimed to study it through a practical
manner in which we materialize in our project ZombieSim. In order to study HPC,
researchers are faced with the crucial task of studying and understanding parallelization
and the field of parallel computing in order to utilize it for use in HPC. In this report,
we will introduce ZombieSim, the idea behind it, and how it would help in understanding
and learning more about parallelization that would help us in obtaining some skills to
use in HPC. On the other hand, we will note that the methodology and idea of our
project revolves around making our project parallelized and serves the learning process
of parallelism and HPC usage. Our implementation consists of three parts, ZombieSim
program itself, a supplied configuration file that serves as a tool to make our program plug
and play and very easy for researchers and hobbyists alike to be able to manipulate and
see different simulations, and it incorporates a game engine that would help us to visualize
our simulation in order to give it a real feel and makes it easier to understand and very
easy to demonstrate changes to it. Then we would present out performance analysis to
the program and its accompanying game engine. And even though that our journey in
this practical project had its own challenges that we will also mention, it did still result
in a successfully parallelized program that is also visualized with a game engine, and
our program demonstrated good results in parallelism with minimal additional overheads
using C++ and Boost library.

i

Contents

List of Tables iii

List of Figures iii

Listings iii

List of Abbreviations iv

1 Introduction 1

2 Methodology 1

3 Implementation 2
3.1 The physical game engine . 2
3.2 The configuration file . 3
3.3 The program implementation . 4

4 Performance analysis 18

5 Challenges 19
5.1 Compilation. 19
5.2 Performance analysis. 20

6 Conclusion 20

References 21

A Work sharing A1
A.1 Abdullah Amawi . A1
A.2 Maaike Bierenbroodspot . A1

B Code & other material A1

ii

List of Tables

List of Figures
1 ZombieSim flow & structure figure . 2
2 Hotspot flame graph . 18
3 Hotspot tabled results . 19

Listings
1 Country in configuration file . 3
2 City in configuration file . 3
3 Humans in configuration file . 3
4 Humans in configuration file . 4
5 Country file in C++ . 4
6 Humans C++ . 13

iii

List of Abbreviations
HPC High-Performance Computing

DL Deep Learning

iv

[ZombieSim report]

1 Introduction
In this report we will be introducing ZombieSim project; ZombieSim is a Zombie simulator
to investigate how infections spread based on multiple factors to try to simulate how
humans get infected with diseases based on factors such as behavior, environment, and
biological factors. The goal of the project is to learn more about parallel computing and
how to analyze parallel efficiency. On the other hand, we intend to make the factors in
our simulator very easy to add, in order to allow the freedom of research and for the ease
of manipulating factors. What led us to investigate parallel computing and to learn more
about it is the fact that in recent years HPC systems have been gaining more and more
traction in usage, not only due to the previous scientific computing use, but even further
to recent success and huge amount of work in multiple fields such as in deep learning(DL)
for example that also now utilizes HPC systems, and the challenge here is that in order to
utilize an HPC system effectively and efficiently, we have to understand and learn more
about parallelization, such mixture of usage of HPC and deep learning are applied to try
to solve many important problems, such as weather analysis, high energy physics, and
cosmology[Jia+18]. Regardless of the goals of any researcher on how they would want
to use an HPC system, they have to start by learning a lot more about parallelization
so they can employ their newly gained skills that they have to obtain in order to use an
HPC system effectively, which is why we are trying to learn more about paralellization
and sharing our project for researchers to be able to use it for similar goals.

2 Methodology
When it comes to the methodology that we used to approach solving the problem that
we intended to be a way of understanding more about parallelism and why we need HPC
systems by simulating a country that has multiple cities, and each one of those cities has
a population that commute between the residential areas where they live to the business
areas where they work. Our demo program simulates this in a setup that has three cities
in one country, where each city has a specific amount of its own population, we also
intended to make a configuration file that makes it very easy to adjust the setup of the
cities, population, and all the other factors that we will introduce here. On the other
hand, we will further explain our configuration file that we have, that we will supply with
the demo to make it possible for researchers to modify and adjust how they see fit, our
configuration file is very easy that even hobbyists with limited knowledge can adjust and
see the change themselves in our demo that has its own visualization. More about the
configuration file and how to use it will be listed in the implementation section.

After discussing the methodology that we will be using to approach how to make our
simulation work, we were discussing how to decide on the general flow and structure of the
program itself, and after a good time of consideration we concluded that the flow should
start with initializing the variables, create the objects that we need for the simulation,
such as the country, city, humans and their attributes. Then the next step would consist
of running the simulation itself, such that the human objects can move around between
their work environment and their homes, we would also have to track the living status
of the humans, and if they get sick, we have to process that in a way that are they sick,

Section 2 [Amawi, Bierenbroodspot] 1

[ZombieSim report]

until when, and also the mortality rate; On the other hand, we have to take care of the
visualization using the olcPixelGameEngine [OLC]. as for the structure of the country,
we have the country itself with three separate cities that would have the humans inside
them, but as we noted earlier that the country attributes and the number of the cities and
their attributes are easily changeable through the configuration file that we supply with
the executable. Fig. 1 demonstrates ZombieSim flow and the structure of the country
and cities.

Figure 1: ZombieSim flow & structure

3 Implementation
Our implementation consists of three main parts, the program itself(ZombieSim), the
supplemented configuration file, the physical game engine used for the visualization, we
will explain them in the opposite order starting with the physical game engine. We will
explain them in the opposite order so we can start with the easier part to understand,
going up to the main, larger part.

3.1 The physical game engine

We used the olcPixelGameEngine[OLC] in our project to visualize the simulation that we
implemented. Not only because this game engine serves the purpose that we intended for
its use, but also for the simplicity of integrating it in our program. Using a game engine
allowed us to visualize our program and see ourselves how our simulation acts and to
verify that the intended purpose of the simulation is met in regards that we can visualize
the cities inside a country, and we can clearly see that we have objects that signify the
humans do indeed work properly and move in between their homes and work, and on the
other hand, we can see that the infection simulation demonstrates what it was intended

Section 3 [Amawi, Bierenbroodspot] 2

[ZombieSim report]

to do by visually observing that the human objects demonstrate that some are healthy
and appear in green color, and some are sick and appear in red color, and how they do
indeed infect each other by the intended rate.

3.2 The configuration file

Our configuration file gives a very easy way for researchers and anyone who uses our
simulation a way to be able to adjust the parameters of the country, cities, humans,
and the thread parallelism on the fly without the need of any knowledge of the specifics
of the implementation of the C++ code, so it serves both as an abstraction for the
implementation, and a plug and play tool for easy adjustments, we will list here the
different inputs that can be adjusted with comments on what do they exactly change.
The configuration file includes the following inputs that can be adjusted:

The Country.
1 [Country]
2

3 Size =500
4 Population =5000
5

6 StartSick =100 #How many are sick at the start.
7

8 CycleDuration =10 #In Seconds , half of the time population is in work
state and other half is in home state recommended to at least 10.

9

10 #cycle completion = 1 day.
11

12 RateOtherCities =0 #rate of percentage of humans that have a different "
work" address. The main city is where they "live"

13

14 FamilyUnit =4 #How many "humans" have for sure the same home "address ".
15

16 MovingSpeed =5 #How smooth the Humans move from Work and Home (
independent on frame rate); The higher the faster

Listing 1: Country in configuration file

The City
1 [Country]
2

3 CitiesAmount =3
4

5 Names=RaccoonCity ,DimitrescusCastle ,LosIluminados #just an example , it’s
comma delimeted ’

6

7 Sizes =100 ,100 ,100

Listing 2: City in configuration file

The Humans
1 InfectionRate =5 #this is in percentage
2

3 DeathRate =1 This is in percentage
4

Section 3 [Amawi, Bierenbroodspot] 3

[ZombieSim report]

5 SickDurationTimesCycle =4 #How many cycles do the people stay sick.

Listing 3: Humans in configuration file

The Parallelism
1 ThreadBase =10 #How many threads are running over the human object loop

they exist till the simulation is over
2

3 ThreadOverlapCheck =10 #How many threads are made by the ThreadBase
threads , to check if different human objects overlap. They are remade
after every overlap check set (based on the size of the human object
vector)

4

5 SimulationDuration =120 #in seconds

Listing 4: Humans in configuration file

And we note that the configuration file will have to be placed with the executable file
in order to be able to run the simulation. In order for anything to be adjusted as required,
the user should only adjust the configuration file text to the state that they need or prefer,
then run the executable that will use the configuration file with the added adjustments.

3.3 The program implementation

When it comes to the program implementation, this part is much larger than the previous
two subsections, and that leads us to try to include the most crucial parts in here to
explain how they work, we will structure this subsection starting with the entities that
were mentioned in the configuration file, meaning, the country, city, humans, and the
threads. We will demonstrate how they were implemented in C++.

Starting with the country code sample alongside its corresponding code comments for
further explanation, and please note this is a sample for the sake of explanation, and the
full code can be found in the provided repository, to that extent many details and libraries
will be ignored, but can be found in the code repository.

1 // Inside the country.cpp , we would also find the #include for the
Country.h that has the city class with its own variables that would
materialize what we explained earlier , such as the population , size ,
number of healthy and unhealthy humans , and so on. And all the
Getters and Setters needed.

2

3 // When it comes to the Country.cpp functionality , this is a non -
exhaustive sample for the major functions.

4

5 // We start with the Country itself:
6

7 long CCity:: SetCountry(CCountry* pCountry)
8 {
9 if (pCountry == nullptr)

10 return 1; //Todo Error message
11 m_pCountry = pCountry;
12 return ERR_NOERROR;
13 }
14

Section 3 [Amawi, Bierenbroodspot] 4

[ZombieSim report]

15 CCountry * CCity :: GetCountry () { return m_pCountry; }
16 long CCity:: GetCountry(CCountry ** ppCountry)
17 {
18 if (m_pCountry == nullptr)
19 return 1; //ToDO Error Message
20

21 *ppCountry = m_pCountry;
22 return ERR_NOERROR;
23 }
24

25

26 //then the SetCityName function to set the names of the cities , they can
be manipulated in the config file as mentioned earlier.

27

28 long CCity:: SetCityName(char * pCityName , size_t sizeToCopy)//init
function

29 {
30 if (m_pCityName)
31 delete m_pCityName;
32

33 if (sizeToCopy <= 0)
34 return 1; //ToDo Error handling
35

36 m_pCityName = new char[sizeToCopy + 10];
37 memset(m_pCityName , ’\0’, (sizeToCopy + 10)); //zero terminate the

string
38 memcpy(m_pCityName , pCityName , sizeToCopy); //Copy the data into the

buffer
39

40 return ERR_NOERROR;
41

42 }
43

44 //After that we have to set the position and size of the city in
SetCitypositions function.

45

46 long CCity:: SetCityPositions(float fCitySize , float px , float py) //Init
function doesn ’t have to be thread safe

47 {
48 m_mutex.lock();
49 if (fCitySize <= 0.0)
50 return 1; //ToDO ErrorHandling
51

52 if(px < 0.0)
53 return 1; //ToDO ErrorHandling
54

55 if(py < 0.0)
56 return 1; //ToDO ErrorHandling
57

58 m_fCitySize = fCitySize;
59 m_px = px;
60 m_py = py;
61 m_mutex.unlock ();
62

63 return ERR_NOERROR;
64 }
65

66 // then the details in the code for getting and setting each city size

Section 3 [Amawi, Bierenbroodspot] 5

[ZombieSim report]

and name and so on.
67

68 // then we get the healthy , sick population that they were preset , and
their corresponding functions.

69

70 //now we use SetPopulation function , which is a init function that is
not thread related , since there is a lot of usage of the different
variables and functions , we will list the complete SetPopulation
function.

71

72 long CCountry :: SetPopulation ()
73 {
74 long lReturn = ERR_NOERROR;
75

76 //Set population size
77 size_t sizeHumanPopulation = 0;;
78 lReturn = glb.propertyBag.GetPopulationSize (& sizeHumanPopulation);
79 m_sizePopulation = (unsigned)sizeHumanPopulation; // population can

never be negative.
80 if (lReturn != ERR_NOERROR)
81 return GET_POPULATION_SIZE;
82

83 long lCities;
84

85

86 //Set healthy group
87 m_sizeHealthy = m_sizePopulation;
88 m_sizeSick = 0;
89 m_sizeDeath = 0;
90

91 //Now the population has to be divided over the amount of cities (
for now we are just going to equally divide it.

92 //In the future we reduce the city size amount to increase the
population density.

93

94 //Get the amount of cities based on the vector. If vector size is =
0 call Set Cities

95 //Call it again af it is again 0, return error message.
96

97 size_t sizeCities = m_vecCities.size();
98 if (sizeCities <= 0)
99 lReturn = SetCities ();

100

101 if (lReturn != ERR_NOERROR)
102 return lReturn;
103

104 if (sizeCities <= 0)
105 return 1; //ToDo Error handling
106

107

108 /*
109 Now we are going to fill the human object vectorand set the City*

within them.
110 We are going to get the amount of humans per city Humans/City.
111 Where the last city gets the remaining humans when we have a

fraction.
112

113 */

Section 3 [Amawi, Bierenbroodspot] 6

[ZombieSim report]

114

115 bool bFraction = false;
116

117 double dFraction = (double)(sizeHumanPopulation/ sizeCities);
118 double dFractionSubstract = dFraction - static_cast <long long >(

dFraction);
119 if (dFraction > 0.0)//if it’s a fraction or not!
120 bFraction = true;
121

122 long long llDivide = static_cast <long long >(dFraction);
123 CHuman* pHuman = nullptr;
124 CCity* pCity = nullptr;
125

126 //Going to create Human Objects and set the City Pointers.
127 for (size_t idx = 0; idx < sizeCities; idx++)
128 {
129 pCity = m_vecCities.at(idx);
130 for (long long idxHuman = 0; idxHuman < llDivide; idxHuman ++)
131 {
132 pHuman = new CHuman;
133 lReturn = pHuman ->SetCityPointer(pCity);
134 if (lReturn != ERR_NOERROR)
135 return lReturn;
136 m_vecHumans.push_back(pHuman);
137 pCity ->PushBack(pHuman); //this is just for easy access/

calculations.
138 }
139 }
140

141 //if we have a fraction we have some remaining humans they are added
to the last one

142 if (bFraction == true)
143 {
144 size_t sizeHumanPushed = (size_t)llDivide * sizeCities;
145 size_t sizeRemainingToBePushed = sizeHumanPopulation -

sizeHumanPushed;
146

147 pCity = m_vecCities.at(sizeCities - 1);
148

149 for (size_t idxHumanToBePushed = 0; idxHumanToBePushed <
sizeRemainingToBePushed; idxHumanToBePushed ++)

150 {
151 pHuman = new CHuman;
152 lReturn = pHuman ->SetCityPointer(pCity);
153 if (lReturn != ERR_NOERROR)
154 return lReturn;
155 m_vecHumans.push_back(pHuman);
156 pCity ->PushBack(pHuman); //this is just for easy access/

calculations.
157 }
158 }
159

160 //So at this point we have all the cities and all the humans.
161 //But the humans do not have a home address or a work address time

to set those.
162

163

164 //Step 1, Set the Home Address and work address in the same City.

Section 3 [Amawi, Bierenbroodspot] 7

[ZombieSim report]

165 //First we have to know how big a human family unit is. Aka how many
humans live for sure on the same spot.

166 long lHumanFamilyUnit = 0;
167 lReturn = glb.propertyBag.GetFamilyUnit (& lHumanFamilyUnit);
168 if (lReturn != ERR_NOERROR)
169 return lReturn;
170

171 if (lHumanFamilyUnit <= 0)
172 lHumanFamilyUnit = 2; //Just as a default number in case someone

added something weird.
173

174 //Now we do the same thing as we did for the cities. We need to know
if we have a fraction or not. The remaining family will be Smaller.

(lucky them!
175 //Get the Respective pCity , since we have to know how many family

units we have , so we round it up
176 //eg we have 9 humans , family unit = 4. Divide is 2.25 We will have

3 family units. 4,4,1
177

178 size_t sizeHumanVectorInCity = 0;
179 size_t sizeRoundUpFamilyUnit = 0;
180 size_t idxHumanVector = 0;
181

182 float fCityX = 0.0;
183 float fHumanHomeX = 0.0;
184 float fHumanWorkX = 0.0;
185 float fCityY = 0.0;
186 float fCityY2 = 0.0;
187 float fHumanHomeY = 0.0;
188 float fHumanWorkY = 0.0;
189 float fCitySize = 0.0;
190

191 std:: random_device RNG; // Will be used to obtain a seed for the
random number engine

192 std:: mt19937 Seed(RNG()); // Standard mersenne_twister_engine seeded
with RNG()

193

194

195 for (size_t idxCity = 0; idxCity < sizeCities; idxCity ++)
196 {
197 idxHumanVector = 0; //Reset it
198

199 pCity = m_vecCities.at(idxCity);
200 sizeHumanVectorInCity = pCity ->GetHumanVectorSize ();
201 if (sizeHumanVectorInCity <= 0)
202 return 1; //ToDo Error Handling.
203

204 fCitySize = pCity ->GetCitySize ();
205 fCityX = pCity ->GetCityX ();
206 fCityY = pCity ->GetCityY ();
207 fCityY2 = fCityY + (fCitySize * 0.5);
208

209 std:: uniform_real_distribution <> XCoordinateHome(fCityX , (fCityX +
fCitySize));

210 std:: uniform_real_distribution <> XCoordinateWork(fCityX , (fCityX +
fCitySize));

211 std:: uniform_real_distribution <> YCoordinateHome(fCityY , fCityY2);
212 std:: uniform_real_distribution <> YCoordinateWork(fCityY2 , (fCityY

Section 3 [Amawi, Bierenbroodspot] 8

[ZombieSim report]

+ fCitySize));
213

214 sizeRoundUpFamilyUnit = (size_t)std::round (((long double)
sizeHumanVectorInCity / (long double)lHumanFamilyUnit));

215 for (size_t idxFamilyUnit = 0; idxFamilyUnit <
sizeRoundUpFamilyUnit; idxFamilyUnit ++)

216 {
217

218 fHumanHomeX = XCoordinateHome(Seed); //stay for every family
unit the same;

219 fHumanHomeY = YCoordinateHome(Seed);
220

221 for (long lFamilyUnitMember = 0; lFamilyUnitMember <
lHumanFamilyUnit; lFamilyUnitMember ++)

222 {
223 if (idxHumanVector < sizeHumanVectorInCity)
224 {
225 pHuman = pCity ->GetHuman(idxHumanVector);
226 fHumanWorkX = XCoordinateWork(Seed);
227 fHumanWorkY = YCoordinateWork(Seed);
228

229 lReturn = pHuman ->InitPositions(fHumanHomeX , fHumanHomeY ,
fHumanWorkX , fHumanWorkY , fHumanHomeX , fHumanHomeY);

230 if (lReturn != ERR_NOERROR)
231 return lReturn;
232

233 idxHumanVector ++;
234 }
235 else
236 break;
237

238 }
239 }
240

241

242

243 }
244

245 //We have no set the positions of all our human objects.
246 //Now we have some randomization that some humans go visit other

cities.
247 //Step 2 Set % of humans to work in other cities;
248 long lRateOfDifferentCityWorkAddress = 0;
249 lReturn = glb.propertyBag.GetRateOfDifferentWorkAddress (&

lRateOfDifferentCityWorkAddress);
250 if (lReturn != ERR_NOERROR)
251 return lReturn;
252

253 //So every city have x% members that work in a different city. We
round it down

254 //With 1 City -> no randomization
255 //With 2 City -> City 1 and City 2 swap.
256 //With 3 cities -> City1 -> City 2, City 2 -> City 3 and City 3 ->

City 1. Etc.
257

258 size_t sizeCityLoopRuns = 0;
259

260 CCity* pMoveToCity = nullptr;

Section 3 [Amawi, Bierenbroodspot] 9

[ZombieSim report]

261 size_t idxCityToMove = 0;
262 size_t idxCityToMovePos = 0;
263 size_t sizeRateOfDifferentCityWorkAddress = (size_t)

lRateOfDifferentCityWorkAddress;
264

265 if (sizeCities >= 2)
266 {
267 for (size_t idxCity2 = 0; idxCity2 < sizeCities; idxCity2 ++)
268 {
269 idxCityToMovePos = 0;
270 pCity = m_vecCities.at(idxCity2);
271 if (idxCity2 + 1 == sizeCities)
272 idxCityToMove = 0;
273 else
274 idxCityToMove = idxCity2 + 1;
275

276 pMoveToCity = m_vecCities.at(idxCityToMove);
277 sizeCityLoopRuns = std::round ((float) pCity ->GetHumanVectorSize

() / (float)lRateOfDifferentCityWorkAddress);
278

279 fCitySize = pMoveToCity ->GetCitySize ();
280 fCityX = pMoveToCity ->GetCityX ();
281 fCityY = pMoveToCity ->GetCityY ();
282 fCityY2 = fCityY + (fCitySize * 0.5);
283

284 std:: uniform_real_distribution <> XCoordinateWork2(fCityX , (
fCityX + fCitySize));

285 std:: uniform_real_distribution <> YCoordinateWork2(fCityY2 , (
fCityY + fCitySize));

286

287 for (size_t idxCityLoop = 0; idxCityLoop < sizeCityLoopRuns;
idxCityLoop ++)

288 {
289 pHuman = pCity ->GetHuman(idxCityToMovePos);
290 fHumanWorkX = XCoordinateWork2(Seed);
291 fHumanHomeY = YCoordinateWork2(Seed);
292

293 lReturn = pHuman ->SetWork(fHumanWorkX , fHumanWorkY);
294

295 idxCityToMovePos = idxCityToMovePos +
sizeRateOfDifferentCityWorkAddress;

296 }
297 }
298 }
299

300 //Done
301 return lReturn;
302 }
303

304

305

306 //After that we move on to SetCities function to set the cities.
307

308 long CCountry :: SetCities ()
309 {
310 long lReturn = ERR_NOERROR;
311

312 long lCitiesAmount = 0;

Section 3 [Amawi, Bierenbroodspot] 10

[ZombieSim report]

313 lReturn = glb.propertyBag.GetCitiesAmount (& lCitiesAmount);
314 if (lReturn != ERR_NOERROR)
315 return 0; //ToDo Error Message
316

317 CCity* pCity = nullptr;
318 for (size_t idx = 0; idx < lCitiesAmount; idx++) // create city objects
319 {
320 pCity = new CCity;
321 m_vecCities.push_back(pCity);
322 }
323

324 std:: string strCityNames;
325 lReturn = glb.propertyBag.GetCitiesName (& strCityNames);
326 size_t sizeString = strCityNames.length ();
327

328 long lCount = 0; //Keep track of how many names there are;
329 char* pPos;
330

331 char* szString = &strCityNames.at(0);
332 char* pEnd = szString + sizeString -1 ;
333 pPos = szString;
334 while (pPos != pEnd && pPos) //While pPos is not equal to PEnd and

pPos exist , should never reach pass the pEnd , but just to be sure!
335 {
336 if (*pPos == ’,’)
337 {
338 if (pPos == pEnd)//in case the user used a comma at the end of the

line
339 break;
340

341 pCity = m_vecCities.at(lCount);
342 lReturn = pCity ->SetCityName(szString , pPos - szString);
343 if (lReturn != ERR_NOERROR)
344 return 1; //ToDo Error Message;
345

346 lCount ++;
347 if (lCount == lCitiesAmount)
348 break;
349

350

351 pPos ++; //Set it 1 past the ,
352 szString = pPos; //Set it to the
353 }
354 pPos ++;
355 }
356

357 if (pPos == pEnd) //get the last item
358 {
359 pCity = m_vecCities.at(lCount);
360 if(*pPos == ’,’)
361 lReturn = pCity ->SetCityName(szString , pPos - szString);
362 else
363 lReturn = pCity ->SetCityName(szString , pPos - szString +1);
364 if (lReturn != ERR_NOERROR)
365 return 1; //ToDo Error Message;
366

367 lCount ++;
368 }

Section 3 [Amawi, Bierenbroodspot] 11

[ZombieSim report]

369

370 //Check if all cities are filled if not add default name
371 std:: string strCityNameDefault;
372 if (lCount < lCitiesAmount)
373 {
374 while (lCount < lCitiesAmount)
375 {
376 pCity = m_vecCities.at(lCount);
377 strCityNameDefault = "CityName" + std:: to_string(lCount +1);
378 lReturn = pCity ->SetCityName (& strCityNameDefault [0],

strCityNameDefault.length ());
379 lCount ++;
380 }
381 }
382

383 //Now lets determine the sizes of the cities and the positions!
384 //check how we have to divide the space of the screen based on our

number of cities.
385 //Since the screen is a perfect square we can determine how much

cities have to fit verticall and horizontally
386 float fSpaceDivide = ceil(sqrt((float)lCitiesAmount)); //we have to

round it up not down. 8 cities will result in a square of 3 x 3
cities , with one space being unoccupied but that’s fine

387

388 float fScreenSize = 0.0;
389

390 lReturn = glb.propertyBag.GetCountrySize (& fScreenSize);
391 if (lReturn != ERR_NOERROR)
392 return 1; // TodoErrorHandling
393

394 float fCitySize = round(fScreenSize / fSpaceDivide) - 10; //We round
it down for quick calculation AND give a gap of 10 so that the cities
are not touch one another.

395

396 float fStartPosX = 0.0;
397 float fStartPosY = 0.0;
398

399 //Fill the positions and sizes in the cities;
400 lCount = 0;
401 for (float idxPosY = 0; idxPosY < fSpaceDivide; idxPosY ++)
402 {
403 for (float idxPosX = 0; idxPosX < fSpaceDivide; idxPosX ++)
404 {
405

406 pCity = m_vecCities.at(lCount);
407 lReturn = pCity ->SetCityPositions(fCitySize , ((fCitySize * idxPosX

) + (10 * idxPosX)), ((fCitySize * idxPosY) + (10 * idxPosY)));
408 if (lReturn != ERR_NOERROR)
409 return lReturn;
410

411 lCount ++;
412 if (lCount == lCitiesAmount)
413 break;
414 }
415 }
416

417

418 return lReturn;

Section 3 [Amawi, Bierenbroodspot] 12

[ZombieSim report]

419

420 }
421

422

423 // SetLivingStatuses function specifies the default status of the humans
and the sickness spread , but on the other hand please note that have
the config file to change those parameters.

424

425 long CCountry :: SetLivingStatuses ()
426 {
427 long lReturn = ERR_NOERROR;
428

429 long lDefaultSick = 0;
430 lReturn = glb.propertyBag.GetStartSick (& lDefaultSick);
431 if (lReturn != ERR_NOERROR)
432 return 1; //ToDo Error Handling
433

434 if (lDefaultSick == 0)
435 lDefaultSick = 1; //As a default
436

437 //Have to be spread equally;
438 size_t SizeSpreadRate = (size_t) std::round(m_vecHumans.size() / (

size_t)lDefaultSick); //we round it down to make sure we don’t try to
access non existing vector objects.

439

440 size_t sizeSpreadPos = 0;
441 CHuman* pHuman = nullptr;
442 for (size_t idx = 0; idx < (size_t)lDefaultSick; idx ++)
443 {
444 pHuman = m_vecHumans.at(sizeSpreadPos);
445 pHuman ->SetLivingStatus(LIVINGSTATUS ::SICK);
446 sizeSpreadPos = sizeSpreadPos + SizeSpreadRate;
447

448 }
449

450 return lReturn;
451 }
452

453 After initializing all of this , at this point the thread starts by
getting the population , the rest of the details can be found in
Country.cpp file in the project.

Listing 5: Country file in C++

When it comes to the City implementation, as we demonstrated, the city class is inside
the Country.h, and the City name and other needed functionality is inside the Country.cpp
functions. And now we will move to the implementation of the humans in the project.

1 //As for the Humans , you will find a similar structure of both Humans.
cpp and Humans.h files in the project , with the Humans class and
other pointers in the Humans.h file , and the functionality inside the
Humans.cpp file in the project.

2

3 //After including Humans.h and Threads.h, the main functionality in
Humans.cpp is to process the sickness of the humans , the related
functions , and also to deal with their positioning and movement as
explained earlier in the design , that the humans move from their
homes to work and vice versa , and of course along that they infect

Section 3 [Amawi, Bierenbroodspot] 13

[ZombieSim report]

each other.
4

5

6 // The function to process the sickness of the humans
7 void CHuman :: ProcessSickness(std::vector <CHuman*>* pvecHumans)
8 {
9 //First we check if the human actually died or not

10 static std:: random_device RNG; // Will be used to obtain a seed for
the random number engine

11 static std:: mt19937 Seed(RNG()); // Standard mersenne_twister_engine
seeded with RNG()

12 static std:: uniform_real_distribution <> disDeathRate (0, 100);
13 static float fDeathRate = (float)glb.propertyBag.GetDeathRate () * 0.1;
14 float fDeathSet = disDeathRate(Seed);
15

16

17 if (fDeathSet <= fDeathRate)
18 {
19 Kill(); // Human died :(
20 return;
21 }
22

23

24 //Now we have to find the overlapping Healthy objects
25 static uint64_t u64CycleSicktime = (uint64_t) glb.propertyBag.

GetCycleTime ()* 3;
26

27 m_mutex.lock();
28 static size_t sizeThreadOverlapCheck = (size_t) glb.propertyBag.

GetThreadOverlapCheck ();
29 static long SizeHumanVector = pvecHumans ->size();
30 m_mutex.unlock ();
31

32 size_t sizeDivideWorkload = (size_t)round (((float)SizeHumanVector / (
float)sizeThreadOverlapCheck));

33

34 size_t sizeStartPos = 0;
35 size_t sizeEndPos = 0;
36 CZombieSimThreadSickness* pThread = nullptr;
37 std::vector <CZombieSimThreadSickness *> vecThreads;
38

39

40 for (size_t idxThreadPos = 0; idxThreadPos < sizeThreadOverlapCheck;
idxThreadPos ++)

41 {
42 sizeStartPos = idxThreadPos * sizeDivideWorkload;
43 sizeEndPos = sizeStartPos + sizeDivideWorkload - 1;
44 if (idxThreadPos == (sizeThreadOverlapCheck - 1))
45 {
46 sizeEndPos = SizeHumanVector - 1;
47 }
48 //Start Thread
49

50 pThread = new CZombieSimThreadSickness(sizeStartPos , sizeEndPos ,
this);

51 pThread ->SetThreadProc(new boost :: thread(ThreadProcessSickness ,
pThread));

52 ASSERT(pThread ->GetThreadProc ());

Section 3 [Amawi, Bierenbroodspot] 14

[ZombieSim report]

53

54 //Give is time to initialize
55 boost:: this_thread :: sleep_for(boost :: chrono :: milliseconds (250));
56

57 //And add the info to the vector of running threads
58 vecThreads.push_back(pThread);
59 }
60

61 #ifdef _DEBUG
62

63 printf_s("Now we wait till all processes are done %s", EOL);
64

65 #endif
66

67 WaitForAllThreads(vecThreads);
68 //Now we delete them
69 ClearVector <CZombieSimThreadSickness >(& vecThreads);
70

71 // SetHealthyOrNot
72 boost:: posix_time ::ptime SickCurrenttime = boost:: posix_time ::

second_clock :: local_time ();
73 boost:: posix_time :: time_duration SickDuration = SickCurrenttime - this

->GetSickStartTime ();
74

75 if (((uint64_t) SickDuration.total_seconds ())> u64CycleSicktime)
76 SetLivingStatus(GETHEALTHY);
77

78

79 }
80

81 // Then we have the functions that get the humans and their living
status for further use later on , We will skip their details here for
the same of simplicity , everything can be found in the same sequence
of the report structure , meaning that they can be found after the
ProcessSickness function.

82

83 // Then we initialize the humans positions as in their home , work ,
current so we can move them to work and back to their homes.

84

85 // Movement , starting with moving to work:
86 void CHuman :: MoveToWork ()
87 {
88

89 m_mutex.lock();
90 //First check if the person is not dead , otherwise we have to do all

this code for nothing;
91 if (m_eLivingStatus == DEAD)
92 {
93 m_mutex.unlock ();
94 return;
95 }
96

97 static float fMovingSpeed = glb.propertyBag.GetCycleTime () * 0.05; //
5% of your current cycle time.

98 float fElapsedTimeObject = glb.fElapsedTimeProperty;
99

100 float fxDistanceToWork = this ->GetDistanceWorkX ();
101 float fyDistanceToWork = this ->GetDistanceWorkY ();

Section 3 [Amawi, Bierenbroodspot] 15

[ZombieSim report]

102

103 boost:: posix_time ::ptime CurrentTime = boost:: posix_time :: second_clock
:: local_time ();

104 boost:: posix_time :: time_duration TimeDiff = CurrentTime -
m_MoveStarttime;

105

106 // m_fxCurrentPos = m_fxCurrentPos + ((abs(m_fxHome - m_fxCurrentPos) *
(fElapsedTimeObject / 2.0)));

107 m_fxCurrentPos = m_fxCurrentPos + (-1 * fMovingSpeed * (m_fxCurrentPos
- m_fxWork) * fElapsedTimeObject);

108 // m_fyCurrentPos = m_fyCurrentPos + ((abs(m_fyHome - m_fyCurrentPos) *
(fElapsedTimeObject / 2.0)));

109 m_fyCurrentPos = m_fyCurrentPos + (-1 * fMovingSpeed * (m_fyCurrentPos
- m_fyWork) * fElapsedTimeObject);

110

111 // m_fxCurrentPos = fxDistanceToWork * (
112 // (float)TimeDiff.total_seconds () / fMovingSpeed);
113 // m_fyCurrentPos = fyDistanceToWork * ((float)TimeDiff.total_seconds ()

/ fMovingSpeed);
114 // m_fxCurrentPos = fxDistanceToWork * (fElapsedTimeObject /

fMovingSpeed);
115 // m_fyCurrentPos = fyDistanceToWork * (fElapsedTimeObject /

fMovingSpeed);
116

117 if(((float)TimeDiff.total_seconds ()) >= fMovingSpeed)
118 {
119 m_fxCurrentPos = m_fxWork;
120 m_fyCurrentPos = m_fyWork;
121 m_eMoveStatus = STATIC;
122 }
123

124 m_mutex.unlock ();
125

126

127 }
128

129 // Then the humans will go back to their homes. Please note as mentioned
multiple times , the time cycle and all time -related variables can be
easily manipulated in the configuration file that we mentioned in

the start of the implementation section so the reader can easily
connect it to the program implementation.

130

131 void CHuman :: MoveToHome ()
132 {
133

134 m_mutex.lock();
135 //First check if the person is not dead , otherwise we have to do all

this code for nothing;
136 if (m_eLivingStatus == DEAD)
137 {
138 m_mutex.unlock ();
139 return;
140 }
141

142 static float fMovingSpeed = glb.propertyBag.GetCycleTime () * 0.05; //
5% of your current cycle time.

143 float fElapsedTimeObject = glb.fElapsedTimeProperty;
144

Section 3 [Amawi, Bierenbroodspot] 16

[ZombieSim report]

145 float fxDistanceToHome = this ->GetDistanceHomeX ();
146 float fyDistanceToWork = this ->GetDistanceHomeY ();
147

148 boost:: posix_time ::ptime CurrentTime = boost:: posix_time :: second_clock
:: local_time ();

149 boost:: posix_time :: time_duration TimeDiff = CurrentTime -
m_MoveStarttime;

150

151 // m_fxCurrentPos = m_fxCurrentPos + ((abs(m_fxWork - m_fxCurrentPos) *
(fElapsedTimeObject / 2.0)));

152 m_fxCurrentPos = m_fxCurrentPos + (-1 * fMovingSpeed * (m_fxCurrentPos
- m_fxWork) * fElapsedTimeObject);

153 // m_fyCurrentPos = m_fyCurrentPos + ((abs(m_fyWork - m_fyCurrentPos) *
(fElapsedTimeObject / 2.0)));

154 m_fyCurrentPos = m_fyCurrentPos + (-1 * fMovingSpeed * (m_fyCurrentPos
- m_fyWork) * fElapsedTimeObject);

155

156 // m_fxCurrentPos = fxDistanceToWork * (
157 // (float)TimeDiff.total_seconds () / fMovingSpeed);
158 // m_fyCurrentPos = fyDistanceToWork * ((float)TimeDiff.total_seconds ()

/ fMovingSpeed);
159 // m_fxCurrentPos = fxDistanceToWork * (fElapsedTimeObject /

fMovingSpeed);
160 // m_fyCurrentPos = fyDistanceToWork * (fElapsedTimeObject /

fMovingSpeed);
161

162

163 // m_fxCurrentPos = fxDistanceToHome * (fElapsedTimeObject /
fMovingSpeed);

164 // m_fyCurrentPos = fyDistanceToWork * (fElapsedTimeObject /
fMovingSpeed);

165

166 if(((float)TimeDiff.total_seconds ()) >= fMovingSpeed)
167 {
168 m_fxCurrentPos = m_fxHome;
169 m_fyCurrentPos = m_fyHome;
170 m_eMoveStatus = STATIC;
171 }
172

173 m_mutex.unlock ();
174

175

176 }
177

178 // The mentioned functions above are the main functions in the Humans.
cpp implementation , but of course , there are a lot of other smaller
functions that deal with the details , that we mentioned , and more
such as for example how to deal with the death toll , the percentage
and how some humans will die due to sickness , provided by the death
toll percentage. All those details can be found at the end of the
file after the movement functions.

Listing 6: Humans C++

Section 4 [Amawi, Bierenbroodspot] 17

[ZombieSim report]

4 Performance analysis
When it comes to the performance analysis we utilized Hotspot[Hot] tool that is used in
Linux that provides a GUI for performance analysis. The main functionality of Hotspot
is to visualize the performance data graphically in what the creators call "Flame Graph",
flame graph basically shows the timeline of the program that is running with all its sub-
parts, on the other hand, the size of the bar in the Hotspot flame graph reflects the
percentage of time, and cycle costs for each part. For example, if the main program runs
has a lot more cycles than the parallelization library in use, it means that we have a
good parallelism, on the other hand, if we have the parallelization library taking a lot
more cycles than the main program itself, it means that we have bad parallelism. Fig. 2
demonstrates the frame graph for our ZombieSim program runtime.

Figure 2: ZombieSim Hotspot flame graph

What we can observe here in Fig. 2 is that the flame graph demonstrates what it
seems like a horizontally stacked bars, starting from left hand side to right hand side,
the first and second bars correspond to our ZombieSim main simulation, so it is a good
sign that it has the largest bar, meaning most of the cycles are spent on the program
itself, and not much overhead is added by the usage of the parallelization library, the
third bar corresponds to the visualization game engine, which we can’t decide on what
should be the norm for its percentage, but considering we have most of the cycles used
on ZombieSim and we still have more cycles cost used on the game engine physics, it
looks like we have a good result; The rest of the bars on the right hand side that their
names start with ether PhysicsEngine or olc are both corresponding to the game engine
in use for the visualization. This means that the overhead for adjusting the program for
parallelization is minimal, which is the desired result.

To make things easier to read, Hotspot also provides tabled results with the corre-
sponding percentages of the cycles used for the program runtime. Fig. 3 demonstrates
the tabled results for our ZombieSim that corresponds to what we saw earlier in Fig. 2.

Section 4 [Amawi, Bierenbroodspot] 18

[ZombieSim report]

Figure 3: ZombieSim Hotspot tabled graph

We observe that ZombieSim useage tops the cycles with 47.1%, followed by "swrast_dri.so"
with 24.5%, which is the graphical library in the game engine, then more into ZombieSim
outputs, which means that ZombieSim has the most cycles cost, which demonstrates good
parallelism.

5 Challenges
Many challenges were faced in our project, which in some cases were tiring, but on the
other hand it made it a valuable learning experience, in this section we will split those
challenges in regards of their corresponding area.

5.1 Compilation.

Unfortunately, we had issues compiling ZombieSim on the designated HPC system; This
was due to the fact that the HPC system uses Scientific Linux which is based on Red
Hat Enterprise Linux or RHEL in short. For ZombieSim to compile C++ version 17
(C++17) is needed, because the visual layer (OlcPixelGameEngine) requires it. C++17
can be used on Windows, Debian GNU/Linux and Arch Like systems, but not on RHEL
systems. Any other version (GNU12-14 or C++11-C++14) will result in library errors,
especially within the Boost library that is used throughout the whole program. Which
means that using any version of C++ besides the C++17 version isn’t compatible within
ZombieSim to the best of our knowledge.

Section 5 [Amawi, Bierenbroodspot] 19

[ZombieSim report]

5.2 Performance analysis.

We initially intended to use VAMPIR[Vam] for the performance analysis, but due to
the problems faced during the compilation and that we had to compile our program on
different systems other than the designated HPC system, we tried to utilize VAMPIR
on different systems but that was not possible due to the fact that VAMPIR requires a
license, our goal was to create VAMPIR tracefiles that can be reused later on, but it was
not possible. On the other hand, we also tried to resort to LIKWID[Lik], installation was
successful and easy, had very good documentation a lot of functionality, many of the basic
functions ran good, especially LIKWIDs hardware analysis functions, which was nice, but
then we were faced with the fact that both our systems were unsupported and incompatible
for using the function "likwid-perfctr", which according to the documentation has the type
of performance analysis that we need. Moreover, it was strange that our systems CPUs
were listed as supported, but after the failure of usage, and making our own research, seems
like a lot of specific models were unsupported and were reported in LIKWID forums, but
no solution till the time of report. At the end we decided to use Hotspot for the analysis,
it does a decent job, but unfortunately it also has its own problems, such as that it does
not recognize the name of our program nor the different processes within the program,
but the program as a whole, but this still serve the intended purpose, but with limited
insights in comparison to what we have hoped for, and to an extent of limited, not very
detailed performance analysis.

6 Conclusion
In our course of study in the parallel computing project we learned a lot more about the
importance of parallel execution importance and how it can exponentially increase the
performance of the programs that we may implement or use, but on the other hand, we
had a lot of challenges that were an eye opener that we may have had underestimated in
some cases and had to work a lot more on in order to overcome them, but it was what
it made it an authentic learning experience that benefited us in many ways, on the other
hand we are happy about the state of our program and the simplicity of usage and not
only that it is easy to modify but also that it is visualized to give anyone that uses it a
real feel of what is going on under the hood in the program, so it makes it much more
easier to grasp and be more interactive.

Section 6 [Amawi, Bierenbroodspot] 20

[ZombieSim report]

References
[Hot] Hotspot. https://github.com/KDAB/hotspot.

[Jia+18] Zihan Jiang et al. “HPC AI500: a benchmark suite for HPC AI systems”.
In: International Symposium on Benchmarking, Measuring and Optimization.
Springer. 2018, pp. 10–22.

[Lik] Likwid. https://github.com/RRZE-HPC/likwid.

[OLC] OLC. https://github.com/OneLoneCoder/olcPixelGameEngine.

[Vam] Vampir. https://vampir.eu/.

Section [Amawi, Bierenbroodspot] 21

[ZombieSim report]

A Work sharing
In this section we list our corresponding contributions and work sharing. Both team
members contributed in all the phases and output of the project, but with each member
being responsible over a different part with the inclusion of major input of the other team
member, alongside having weekly meetings at the minimum.

A.1 Abdullah Amawi

Mainly responsible for the report and its structure, with Maaike having her input in the
main sections of implementation, analysis, and code related segments.

A.2 Maaike Bierenbroodspot

Mainly responsible for the program code with Abdullah helping in parts of it but with
the guidance of Maaike due to her vast experiance in C++ and Boost library.

B Code & other material
We provide the full code for ZombieSim alongside an executable version with its corre-
sponding configuration file.

https://github.com/amawi/ZombieSim.git

On the other hand, an explanation of each file in the code of our ZombieSim project
corresponds to:

BB_PropertyBag: A header file that creates the Propertybag, stores all variables
that’s read from a propertybag

BB_General: A header file containing standard functions used within the rest of the
BB files and sometimes the ZombieSim files.

BB_LinuxDefs: By default programs are normally developed with a Windows based
by Maaike. She created function definitions to match the C++ version of Windows within
Linux.

BB_DirList: Basically get a list of files with extension <xx> from directory defined
by the user. Is used in PropertyBag to get the configuration file.

City: All the class relevant function and variables related to the City Objects.

ClearVector: A template to clear out vectors and destroy (delete) it’s objects.

Country: All the class relevant function and variables related to the Country Object.

Section B [Amawi, Bierenbroodspot] A1

[ZombieSim report]

CreateObjects: Basically contains the functions to create the different playfield objects
gets called by the main

Helper: Just includes standard macros and also the CGlobal class which contains the
propertybag and the management objects. Defines global object variable CGlobal glb.

Humans: All the class relevant function and variables related to the Human Objects.

Initialize: Contains the ParseCommandLine function and the InitProgramVariables.
That initialize all the variables used within ZombieSim

Management: Basically a class that handles the error messaging.

olcPixelGameEngine: The Visual layer lib used within ZombieSim. Made by OneLoneCoder.com

PhysicalEngine: Class that contains what the program actually has to do in the vi-
sual layer. Uses olc::PixelGameEngine as a derived (polymorphism) class for the actual
drawing of the playfield

RunThreads: All the different thread functions used within ZombieSim

Stdafx: Contains all standard libs used throughout the program. In windows this is
of course a precompiled header.

Thread: Contains the different thread classes used within ZombieSim

ZombieSim.conf: The configuration file of ZombieSim

ZombieSim.cpp: The main of ZombieSim

ZS_PropertyBag: Uses CPropertyBag (BB_PropertyBag) as a derived class for stor-
ing variables from the command line or configuration file. But in itself has getters and
setters towards these specific variables. BB_Propertybag stores everything the user adds
into the configuration file. But ZS_PropertyBag makes them accessible throughout the
program.

Section B [Amawi, Bierenbroodspot] A2

	Contents
	List of Tables
	List of Figures
	Listings
	List of Abbreviations
	Introduction
	Methodology
	Implementation
	The physical game engine
	The configuration file
	The program implementation

	Performance analysis
	Challenges
	Compilation.
	Performance analysis.

	Conclusion
	References
	Work sharing
	Abdullah Amawi
	Maaike Bierenbroodspot

	Code & other material

