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Calculating the Kullback-Leibler-Divergence on a Genome Scale

1 Introduction
This report is about the "Practical Course on High-Performance Computing", held in
the summer semester 2022 at the Georg-August-University Göttingen. Basic goal of
the practical is to develop and benchmark a high-performance computing solution for
a problem of choice.

1.1 Problem formulation

The problem on the basis of which this program was developed comes from bioin-
formatics: To find Transcription Factor Binding Sites, Position Weight Matrices of
Transcription Factor Binding Motives can be used to calculate the Kullback Leibler
Divergence. Due to the size of a human genome and the high number of Transcription
Factors this can be a Big Data problem and needs enough computational performance
to use an High-Performance Computing Cluster.

1.2 Motivation

At the beginning of the course, the course organisers presented a list of possible scientific
fields for topics, including bioinformatics. Because of our biological background, we
then enquired about topics in different bioinformatical work groups. The work group
for medical bioinformatics of the UMG, lead by Prof. Beisbarth came back to us
with the topic, that will be described in detail in the following chapters. The work
group hopes to learn something about distributed computing from the newly developed
solution to this well understood, classical problem. In addition, learning how to better
utilize GWDG resources using distributed computing is a goal for the work group as
currently most problems are computed on dedicated shared memory clusters hosted by
the work group.

1.3 Organization of the report

This report is organized as follows: In chapter 2 some basics are introduced, which
are essential for the further understanding of the report: Firstly, the Kullback-Leibler
divergence, and secondly, some biological background information is presented.

Chapter 3 presents the project with a deeper level of detail and builds the bridge to
the technical world: Here, solutions are presented to be able to work on the problem,
and technical questions are clarified: What will a solution look like? How can it be
parallelized? What improvements can be expected due to parallelization?

Chapter 4 describes the implementation of the questions from Chapter 3: Here,
we present step-by-step how the solution was developed, from a very low performing,
sequential, locally running implementation to a high performing server solution. This
chapter also covers technical details and external libraries that were used.

Chapter 5 is all about performance: Here, the benchmarking strategy (including
tools, hardware configurations etc.) are introduced and the performance of all imple-

Section 1 Tim van den Berg, Vincenz Dumann 1
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mentations from chapter 4 are described and analysed. In addition, the scalability of
all solutions is discussed.

Chapter 6 is about the challenges, their solutions and borders that occurred dur-
ing the development process. In addition, some ideas on further optimizations are
described, which were not actually done due to time limitations.

Chapter 7 is the conclusion of the report: The whole project is reviewed and learning
achievements are discussed. It is decided on the basis of the goals if the project was
successfully or not.

1.4 Authors

The authors of this report and responsible for its content are Tim van den Berg and
Vincenz Dumann. Both are applied computer science students in the master’s pro-
gram of the University of Göttingen, the former in the 4th semester with a focus on
high performance computing, the latter in the 3rd semester with a focus on software
development. The division of the work is explained in more detail in the appendix.

2 Foundations
In this chapter, some basics are defined: First, some biological background is explained,
in particular Transcription Factors are motivated. Then, the Kullback-Leibler diver-
gence, is introduced.
Due to the limited size and scope of this report some simplifications are made, espe-
cially regarding the biological background. The presented information should suffice
for the purpose of this practical course, however, when interested in the biological
background, one should read a biology book.

Section 2 Tim van den Berg, Vincenz Dumann 2
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2.1 Biological background: Genomes and Chromosomes

Figure 1: Human genome visualized as book series, images from [bro22]

In Figure 1 the human genome is visualized as a book series, exhibited in the ’Medicine
Now’ room (Wellcome Collection, London). This piece of art tries to transport the enor-
mous size of the genome. The information of the 3,117,275,50 base pairs of the DNA
was transferred into more than 100 book volumes, each 1000 pages, in the smallest
readable possible font size (3px)[bro22].
The Genome is encoded in DNA and separated into 23 (24 when male) different chro-
mosomes. These chromosomes differ in size. The largest chromosome is about five
times larger than the smallest chromosome (chr. 1: 247 Mbp, chr. 21: 47 Mbp, see
Figure 2).

All chromosomes exist twice per cell, as one copy comes from the father and one
copy of the mother of a human. Therefore, there are 46 chromosomes in a human cell.
The DNA is twisted a lot, when stretched out, every single cell in a human body would
roughly contain 2 m of DNA. All DNA of all cells of a human combined would cover the
distance from the Earth to the sun ≈ 1000 times. Combining the DNA of all humans
would be longer than the diameter of the milky way.[Jüs]
The Genome contains the blueprints for products like Proteins and Enzymes that the
cell needs to function. As humans develop over their life and cells have different tasks
and a life cycle themselves, different cells need different amounts of different of these
products. To produce a Protein or Enzyme, different steps take place, one can imagine
a workflow. The first step is the so called Transcription. Here, a gene (the "blueprint")
is read and a copy is produced, the so called messenger-RNA (mRNA).[Cam+16]

Section 2 Tim van den Berg, Vincenz Dumann 3
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Figure 2: Human genome visualized by chromosome sizes. Chromosome 1 is more then
six times bigger then chromosome 22. Image from [wik22]

To influence which genes are transcribed, so called Transcription Factors can enhance
or suppress the Transcription of specific genes. Transcription Factors bind on the
DNA. It is important to understand where certain Transcription Factors bind in order
to understand what they do and what the respective genes do. One possibility is that
Transcription Factors bind at certain positions because there are certain motives in the
order of the bases on the DNA. To find these Transcription Factor Binding Sites, one
can use the Method used here. However, just running our method will probably not
give very accurate data, normally one has to combine this with other methods, but the
goal here is not to gain biological insights.

2.2 Mathematical background: The Kullback-Leibler-Divergence

The Kullback-Leibler divergence[S K51] (KLD) is a measure of the difference between
two probability distributions. Typically, one of the distributions represents empirical
observations or a precise probability distribution, while the other represents a model
or an approximation. Formally, the Kullback-Leibler-Divergence for the probability
functions P and Q of discrete values can be determined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log(
P (x)

Q(x)
) (1)

From an information-theoretic point of view, the Kullback-Leibler divergence indi-
cates how much space per character is wasted on average when an encoding based on
Q is applied to an information source that follows the actual distribution P .

Section 2 Tim van den Berg, Vincenz Dumann 4
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2.2.1 Using the Kullback-Leibler-Divergence on Genomes

• x is a base from X={A,C,G,T}

• P(x) is the probability of base x at the respective index in the PWM/Transcrip-
tion Factor Binding Site (PWM[x, index])

• Q(x) is the background probability of base x in the genome (the percentage of x
in the genome)

• The Kullback-Leibler-Divergence gives a score that is higher if the probability for
a Transctiption Factor Binding Site is higher at that position

• in genomic contexts a logarithm base 2 is used

• Note that the Kullback-Leibler-Divergence depends on the length of the PWM

2.3 Software Development Background: Design Pattern

Design patterns are proven solution templates for recurring design problems in ar-
chitecture as well as in software architecture and development. They thus represent a
reusable template for problem solving that can be used in a specific context. Originally,
23 design patterns were described, which were divided into three categories[Gam97]:

• Creational Patterns

– Concern object creation. They decouple the construction of an object from
its representation. The object creation is encapsulated and outsourced to
keep the context of the object creation independent of the concrete imple-
mentation.

– Well known examples are Factory Pattern and Singleton Pattern.

• Structural Pattern

– Concern relationships between classes. They provide ready-made templates
for common challenges.

– Well known examples are Facade Pattern and Composite Pattern, which
will be described in this chapter.

• Behavioral Pattern

– Concern behavior of the Software. They are used to increaste the flexiblity
of software.

– Well known examples are Chain-of-responsibility and State Pattern, which
will be described in this chapter.

Section 2 Tim van den Berg, Vincenz Dumann 5
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2.3.1 State Pattern

The State Pattern provides that the states of objects are also objectified and designed
as implementations of a common superclass. State-specific behavior can thus be im-
plemented in the corresponding state classes, which greatly facilitates the extension
of the software. For example, in modeling a door, the current state would be split
into two classes ("open" and "closed"), each inheriting from the abstract class "door
state". The function for opening the door would then be implemented concretely in
the class "shot". This implementation facilitates the extension (e.g. adding the states
"ajar" and "wide open" as further states of "open") compared to an implementation
via boolean attributes.

2.3.2 Composite Pattern

The composite pattern is applied to represent part-whole hierarchies by combining
objects into tree structures. The basic idea of the composite pattern is to represent
both primitive objects and their containers in an abstract class. Thus, both individual
objects and their compositions can be treated in a uniform manner[Gam97].

3 Problem Analysis
After the introduction and the basics, this chapter - initially independent of technical
limitations - analyzes the problem at hand in detail. Here, the requirements for the
solution are established as well as various possibilities are examined as to how these
can be achieved. In addition, the question of how far parallel executions are possible
will be addressed, as well as hypotheses on how these will affect performance. Finally,
metrics will be defined that will serve as indicators of success or failure.

3.1 Resources

Two resources are needed for the implementation: One is the Position Weight Ma-
trices of the Transcription Factor binding motives, the other is the complete Human
Genome. The Position Weight Matrices of the Transcription Factor binding motives
can be downloaded as Position Count Matrices (aka Position Frequency Matrices) from
the JASPAR database[JA+] as a text file with about 10,000 lines, including 1956 ma-
trices at a size of ≈750 kilobytes. JASPAR is the leading database in the field and
describes itself in the following way:

"JASPAR is a regularly maintained open-access database storing manu-
ally curated transcription factors (TF) binding profiles as position frequency
matrices (PFMs). PFMs summarize occurrences of each nucleotide at each
position in a set of observed TF-DNA interactions."[JA+]

The sequence of the human genome can be downloaded from the U.S. National Library
of Medicine website[NCf13], which belongs to the National Center for Biotechnology of
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the United States of America. The resulting file is a Fasta formated text file of almost
3.5 gigabytes.
For a better understanding, both resources will now be presented by means of an
example. One example Position Count Matrix of the downloaded Data Set is the
following:

>MA0004.1 Arnt
A [ 4 19 0 0 0 0 ]
C [ 16 0 20 0 0 0 ]
G [ 0 1 0 20 0 20 ]
T [ 0 0 0 0 20 0 ]

One entry consists of one row starting with a ">" containing meta information (here:
the matrix ID MA0004.1 and the Transcription Factor name Arnt) and four rows rep-
resenting the four different bases Adenine, Cytosine, Guanine and Thymine. Each
column in a matrix should sum up to the same number as it contains the number
of occurrences of a base at a specific location in an observed Transcription Factor -
DNA binding. The Position Count matrices are processed further, as will be shown in
chapter 3.2.1.

The human genome, divided into 46 chromosomes, is in its decoded form a combi-
nation of the bases A, T, G, and C, each in normal and capital letters:

GTCTTTTCATTGCACACAAATTGAACTTTTAAAAGAGGTGCAAATGTCCTGTA
ATacggtttgtctgtgtccccacccaactcgcaccttgaattgtagtttccat
ggtgaagataattgaatcatggggccagttcCCCCCATCCTGTTCTCCTAATA
gttttataaggggcttcccctttggcggggctctcattcttctctctcctgag
cccttccgccacgattgtaagttttctgagacttcccagccctgcagaactgt
aattacccattcttgggtatatctttattggcagtgtgagagcagactaatat

Lowercase letters indicate that the corresponding bases are not unique, while upper-
case letters indicate clear positions. Each person has a different genome, some positions
are the same in all people, some define the differences between us. Some positions are
not clear at all, those are marked with an ’N’, they appear mostly at the edges of a
Chromosome in the so called Telomeres which protect the chromosomes.

Now that the input data and the goal of the project are clear, the algorithm that
performs the corresponding transformation must be designed. The following subchap-
ter is dedicated to this task and provides an overview of the different approaches used
during this project to solve the problem.

3.2 Implementation drafts

In this section, plans for implementation are elaborated, and the process from a se-
quential, simple solution to a parallel and thus much more complex one is shown. Here,
technical limits are only observed to a limited extent; these only come into play in the
following chapter. The general workflow is shown in Figure 3 and will be presented in
more detail in the following.

Section 3 Tim van den Berg, Vincenz Dumann 7
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Figure 3: Basic sequential execution of the calculation. Basic workflow of the program,
simplified into the three main activities.

3.2.1 Preparation of Data

Before any calculation can take place, the used raw data, described in the former
chapter, needs to be prepared.

Prepare Genomes The downloaded file containing the genome is not yet ready
for direct processing, for several reasons:

• The file could be corrupted: With several gigabytes of text file, it is not impossible
that letters other than ’A’, ’T’, ’G’, ’C’ or ’N’ (upper and lower case, respectively)
have inadvertently entered the file. This should not happen, to be on the safe
side (and because one has to iterate over the file anyway), all other letters are
replaced by ’N’.

• The file contains upper and lower case letters. However, the information encoded
by this, whether they are fixed at the corresponding positions, is irrelevant for
this application, but requires additional comparison operations.

• In these comparison operations, the use of letters is counterproductive. An
integer-level comparison promises a significant improvement for little effort. There-
fore, all numbers are transformed to the smallest format available - 8-bit integers,
which in turn are loaded into a numpy array. In the second parallel approach,
which is described in detail below, the file is also split on chromosome level. In
this case, a Numpy array is created for each chromosome, and these are then
pickled.

Prepare Position Weight Matrices In order to calculate the Kullback Leibler
Divergence, the downloaded Position Count Matrices must be converted to Position
Weight Matrices. For each column, the relative weight of each base is calculated: If a
column consists of the four values [5, 10, 5, 0], this is transformed to [0.25, 0.5, 0.25,
0]. This operation is applied to all matrices. The example shown before looks now like
this:

>MA0004.1 Arnt
A [ 0.25 0.95 0 0 0 0 ]
C [ 0.75 0 1 0 0 0 ]
G [ 0 0.05 0 1 0 1 ]
T [ 0 0 0 0 1 0 ]

Section 3 Tim van den Berg, Vincenz Dumann 8
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In order to avoid taking the logarithm of zero when calculating the Kullback Leibler
Divergence, a so called pseudo count is added. This is a very small number, that is
added to every position in the Position Weight Matrix.

3.2.2 Sequential implementation

The implementation of a sequentially running program using the formula is trivial. Us-
ing the hints from section 2.2.1, the calculation can be performed without further effort.

Figure 4: Algorithm sketch. The Position Weight Matrix (yellow bar) slides over the
genome and at each position the Kullback Leibler Divergence is calculated. The results
are stored in an array.

Figure 4 shows the basic idea of the algorithm: The Position Weight Matrix (PWM) is
applied at every position of the Genome. Every time, the Kullback Leibler Divergence
is calculated using the information from chapter 2.2.1.

Section 3 Tim van den Berg, Vincenz Dumann 9



Calculating the Kullback-Leibler-Divergence on a Genome Scale

A sequential solution in (python-like) pseudocode for the Kullback Leibler Divergence
(formula 1) can look like this:

genome = "ATGCGTG...."
pwm = [[...][...][...][...]] # rows are bases
background = [0.25, 0.25, 0.25, 0.25] # background probabilities
kld = [] # empty result array
for index_genome in 0 : genome.length:

for index_pwm in 0 : pwm.length:
index = index_genome + index_pwm
current_base = genome[index_genome]
p_base = pwm[current_base, index]
q_base = background[base]
kld[index_genome] += p_base * log2(p_base/q_base)

3.2.3 Runtime Predictions

In the pseudocode shown in the previous chapter, it is obvious, that one has to loop over
the genome and the PWM. Therefore, an quadratic upper bound of O(genome.length×
pwm.length) can be assumed.
Now it would of course be interesting how fast the sequential algorithm shown in pseu-
docode can actually run on a computer. First, let’s calculate the number of iterations,
that have to be performed. The genome is 3,117,275,501 bases long. The PWMs vary
in length between 5 and 35. In total, the 1956 PWMs have a length of 24391. This
results in 76,032,871,824,010 iterations in total. A processor works in the GHz dimen-
sions. Assuming one iteration takes one clock cycle the calculation takes ≈21 hours.
However, a CPU is normally a bit faster than 1 GHz. Nevertheless, an iteration should
take much longer than one clock cycle as there is a division included and probably
some calls to memory as the data does not fit in the cache. A realistic lower bound
would therefore be a few days to calculate everything.

At each iteration one floating point number (the Kullback Leibler Divergence) is
created and has to be stored. If one uses ASCII to encode the resulting text files and
uses 10 characters to store one value this results in 10 Byte per KLD value and to 760
TB of data. A modern SATA SSD can write at a speed of roughly 500 MB/s, here
it would take ≈18 days to write this much data to a single SSD. Using a HHD (150
MB/s) it would take ≈59 days. Therefore, if one would really would want to calculate
the Kulback-Leibler-Divergence on the human genome for all Transcription Factors,
one should think of a smart way of storing the results. One possibility to remove a
lot of unneeded data from the results would be to use a threshold and just store the
results with a Kullback-Leibler-Divergence higher than the threshold.
Reading in the 3 GB genome text file does not take a significant amount of time when
compared with the writing times calculated above.
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3.2.4 Implementation Goals

The overall goal of the task described in this report is to optimize the performance of
this calculation as much as possible. However, a few more subordinate features are also
to be implemented in order to obtain a complete, server-based solution. These goals,
sorted by importance, are defined as follows:

1. Overall goal: High-performance, concurrent implementation for calculating the
Kullback Leibler Divergence of a Transcription Factor Binding Site.

(a) Without further knowledge of performance, we set a goal of completing the
full calculation in under 1 hour.

(b) To create the baseline for the performance increase, a sequential implemen-
tation must first be created.

2. Creation of a worker infrastructure: A main process should be able to start
and manage various worker processes, which perform the actual calculations in
parallel.

(a) The infrastructure should be fail-safe, which means that the calculation
continues even if a worker process fails. The main process should reassign
the failed workers tasks.

(b) A heartbeat model should be implemented to detect failed workers.

(c) The failure of workers should be simulatable.

So the next step is obvious, but far from trivial: parallelizing the sequential solution.

3.2.5 Parallelization

The first question that arises when one wants to parallelize such software is whether to
implement parallelization at the task or data level. Data parallelism means concurrent
execution of the same task on each computing core, whereas task parallelism means
concurrent execution of the different tasks on multiple computing cores.

Starting with task parallelization, it should be noted that there are 3 tasks, two of
which are independent of each other (the preparation of the transcription factors as
well as the preparation of the genomic sequence data), while the actual calculation has
to wait for the completion of both of them. Therefore, the data preparations can be
done parallel. This approach has two major drawbacks:

1. Data preparation is expected to be a relatively small percentage of the total
processing time. The main part will be the actual computation of the Kullback-
Leibler-Divergence. So the expected overall speedup here is relatively small.

2. This approach is not scalable: There are exactly two processes that run in parallel
and are not further split. The only possibility for faster processing (assuming an
optimal implementation) is therefore better hardware.
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Of course, this small expected performance gain can also be taken, but the focus
should be on parallelizing the actual calculation as well as possible in a scalable man-
ner. In this case, it is therefore a logical choice to split the data and process it in
parallel. The data can be separated on genome level as well as on transcription factor
level. In the following, only the separation on the basis of the transcription factors will
be discussed, since the implementation on the genome level is the corresponding.

Figure 3.2.5 shows the algorithm with the use of 2 Workers. However, this number
is not fixed - in contrast to the task-parallel approach - and can be increased as desired.
The implementation provides that the main process first generates work packages, con-
sisting each of a PWM and a chromosome. The worker processes report to the main
process when they are idle and are assigned work packages, which they process. When
the worker is done, the results are reported back. Afterwards the worker is idle again
and a new work package can be assigned.

Figure 5: Data parallel execution of the calculation, here displayed with only one
worker. The Amount of workers is flexible, all displayed messages are sent to all of
them. The high number of communication points in this diagram highlights the focus
of this approach.

With the creation of such a concrete plan, the design phase can be considered
complete. The next chapter will now deal with the implementation, i.e. the technical
realization.
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4 Implementation
In this chapter, the individual implementations are presented in detail. In each case,
the things that were not implemented as in the drafts from the previous chapter are
discussed, as well as technical peculiarities and difficulties that occurred. In addition,
the Wall Clock Times, which are measured with the runs, are indicated in each case.
The following chapter is dedicated to these measurements in detail and analyzes the
performance.

4.1 General Implementation

In general, Python 3.9.0 was used. Furthermore, numpy 1.21.3, matplotlib 3.4.3, numba
0.56.0 and mpi4py 3.1.2 was used.

A special feature of the implementation presented here is the orientation towards
a modern, object-oriented programming style. A detailed discussion of the advantages
and disadvantages of such an approach is far beyond the scope of this report, but in
this educational project the deciding factor for choosing this approach was to learn and
evaluate this approach in a practical, yet self-contained environment. A short conclu-
sion on this can also be found in the review of this project at the end of this report.

The full source code can be found at https://gitlab-ce.gwdg.de/tim.vandenberg/
practical_hpc. At this point, we want to pointed out that the complete commit his-
tory is available to any interested reader. This report will therefore only go into more
detail about the actual technical implementation if there were significant deviations
from the draft during implementation, or if very specific details need to be pointed
out. Furthermore, in order not to go beyond the scope of this report, the comments in
the source code are explicitly referred to for a deeper understanding.

4.2 Sequential implementation

The sequential implementation was completed without significant problems. There
are no significant deviations from the analysis or the draft detailed in the previous
chapter. To follow clean code principles, helper functions were used and refactored
into a utils class, which now provides basic functions that are not directly related to
the corresponding approach, but are nevertheless needed by one or more approaches.
Type hints comments and docstrings were used to make the code better understandable
and readable.
The pseudocode from chapter 3.2.2 was used as a guideline during the development.
Therefore, the function calculating the The Kullback-Leibler-Divergence (KLD) is fairly
similar:

1 def calculate_kld(sequence: np.ndarray, pwm: np.ndarray,
2 background: np.ndarray) -> np.ndarray:
3 results = np.zeros(len(sequence) - pwm.shape[1] + 1)
4 for start_idx in range(len(sequence) - pwm.shape[1]): # loop sequence
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5 kld = 0.0
6 for cur_pwm_pos in range(pwm.shape[1]): # loop pwm
7 b = sequence[start_idx + cur_pwm_pos] # nucleobase at index
8 if b == 4: # no specific base
9 # equal to 0, do nothing

10 continue
11 kld += pwm[b,cur_pwm_pos]*np.log2(pwm[b,cur_pwm_pos]/background[b])
12 results[start_idx] = kld
13 return results

4.2.1 Execution Results

The most primitive approach is of course the non-optimized, sequential approach. This
does not mean, that this version was as slow as possible as numpy operations we man-
aged to use numpy. Nevertheless, many iterations have to be performed using relatively
slow python for loops. For a runtime prediction see chapter 3.2.3. This first run yields
an interesting baseline against which further measurements can be compared. The
whole genome and one PWM of length 6 was used, the run was executed on the local
machine (AMD Ryzen 5700g, an SSD and 16GB of Memory).

Table 1 shows the run times of the different processing steps.

Task Name Time (in h) Percentage (in %)
Wall Clock Time Ttotal 07:58:31 100.00
Calculations Tcalc 07:52:20 98.71
Reading to Disk Tread 00:03:14 0.78
Writing to Disk Twrite 00:02:55 0.61
Miscellaneous Tmisc 00:00:02 0.00

Table 1: Unoptimized Sequential runtimes on local machine, featuring AMD Ryzen
5700g, an SSD and 16 GB of Memory

The run time of ≈8 hours for a PWM with a length of 6 can serve as a baseline.
If one assumes a linear growth of the run time based on the PWM length, the total
computation time for all PWMs (total length: 24391) over the complete genome is
about 3 years and 8 months. This is of course not feasible in any circumstance and
should make clear why optimizations and parallelization are important. The measured
runtime is many orders of magnitude larger, than the runtime predictions in chapter
3.2.3 suggest as a lower runtime border.

The distribution of times, see also table 1, shows very clearly where the bulk of
the run time was spent: on the computation itself, not on reading or writing the data.
Thus, this is the obvious starting point for the start of the optimization.
Another problem with this implementation was the amount of RAM used. More then
20GB were in use during the execution. Therefore, the computer started swapping,
which could have caused an even worse performance.
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4.3 Improvements with Numba

The most important improvement to the sequential approach is the introduction of
Numba. The creators of Numba describe their library as follows: "Numba translates
Python functions to optimized machine code at runtime using the industry-standard
LLVM compiler library. Numba-compiled numerical algorithms in Python can ap-
proach the speeds of C or FORTRAN"[num22]. Basically, this means that Numba
does compile an appropriately marked block of source code to optimized machine code
using LLVM instead of using the (much slower) python interpreter.

Adding Numba in a python-based solution is simple, if not trivial: the corresponding
function is simply provided with a decorator in which the appropriate settings for the
affected code block are defined. Figure ?? shows this "implementation" - whereas such
a trivial change hardly deserves the name "implementation".

1 from numba import jit
2 @jit(nopython=True, parallel=False)
3 def calculate_kld(sequence: np.ndarray, pwm: np.ndarray,
4 background: np.ndarray) -> np.ndarray:
5 results = np.zeros(len(sequence) - pwm.shape[1] + 1)
6 for start_idx in range(len(sequence) - pwm.shape[1]): # loop sequence
7 kld = 0.0
8 for cur_pwm_pos in range(pwm.shape[1]): # loop pwm
9 b = sequence[start_idx + cur_pwm_pos] # nucleobase at index

10 if b == 4: # no specific base
11 # equal to 0, do nothing
12 continue
13 kld += pwm[b,cur_pwm_pos]*np.log2(pwm[b,cur_pwm_pos]/background[b])
14 results[start_idx] = kld
15 return results

The only changes made to the code are shown in the first two lines. The effects of
this small change are impressive. The run times can be seen in the next section.

4.3.1 Execution Results

The implementation optimized by numba was executed with the same PWM over
the complete genome. For better comparability, the same computer was used as for
the original sequential execution. The run times, as well as their distribution to the
individual program parts can be taken from table 2.

Task Name Time Percentage
Wall Clock Time Ttotal 00:08:09 100.00
Calculations Tcalc 00:01:59 23.72
Reading from Disk Tread 00:03:12 39.26
Writing to Disk Twrite 00:02:58 36.40
Miscellaneous Tmisc 00:00:03 0.61

Table 2: Sequential runtimes on local computer.
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As one can see in table 2, the time for the calculation part has gone down massively
- 8 hours became 8 minutes only by using Numba. Since this acceleration only affects
the calculation part, the share of the corresponding time has shrunk massively from
98.71% to 23.72%.

Memory consumption, on the other hand, remained high. This was to be expected,
since Numba only affects it minimally.
However, this practical course is primarily not about the optimization of sequential
code, but about concurrent computing. These are - as soon as implemented - also not
executed on the local computers, but are supposed to run on GWDG servers. In order
to be able to use the implementation with Numba as a baseline measurement, the op-
timized sequential program was executed on the server (amp014). The measurements
can be found in Table 3.

Task Name Time Percentage
Wall Clock Time Ttotal 00:14:26 100.00
Calculations Tcalc 00:04:07 28.52
Reading from Disk Tread 00:07:02 51.03
Writing to Disk Twrite 00:02:55 20.21
Miscellaneous Tmisc 00:00:02 0.23

Table 3: Sequential run times on the server(amp014).

As one can see, the execution time is significantly longer, ergo the performance on
the server is lower. Especially the reading part (from 3 to 7 minutes) as well as the
calculations (from 2 to 4 minutes) had a big influence on this increase. In particular,
the increase in read access was to be expected, since the server does not have SSDs
directly attached to the execution unit.

Of course, it would be possible to optimize the sequential share even further us-
ing numba, but this implementation should now lay the foundation for the parallel
implementation - and the measurements represent the baseline value accordingly.

4.4 Implementation Parallel Solution

The implementation of this approach could generally be implemented as intended by
the design, see Figure 3.2.5. At this point, however, the implementation of the com-
munication between main and worker process should be discussed, since this is the
decisive technical detail that is relevant for this approach.

4.4.1 Implementation of Communication with MPI

The Message Passing Interface (MPI) is a standard, that enables processes to commu-
nicate with each other. The python implementation mpi4py uses the pickle library to
serialize data and sends them. Numpy objects can be send directly, therefore this is
much faster and was used wherever possible. The syntax of a blocking point-to-point
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communication is demonstrated in the following example.

import numpy as np # import numpy
from mpi4py import MPI # import MPI library

comm = MPI.COMM_WORLD # initialize communicator
rank: int = comm.Get_rank() # get rank

if rank == 0: # main process (sending in our case)
# send numpy (np) array
send_array: np.ndarray = np.zeros(5) # array we want to send
comm.Send(send_array, dest=1, tag = 1) # capitalized Send

# send other data
send_data = {'a':7, 'y':42}
comm.send(send_data, dest=1, tag=2)

elif rank == 1: # receiving process
# receive numpy (np) array
receive_array: np.ndarray = np.empty(5, dtype=np.float64)
comm.Recv(receive_array, source=0, tag=1)

# receive other data
receive_data = comm.recv(source=1, tag=2)

One can see, that the Recv() function (for numpy objects) writes directly into an
initialized numpy object, while the normal recv() function returns an object.
This blocking point-to-point communication was used for communication between the
main process and the worker processes. Furthermore, a broadcasting operation was
used to broadcast the background probabilities and the genome data from the main
process to the workers. When a worker was done with the calculation and ready to
transmit the results back to the main process, an empty message is send to the main
process. The main process loops through all worker processes constantly and checks
with the iProbe() function if a respective message was send. If it was send, the main
process interacts with the worker to get the results and provide the worker with a new
task.

4.4.2 Challenges during Implementation

During the work on this parallel implementation we learned that debugging parallel,
communicating code is not trivial due to several reasons.
The implementation of the MPI standard by the mpi4py library is not very intuitive
to use, as the usage of numpy object passing and normal message passing differ sub-
stantially. The numpy versions of the MPI commands are capitalized and one would
assume that the behaviour is similar to the normal MPI commands. However, while
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the normal commands return the received object, the numpy version writes into a ini-
tialized numpy object given as an argument. The resulting error message when doing
anything wrong was cryptic to us.
Furthermore, next time we would link our IDE with the remote server. It was very
draining to always commit, push and pull just to make a small change to the code.
Also, testing changes in the code took longer as we sometimes had to wait for our slurm
job to start.
During the development of this application, confusion arose again and again as to which
Id is assigned to which communication channel. In response, the code was refactored
and the Ids were organized into so-called "enums". An enum, short for enumeration,
is a set of symbolic names (members) bound to unique, constant values. Within an
enumeration, the members can be compared by identity, and the enumeration itself
can be iterated over[pyt22]. The main advantage of enums is that they are much easier
to read and thus provide better clarity for the developer - and thus not an advantage
of a technical nature. Instead, the use of meaningful, carefully chosen enums reduces
the risk of bugs whose origin lies in human error. The use of enums follows the zen of
Python principle "Readability counts."

4.4.3 Execution Results

The corresponding execution times with different numbers of worker processes, are
listed in Table 4. All nodes were amp*** nodes which are Cascade Lake Intel Platinum
9242 machines[GWD].

#Worker Time Time/Worker (s) Speedup Speedup/Worker
1 39:12 2352 1 1
4 14:05 213 2.75 0.68
8 7:13 54 5.4 0.67

Table 4: Parallel 1 runtimes on Server

When looking at these values superficially (for a more detailed analysis, see Chapter
7), it is immediately noticeable that the run with one worker (≈39 minutes) took sig-
nificantly longer than the execution of the sequential solution (≈8 minutes). However,
this duration is already significantly undercut with 8 workers. Furthermore, it can be
seen that while quadrupling the workers from one to four could only achieve a speedup
of 2.5, doubling again could achieve an almost linear decrease in processing time.

Due to the still very long processing time for a run with one PWM, further tests
with multiple PWMs were not performed. It is obvious that the approach is not
optimal, since the main goal here was to implement a working MPI-based solution and
not yet to achieve large performance leaps. This is the focus of the second approach,
the implementation of which is the subject of the next chapter.
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5 Improved Parallel Solution
Another approach would be to first divide the data by the number of free workers and
give these packets to the workers. This has the advantage that much less communica-
tion would be necessary, but the work packets would be much larger. A failure of a
worker would mean that a large packet would have to be split again later, increasing
the complexity of the algorithm. It would also be less flexible to respond to a fluctu-
ating number of workers, making this solution less scalable.

The second approach, implemented as part of this project, is intended to compen-
sate for some of the drawbacks of the first and provide better performance. To achieve
this, the following points should be considered:

• The implementation should contain less communication overall - both quantita-
tively and qualitatively. While in the first approach a lot of messages containing
large amounts of data (complete chromosomes) were sent back and forth between
the main and the workers, in this second approach only a few, small amounts of
data should be sent if possible. Of course, the workers still have to receive chro-
mosome data, and the smallest possible amount of data that is sent in total
corresponds to the length of the chromosome, but great savings can be expected
here. Depending on the hardware configuration, it could be better to let the
worker processes read the data from disk themselves.

• Furthermore, the remaining bottlenecks should be eliminated - especially the
writing of the results. For this, the workers should be enabled to save their
respective results in files themselves, instead of sending them back to the main,
which then takes over this task - this would also save further communication.

• If possible, although not the main goal, the used memory should be reduced
significantly. Of course, the performance is in the foreground, but it will always
suffer when a system has to swap memory.

The implementation of a software solution that meets these requirements is shown
schematically in Figure 6 (exemplary with one worker, of course this can be almost any
number): As before, the data is first prepared. However, the genomic sequence is split
into different files to be able to outsource all Input/Output (IO) work to the worker
processes. Then tasks are generated, but this time they are distributed differently.
Tasks are assigned according to the data that is needed. If worker 1 started on genomic
sequence chunk 1, it will get tasks regarding that genomic sequence chunk until there
are no more tasks regarding it.

5.1 Implementation Parallel Approach 2

The implementation of this new version worked without major issues. However due to
the reasons described in chapter 4.4.2, the implementation took quite a while and was
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Figure 6: Optimized data parallel execution of the calculation. The amount of com-
munication was reduced drastically and the preparation of data extended.

quite challenging mentally. In the end, this lead to a lot of time pressure and some
features and performance analytics could not be implemented or performed. This will
be described in detail in chapter 6 and chapter 7.
The requirements and Business Process Model Notation (BPMN) graph described
above and shown in Figure 3.2.5 were the foundation for this implementation.

5.1.1 Improved Data Preparation

In contrast to the previous solution, here the data preparation and storage of the re-
sults is performed as much as possible by the worker processes instead of the main
process. This enables the main process to handle large amounts of worker processes
as the blocking communication (receiving GBs of results) does not interfere with the
process management duties of the main process. However, it is not trivial to prepare
data in parallel. To avoid file access of all workers on the same file, the main process
can now split the genome into separate files, each containing one chromosome. Here,
solution with a custom chunk size as described before would be even more ideal, but
was not implemented due to time reasons.
The rest of the data preparation happens in the worker processes. If a worker process
gets a task from the main process, consisting of a chromosome name and a PWM, the
worker process first checks if the respective chromosome data is already in its memory.
If this is not the case, it checks, if a pickled version of the preprocessed data is available.
If one is available, the process reads the data and starts with the computation. If not,
the process reads the chromosome sequence text file, that was created by the main
process earlier and does the same data preparation steps as described in the previous
chapter. The resulting numpy array is then pickled as another process may want to
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use it later.
Each chromosome file should just be prepared once, if the number of workers is smaller
than the number of chromosomes. To optimize this further, one should make sure that
each chromosome is preprocessed by exactly one worker, this would not be hard to do,
but was omitted due to time reasons. The results are pickled in the end, by the worker
process if this is wanted. Due to the large output, the pickleing and storage of the
output files was omitted for the benchmarks, as with the previous runs.

5.1.2 Communication with MPI

The communication between the main process and the worker processes is very min-
imal in this approach, as no results or genomic sequences are transmitted. The only
broadcasted data are the background probabilities (numpy array with length 5). Other-
wise, the worker processes send their idle state and receive tasks, consisting of a PWM
(numpy array) and a chromosome name (string). Finally, there is a "keep working"
boolean value, that is send to every worker while there is still work to be done. This
was a first step towards a heartbeat model, as a worker could have get a new task even
if there were no tasks left in the meantime. However, this feature was not implemented
due to time reasons, see chapter 6.

5.1.3 Execution Results

Unlike the previous implementation, the best possible performance is aimed for here.
Therefore, more extensive tests were carried out here and not only the number of
workers varied more, but also the number of PWMs processed. The values, as well as
the respective relative acceleration, can be taken from the table 5. In the test runs
listed here, a PWM with a length of 6 was used in the first run, and 4 PWMs with
different lengths and a total length of 36 - which is the relevant quantity at this point
- were used in the second run.

#Worker len(PWMs) Time Time/len(PWM) (s)
1 6 01:05:15 652.50
1 36 03:32:02 767.03
8 6 00:10:15 102.50
9 36 00:38:03 63.42
10 6 00:09:00 90.00
12 36 00:26:45 44.58
16 6 00:08:24 84.00
16 36 00:28:31 47.53
21 6 00:06:59 69.83

Table 5: Parallel Approach 2: Wall clock times
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6 Removed Features
In the course of implementing the three approaches (especially the third approach),
there were some features that were initially included, but did not make it into the final
builds. This had different reasons, and the features, and the corresponding backgrounds
of non-observance, will be presented in detail in this chapter.

Basically, a slightly different approach was planned for the second approach: The
implementation was to generally have the basic features of a scheduler - Different
workers were to be able to sign up, then be monitored, be assigned tasks, and be
supervised. However, as the project progressed, the focus shifted further and further
away from this approach, and more and more attention was paid to optimizing the
actual performance. This in turn had several reasons:

• The simplest, but most important reason: Time. Implementing the best possi-
ble performance was much more time-consuming than originally planned, which
meant that these rather secondary features were cut out accordingly.

• The more features are implemented around the actual task, the more difficult it
becomes for colleagues from bioinformatics to understand the code - especially
since they are predominantly not trained computer scientists, but people whose
focus is on the biological part of bioinformatics. For them, the goal is to im-
plement a solution that is as easy to understand as possible, focusing on the
essentials. The importance of this educational approach to the project, however,
only became clearer over time - a change in the priorities of a project inevitably
ensures an adjustment of the requirements.

Now that the different reasons have been discussed, these features will be presented
individually. In each case, it is also indicated how far the corresponding feature has
already been implemented and how far approaches can still be found in the final version.
Overall, the analysis, design, and started implementations for these features took about
one-third of the total processing time, so they were a non-negligible factor in the
implementation.

6.1 Registration/Deregistration of Workers

In the first versions of the second approach, it was intended that workers could register
with the main process via an interface, either individually or in a group, in order to
then be provided with work by this process. For this purpose a register(), as well as
a deregister() function for workers or worker groups was implemented, over which the
appropriate funtionality was made available. The registerWorker() function, unlike the
registerWorkerGroup() function, was already completed, and a relic of this implemen-
tation can still be found in the architecture of the code: The management was supposed
to be done by a state pattern[Gam97], of which always the states "Busy" and "Idle"
are left as objectified states. These have in the final version only a rather subordinate
role as parameters with the inquiry for work of a worker at the Main, formed however
originally the foundation of a condition-based control.
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The group registration of workers was not implemented, but was only planned as
an extension of the simple worker registration and therefore trivial: While for reg-
isterWorker() a worker object was planned as parameter (in the early versions this
contained only a worker ID, for this see next subchapter), for the group registration a
function was planned, which contained an object, which contained beside a group ID
a list of worker objects. A composite pattern was intended for the implementation, a
group registration operation would have simply iterated over the list of workers and
called registerWorker(). Via the composite, even non-cyclic nesting of worker groups
would have been possible.

6.2 Improved Scheduling

The dynamic registration of workers, where they are not created by the main process
but are added externally, naturally brings further challenges for such an implementation
- the problem of external resources, which can differ greatly in their performance as well
as optimizations. This becomes clear with an example: If two workers register with the
main process, one of which is GPU- and the other CPU-supported, the conditions are
completely different. In order to be able to manage this in the future, the Worker object
already described in the previous subsection was further extended: Thus, a general type
was also added to the WorkerID (initially as a state pattern, but since this does not
change over the lifetime of a worker, a solution via an inheritance hierarchy would also
be conceivable here, if not the preferred solution), as well as further information about
expected performance, expected downtime and so on.

This feature is especially interesting from the software developer’s point of view,
because it allows extremely many possibilities for extensions (think here of automatic
classification depending on the origin of the workers based on experience values!), but
it also has a practical background: Depending on the type of worker, the main can
distribute tasks or task packages optimally.

This feature is no longer visible in the final version - in the course of the development
phase it was not considered further except for the impementation of the underlying class
hierarchy.

6.3 Heartbeat and Resource Monitoring

In a distributed system, it is very easy for a part of the environment to fail - for example,
because the hardware is damaged, a maintenance window occurs, there are network
problems, and so on. To be prepared for such failures, a so-called heartbeat can help
a lot - The concept here is that one part of a networker (in our case the worker) sends
a signal to the main at regular intervals (about every 30 seconds) to show that it is
still working. If one (or, depending on the implementationm several) heartbeats are
missed, the main can react and reallocate tasks, change the load distribution or take
other steps to continue providing functionality (in the best possible way).

This feature was developed in parallel with the registration or deregistration of
resources and was an integral part of the prototype for a long time. It strongly fa-
vored the decision in favor of a state pattern for the workers, since the failure of a
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corresponding worker would also have been represented using states - "pending" for a
missed heartbeat and "disconnected" for the failure of three in a row. The objectifica-
tion of work packages in the preparation phase was also intended as a preparation for
this feature - For the redistribution of tasks where the processing worker has failed. So
even if this feature was not implemented - due to careful planning at the beginning, the
existing solution can be extended by this feature with comparatively few adjustments
even after finalization with a completely different focus, with none of the original code
of this feature remaining.

A possible extension, which however had no relevance for this project, is a so-called
"handshake". In this case the handshake is based on reciprocity, not only the worker
shows the main that he is still available, but the main sends similar signals to the
worker. The worker thus receives the information that the task handed over by the
main is still relevant and should be continued.

6.4 Random worker failures

Strictly speaking, this feature is not a real feature, but rather a mock1 that helps to test
the existing architecture. The basic idea here is that the provided, actually external
workers are not provided externally, at least during the implementation period, but
are provided by own resources. In order to be able to simulate reality as best as
possible in this fairly closed - and thus reliable - environment, the workers should fail
randomly with different probabilities under software control and no longer respond to
the heartbeat.

7 Performance analysis
Our naive assessment of the possible performance of our algorithm on the problem size
lead to a lower bound in computation time of ≈21 hours, see chapter 3.2.3. However,
this assumed, that one iteration takes one clock cycle, which is probably far from
realistic for a sequential solution using python. However, the goal of this practical was
to parallelize the problem and as the problem is basically embarrassingly parallelizable
faster run times should be possible.

7.1 Tools and Configurations

As stated before, the local computer was used to measure runtimes for the sequential
approaches. The computer has a AMD Ryzen 5700g CPU, a M.2 SSD and 16 GB of
Memory. All runs on the server were done using amp*** nodes which are Cascade
Lake Intel Platinum 9242 machines[GWD]. They run with a clock speed of 2.3 GHz
and provide 384 GB of Memory for 2x48 compute cores[GWD]. The scratch file system
was used. Since a lot of data is produced by the algorithm, we decided not to store the
data, because we did not want to waste resources and felt, that the storage solutions we

1In object-oriented programming, mock objects are simulated objects that mimic the behavior of
real objects in controlled ways
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used were far from optimal for the data. The input arguments for the scrips must be
provided using the config.py file (number of PWMs, if files should be safed/pickled, etc.)
and the parallel_run.sbatch file for resource specification (number of nodes, workers,
memory, etc.).

7.2 Sequential Approach

This was the first prototype we produced. After some bug hunting and refactoring, we
managed to run the script on the local machine on the smallest chromosome (chromo-
some 21) with two PWMs given as example PWMs by the bioinformatics workgroup.
In our naivety, we hoped it would run for a few seconds, after all, this is a very small
problem size. It took 3.95 Minutes to finish and we were a bit disappointed. After
some more work, we benchmarked the sequential approach using one PWM and the
whole Genome. This took ≈ 8 hours as shown in table 1. Is this fast or slow?
The program did around 1.87 × 1010 iterations (length genome times length PWM).
98.7% of the runtime was spend in the calculation phase, where we find the two for
loops. The calculation phase took 28,340 s. This means, that the program ran at a
speed of 659,845 iterations per second. The CPU runs at a base clock speed of 3.8
GHz, but can boost the clock speed to 3.8 GHz. When using the base clock speed, the
CPU therefore needed 5,759 clock cycles on average per iteration. This seems very slow.

7.2.1 Sequential Approach using Numba

The version using Numba was much faster. However, we did not expect it to be that
much faster. Our feeling was, that we would maybe get a 10x speedup, afterall we
just added two lines of code. When it just took 8 minutes with the the calculation
part just taking 2 minutes, we were flabbergasted. This is a speedup of 238 for the
calculation part. Accordingly, the program ran at 157,142,857 iterations per second,
again assuming it did 1.87×1010 iterations. Henceforth, the CPU needed 24 clock cycles
on average to do one iteration. This sounds like a "to good to be true" performance
in our opinion, as this includes calls to memory and divisions. There is probably
some LLVM compiler magic happening and numba somehow managed to optimize the
algorithm, but due to the limited time frame of this project we did not investigate
further.
When running the same calculations on the server, which runs on 2.5 GHz and took
4:07 minutes, one gets 33 clock cycles per iteration. This validates the timing on the
consumer hardware, as the consumer CPU probably ran on a higher clock speed than
3.8GHz. A simple rule of three gives 5.2 GHz which is higher than the CPU can
provide. One explanation could be faster memory in the consumer PC or some sort of
overhead on the server. Furthermore, to get really solid data, one should always run
a benchmark like this multiple times which we did not do due to time reasons and a
possible waste of resources in general.
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7.3 Parallel Approach 1

The running times of the first approach are listed in Table 4. As this approach was
just the step to approach 2, we just did three runs. With three measurements, we
already see a speedup of ≈0.7 per worker. A good speedup behaviour was expected
because of the high portion of not parallelizable program parts. This solution should
in theory be embarassingly parallel when using many PWMs and a small granularity
for the genome chunks. However, the performance improvement with this solution is
limited by the main process, which will clog up with to many processes.

Since this approach was not about best performance, but about learning MPI, this
will not be discussed further here. The much more interesting - and thus also analyzed
in detail - approach is the second one, where the runtime is the focus of attention. This
approach will be discussed in the next chapter.

7.4 Parallel Approach 2

Table 6: Runtime and speedup with increasing number of workers, calculating the
KLD for the whole genome and 1 PWM.

Workers Time Time (s) Speedup Speedup/Worker
1 01:05:15 3915 1 1
8 00:10:15 615 6.36 0.79
10 00:09:00 540 5.91 0.59
16 00:08:24 504 7.76 0.48
21 00:06:59 419 9.34 0.44

Table 7: Runtime and speedup with increasing number of workers, calculating the
KLD for the whole genome and 4 PWMs.

Workers Time Time (s) Speedup Speedup/Workers
1 03:32:02 12722 1 1
9 00:38:03 2283 5.57 0.61
12 00:26:45 1605 7.92 0.66
16 00:28:31 1711 7.43 0.46
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Figure 7: Speedup graph with one PWM. The actual speedup stays under the optimal,
which is expected.

In tables 6 and 7 one can see the runtimes and speedups for one and four PWMs
respectively. These values are problematic out of multiple reasons. Firstly, for the
new approach to show its strength, one needs many PWMs, the more the better. Fur-
thermore, each value has to be handled with care as it is not how strongly the values
fluctuate. The first time we ran the four PWMs with one worker, it took 6:40:13 hours,
the second time using the exact same parameters, it took 3:32:02 hours. The first value
was clearly of, as we got better than optimal speedups and that is not possible. Nev-
ertheless, more runs are required to get robust data.
One can see, that the speedup per worker is decreasing in both cases with increasing
number of workers. This is probably because the calculations are not perfectly paral-
lelizable given our course granularity of the genome sequence chunks. In the end, some
workers are still calculating on the larger chromosomes, while others are idleing. This
behaviour can of course also be observed in the speedup diagrams.
When looking at the times, one wonders why the parallel approach using just one pro-
cess takes so long compared with the sequential approach (1 hour vs 14 minutes). We
do not know the exact source of this difference, as we did not manage to get a profiler
running on the server in the given timeframe. However, one possible reason is, that the
worker process pickles every chromosome respecting our specification, see Figure 6.
As expected, in Figure 9 we can see, that the calculation with 4 PWMs is more efficient
than the calculations with one PWM.
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Figure 8: Speedup graph with four PWMs. As with the single PWM pass, the speedup
remains below the linear optimal speedup, and the curve flattens out as more workers
are involved in the operation.
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Figure 9: Combined Speedup graph with one and four PWMs.

8 Conclusion
At the end of such a report, it is important to look back on the work that has been done,
to look at what has been achieved and learned, and to draw a conclusion. This is exactly
what this final chapter of the report on the Practical Project in High Performance
Computing is about.

8.1 Summary of the project

This report describes the implementation of several approaches to perform a simple
but complex mathematical computation on a human genome. This involved first laying
some groundwork - biological, mathematical, and informational. Then, the problem at
hand was analyzed in detail and solution strategies were developed - first in a technically
ideal world, then in the real one with all the given technical limitations. Prior to
implementation, expectations regarding performance could be formulated based on
these.

A total of 3 solutions were implemented and examined in more detail, one sequential
and two parallel approaches. These were each tested under different circumstances and
the results analyzed in more detail. Subsequently, the insights gained were compared
with the hypotheses so that an overall evaluation was possible.
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In the end, a model solution for the problem at hand could be handed over to the
project’s commissioners, a working group of the bioinformatics faculty. On the way
there, however, different challenges had to be overcome, which will be discussed in
more detail in the following section.

8.2 Project review

A few goals were defined in chapter 3.2.4.

Firstly, the top priority goal was to create a high-performance solution for calcu-
lating the Kullback-Leibler divergence. This goal was achieved, the processing time
could be reduced significantly. The goal to achieve this in less than one hour was not
reached, but this does not diminish the overall success.

The second goal was to develop the solution in such a way that a main process
manages many subprocesses and provides various functionalities for this purpose. This
goal was achieved to a limited extent; although it was possible to develop such an
infrastructure on the whole, significantly fewer management options were implemented
than originally planned. For detailed information about the reasons behind that, see
chapter 6.

The third and most important goal is beyond software functionalities - as a project
in an educational institution, learning success comes first. The knowledge gain was
extremely high, in the technical area (such as the use of MPI, numba or design pat-
terns), but also in how such projects are approached in general. Moreover, the solution
was handed over to the bioinformatics work group, who are extremely satisfied with
the result and can use it as a basis for future projects. We will stay in touch with
the working group. The knowledge that this project did not fulfill a pure end in itself
compensates for the possibly unfavorable choice of project. A completely self-selected
topic without external influences could possibly have led to better overall results with
regard to the performance analysis.

It should be noted, that the biggest challenges in this project were the smallest de-
tails. Particularly during implementation, there were always small-seeming obstacles
and bugs, which, however, extremely prolonged the overall processing time - In many
cases, it was necessary to shimmy from one error message to the next during debugging,
which required an enormous amount of nerve. Pair programming, i.e. working together
on one computer, provided a remedy. This eased the debugging and could contribute
to a higher code quality, however, the work could hardly be parallelized - so that the
testing and benchmarking at the end of the implementation time unfortunately did not
get as much attention as originally planned.

It is still difficult to say whether more parallel work would have led to qualitatively
and quantitatively better results - because, besides the code that could be handed over
to the bioinformatics work group in good quality, there is also the certainty that a lot
was learned. This aspect will be discussed in more detail in the following subchapter.
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8.3 Learning achievements and possible improvements

The skills learned in this project can be roughly divided into two categories: Project
management and programming, i.e. on the one hand the organizational part of the
project, and on the other hand the technical part.

8.3.1 Project management

Implementing a solution to a fairly simple problem like this one can be much more
involved than one might expect at the outset - this project has made that clear. The
requirement to implement such a computation in such a way that a result with good
performance is achieved, while at the same time having a code base that can be used as
illustrative material for a faculty allows for a lot of leeway as far as the implementation
is concerned. At this point, better planning would have been necessary at the begin-
ning to save a lot of unnecessary work for the overall result, the chapter on removed
features shows the urgency for improvement here. The approach of implementing as
much as possible together was a success in retrospect - the pair programming itself can
be improved in the future, however, this was expected as it ran without any major plan
or preparation. Techniques such as mob programming, where developers take turns at
fixed times and dictate who is not at the keyboard, can contribute to increased effec-
tiveness in the future - and thus automatically to better time management. Basically,
the realization remains that even for apparently smaller projects, significantly more
time must be planned - or it must be better used.

8.3.2 Programming

In terms of the technical learning curve, the project was a complete success. On the
one hand, the topic itself required new skills for both of us, such as the general mindset
behind parallel programming, but also direct skills such as programming with numba
and MPI. In addition, we were able to use the project to learn a lot from each other
- With very different backgrounds (a Python-centric, academic background for Tim
van den Berg on the one hand, and an industrial developer background for Vincenz
Dumann), so much knowledge was transferred. For example, the effective use of design
patterns, or the exploitation of Python’s strengths (and of course the avoidance of its
weaknesses). Especially the performance increase through the use of numba will remain
in memory.
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A Work sharing
Most of the implementation was done in pair programming, some smaller parts were
splitted.

A.1 Tim van den Berg

In addition to the pair programming, Tim van den Berg was mainly doing the biological
parts and the DevOps: He acquired the topic and was in charge of making the project
run on the server.

In addition, Tim brought a lot of python knowledge to the project and can be seen
as main developer.

A.2 Vincenz Dumann

In addition to the pair programming, Vincenz Dumann was mainly responsible for the
presentation and the writing of the report. Regarding the technical part, he mainly
brought the knowledge about design strategies into the team and was in charge of
refactoring and overhauling the code.

B Source Code
The complete source code can be found on the Community Edition GitLab instance:
https://gitlab-ce.gwdg.de/tim.vandenberg/practical_hpc
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