

Christian Boehme

Quantum Computing (for the curious)

Practical Course High-Performance Computing

What is Quantum Computing?	Small Quantum Circuits with Qiskit	Deutsch's algorithm	Implementing Deutsch's algorithm	Outlook and further resources
00000000	000	000	00	000

Table of contents

- **1** What is Quantum Computing?
- 2 Small Quantum Circuits with Qiskit
- 3 Deutsch's algorithm
- 4 Implementing Deutsch's algorithm
- 5 Outlook and further resources

What is Quantum Computing?	Small Quantum Circuits with Qiskit	Deutsch's algorithm	Implementing Deutsch's algorithm	Outlook and further resources
00000000	000	000	00	000

Learning goals

- Formulate small Quantum algorithms as Quantum circuits
- Implement small Quantum circuits with Qiskit
- Understand and implement Deutsch's algorithm

what is Quantum Computing: Small Qual	Incum Circuits with QISKIC De	eutsch's algorithin i	Implementing Deutsch's algorithm	Outlook and further resources
00000000 000	00	00	00	000

- The smallest unit of information in QC is the Qubit
- Qubits are represented as two-dimensional vectors \vec{q}
- Two states of the Qubit form its **Computational Basis**: $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Computations with these states are similar to classic computing

Gates: Operations on Qubits

- Operations on Qubits are called gates (cf. logic gates in classical computing)
- Gates are linear transformations of the state vector of a Qubit, i.e. matrices

$$\blacksquare \hspace{0.1cm} X \hspace{0.1cm} | \hspace{0.06cm} 0 \rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \times 1 + 1 \times 0 \\ 1 \times 1 + 0 \times 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = | \hspace{0.06cm} 1 \rangle$$

Brief exercise: Check that $X |1\rangle = |0\rangle$

Quantum Circuits and Measurement

Quantum Circuits are one way to represent quantum computations

- Qubits are measured in the computational basis
- **The result is either** $|0\rangle$ or $|1\rangle$ and is stored in a classical bit

Superposition and the Hadamard gate

Say "hello" to the **Hadamard** or **H** gate:

$$\blacksquare H |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

Brief exercise: Check that
$$H \ket{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \ket{0} - \frac{1}{\sqrt{2}} \ket{1}$$

After the H gate the Qubit's state is a linear combination of basis states

This is called superposition

The H gate is it's own inverse, applying it to $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ yields $|0\rangle$

Applying H to
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 yields $|1\rangle$

(Check, if you like!)

Superposition measurement

Let's measure our superposition:

In a superposition $a\ket{0}+b\ket{1}$, $a,b\in\mathbb{C}$

- the probability to measure Qubit state $|0\rangle$ equals a^2
- \blacktriangleright the probability to measure Qubit state |1
 angle equals b^2
- This also means $|a|^2 + |b|^2 = 1$

(This is Schrödinger's cat: We are officially Quantum now!)

Multiple Qubit states

Qubit states are combined by tensor product, i.e. for two Qubits:

$$\begin{aligned} |a\rangle \otimes |b\rangle &= \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \otimes \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{pmatrix} \\ &= a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle \\ &= \text{Measuring 2 Qubits results in probabilities} \\ |a_0 b_0|^2 + |a_0 b_1|^2 + |a_1 b_0|^2 + |a_1 b_1|^2 = 1 \end{aligned}$$
$$\begin{aligned} &= \text{For example: } |0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle \end{aligned}$$

Can be extended to n Qubits: |q₁⟩ ⊗ |q₂⟩ ⊗ ... ⊗ |q_n⟩
 Grows exponentially, only 30+ Qubits can be simulated classically

Christian Boehme

The CNOT gate

The **CNOT** or **XOR** gate is a 2 Qubit gate:

$$q_0: - q_1: -$$

• (Note Qiskit's Qubit order: $|q_1q_0\rangle$)

Or, as a matrix:

$$egin{pmatrix} a_1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix} egin{pmatrix} a_{00} \ a_{01} \ a_{10} \ a_{10} \ a_{11} \end{pmatrix} = egin{pmatrix} a_{00} \ a_{11} \ a_{10} \ a_{01} \end{pmatrix}$$

2 Qubit gates have two outputs, as Quantum gates need to be reversible

What is Quantum Computing?	Small Quantum Circuits with Qiskit	Deutsch's algorithm	Implementing Deutsch's algorithm	Outlook and further resources
00000000	000	000	00	000

Entanglement

Consider the following circuit:

- Each Qubit is equally likely to be measured as |0
 angle and as |1
 angle
- However, both Qubits will always be in the **same** state after measurement

This is called entanglement

- Einstein's spooky action at a distance: More Quantum weirdness!
- What happens: $CNOT(I \otimes H) |00\rangle = CNOT[\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)] = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

What is Quantum Computing?	Small Quantum Circuits with Qiskit	Deutsch's algorithm	Implementing Deutsch's algorithm	Outlook and further resources
00000000	•00	000	00	000

Exercise 1

- Install qiskit with ". qiskit.sh"
- Run exbase.py
 - Is the probability distribution as you expected?
 - \blacktriangleright Can you write the corresponding superposition in terms of basis states $|00\rangle$, ...
- \blacksquare Entangle the two Qubits, but put the control Qubit in $|1\rangle$ state before applying the H gate
 - ► I.e., implement:

Think about the result: Is it what you expected? Why or why not?

Optional exercise 1.a

There exists an entangled state where 2 Qubits are always in different states after measurement:

- Implement the Quantum circuit producing that state
- Hint: You need one additional gate

Optional exercise 1.b

Consider this maximally entangled state of 4 Qubits:

- Implement the Quantum circuit producing that state
- For this you need to extend the Quantum circuit to 4 Qubits: circuit = QuantumCircuit(4)
- Hint 1: Start with entangling 2 Qubits
- Hint 2: The first three Qubits are now in state $\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|011\rangle$
- Hint 3: Switch $|011\rangle$ to $|111\rangle$ but **not** $|000\rangle$ to $|100\rangle$. What gate does this?

Deutsch's problem

- Consider an unknown function of a one bit input x
- The output f(x) could either be **constant** 0 or 1 or depend on x (**balanced**)
- Two tests required classically to determine balanced vs. constant
- Quantum circuit for the problem:

Remember: Quantum gates must be reversible

Quantum solution part 1: Phase kickback

- Our U(f) gate transforms $|x\rangle |y\rangle$ to $|x\rangle |y \oplus f(x)\rangle$ (\oplus : plus, then modulo 2)
- Let's "cheat": Instead of using $|0\rangle$ for $|y\rangle$ we use $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- Then, if we apply our gate U(f): $U(f) |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ $= |x\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |1 \oplus f(x)\rangle)$ $= (-1)^{f(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

Now we have encoded information in the sign (or **phase**) of the input Qubit!

This is called **phase kickback** and is used in many Quantum algorithms

Quantum solution part 2: Input superposition

- We will now use the function information encoded in the phase
- We initialize $|x\rangle$ as superposition of both possible values: $|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- We can ignore the output Qubit and get, after applying U(f): $(-1)^{f(x)} |x\rangle = \frac{1}{\sqrt{2}} ((-1)^{f(|0\rangle)} |0\rangle + (-1)^{f(|1\rangle)} |1\rangle)$
- That means constant functions result in $|q_0
 angle = \pm \frac{1}{\sqrt{2}}(|0
 angle + |1
 angle)$
- **B**alanced functions result in $|q_0
 angle=\pmrac{1}{\sqrt{2}}(|0
 angle-|1
 angle)$
- (Note that multiplying a Qubit state globally by -1 does not change it)
- \blacksquare Use the H gate and measure to get $|0\rangle$ for constant and $|1\rangle$ for balanced
- We have solved Deutsch's problem in one try!
- Deutsch-Josza extends this to input length n: One try vs. worst case $2^{n-1} + 1$

Exercise: Implementing Deutsch's algorithm

Deutsch's algorithm:

- Prepare the input (0) Qubit in $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state
- Prepare the output (1) Qubit in $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ state
- Apply the oracle
- Apply the Hadamard gate to Qubit 0 and 1 each
- Measure: If $|10\rangle$, the function is constant, else it is balanced
- Please implement this in debase.py
- Implement pre- and postprocessing as described
- Implement at least one constant and one balanced oracle
- \blacksquare Constant oracles are constant $|0\rangle$ and constant $|1\rangle$
- Balanced oracles are identity and negate

Optional exercise: Extend Deutsch to Deutsch-Josza

- We will not cover the math here (but it's very similar to Deutsch)
- Tasks:
 - Use 3 instead of 1 input Qubits (4 Qubits in total)
 - Prepare the input and output Qubit states as before
 - > You can reuse your constant oracle
 - Implement at least one balanced oracle
 - \blacktriangleright This should output $|0\rangle$ for half of the possible inputs, $|1\rangle$ for the other half
 - > Extension (harder): Can you implement a random set of balanced oracles?
 - Implement postprocessing and measuring as before
 - > You should measure $|1000\rangle$ for constant (and something else for balanced)

State of Quantum Computing

- Noisy, intermediate-size Quantum era (NISQ)
- Quantum Computers with dozens (in development: hundreds) of Qubits
- High error rate (noise) due to external influences and imperfect control
- Full error tolerance in NISQ era unachievable due to overhead
- Quantum advantage in real world applications requires thousands or millions of Qubits
- Great time to do basic research if interested in algorithms and/or Quantum mechanics
- Promising fields are Quantum Chemistry, Combinatorial Optimization, Machine Learning

Further reading

- Recap linear algebra: Essence of linear algebra on YouTube
- Deutsch's algorithm explained using a state machine: Quantum Computing for Computer Scientists on YouTube
- Introduction for self study:

Quantum computing for the very curious

- Everything on Qiskit, lots of tutorials: https://qiskit.org/
- Good textbooks:
 - Quantum Computing: An Applied Approach by Jack D. Hidary
 - Quantum Computing verstehen von Matthias Homeister
- Brief overview of the field (link to arxiv.org):

Quantum Computing in the NISQ era and beyond, John Preskill

What is Quantum Computing?	Small Quantum Circuits with Qiskit	Deutsch's algorithm	Implementing Deutsch's algorithm	Outlook and further resources
00000000	000	000	00	000

Questions?

Credit: IBM