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Parallelization in Python
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  Python offers two ways of parallelization:

–   Multi-Threading:

Sub-tasks on several CPUs share the same memory 

 Requires proper memory synchronisation

– Multi-Processing:

Each process has own memory, processes run completely independent from  
each other

More stable, but additional overhead in in memory consumption



Multi-Threading
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 Included modules in Python:

– thread (deprecated, not supported any more in Python3)

– threading

 The threading module:

– Provides the following functions:

●

●

●

threading.activeCount() − Returns the number of thread objects that 
are  active.

threading.currentThread() − Returns information of the thread from 
where  it is called.

threading.enumerate() − Returns a list of all thread objects that are 
currently  active.

args=(var1, var2,))

  Threads can be initialized and started with

thread = threading.Thread(target=f,  

thread.start()
(executes function f(var1,var2) in a thread)



Simple example

  Example ThreadTest_0.py:
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The Thread Class
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 Everything that you want to execute in a parallel thread can also be written in a
Thread class:

 Methods of the class:

–

–

–

–

–

–

– __init__ (self [,args]) − Initialization

run() − The method contains the code to be ran in parallel.

start() − The method starts a thread by calling the run method.

join(timeout=None) − Waits for threads to terminate.

isAlive() − The method checks whether a thread is still executing.

getName() − The method returns the name of a thread.

setName() − The method sets the name of a thread.

  To use threading, you have to write your own sub-class of the Thread class:

–

– Define new sub-class

Override the __init__() and run() methods



Multi-Threading Example

...

  Example ThreadTest_1.py:
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Multi-Threading Example

...
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Multi-Threading Example
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  Output:  

Starting 

Starting 

 Exiting

Thread-1  

Thread-2  

Main Thread

Thread-1: Wed May 8 16:37:06 2019
Thread-1: Wed May 8 16:37:07 2019

Thread-2: Wed May 8 16:37:07 2019

Thread-1: Wed May 8 16:37:08 2019

Thread-1: Wed May 8 16:37:09 2019

Thread-2: Wed May 8 16:37:09 2019

Thread-1: Wed May 8 16:37:10 2019

Exiting Thread-1

Thread-2: Wed May 8 16:37:11 2019

Thread-2: Wed May 8 16:37:13 2019

Thread-2: Wed May 8 16:37:15 2019

Exiting Thread-2



Monitoring Threads

  Add the following lines to your code after you started the threads:

  Output:

<_MainThread(MainThread, started 139672845326144)>
<myThread(Thread-1, started 139672823293696)>

<myThread(Thread-2, started 139672814900992)>

  There will always be a MainThread
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Synchronizing Threads

25.05.2021 10

 Synchronization needed for threads that depend on each other

→ Requires communication between threads

 Easiest way for communication: the threading.Event() object:  

Provided functions:

–

–

– set() and clear(): set an internal flag to true or false

isSet(): checks if the event has been set by the set() method

wait(): blocks further processing until another thread calls the set() 
 method; can be used with wait(t) to time-out after t second



Synchronizing: Example

  Example ThreadTest_2.py:
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Synchronizing: Example
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blocking  waiting process

  Output:  

Start 

Start 

event 

doing 

event 

doing 

event 

doing 

event 

doing 

event

set:  

other 

 set: 

other 

 set: 

other 

 set: 

other 

 set:

False  

things 

 False 

things 

 False 

things 

 False 

things 

 False

End blocking

True 

 

event

event set: 

processing 

 Exiting



Synchronizing: Locking
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 Locking is alternative method to synchronize threads

 The threading.Lock() object:

– acquire(): change the state to locked

– release(): unlock the state

 If one thread calls acquire() for a lock object, all other threads calling
acquire() have to wait until the first thread calls release().



Locking: Example

  Modify previous example (see ThreadTest_3.py):

–Add definition of Lock object to main part of the program:

– Modify run() function of first example:
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Locking: Example
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  Output:

Starting 

Starting

Thread-1  

Thread-2

Thread-1: Fri May 10 17:18:50 2019
Thread-1: Fri May 10 17:18:51 2019

Thread-1: Fri May 10 17:18:52 2019

Thread-2: Fri May 10 17:18:54 2019

Thread-2: Fri May 10 17:18:56 2019

Thread-2: Fri May 10 17:18:58 2019

→ Thread 2 has to wait for thread 1 to finish



Multi-Processing

 Multi-core processing configuration is very similar to threading

 The multiprocessing class:

– Similar methods as the threading class, but:

●

●

Thread → Process

threading → multiprocessing

– Example (MPTest_0.py):
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Difference to Threading

 In multi-threading, each thread accesses the same memory
 In multi-processing, memory is completely separated

 Example (MPTest_1.py):

Now run myfunction() in multiprocessing and threading 
mode
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Difference to Threading

  Output:

Multi-processing 

Multi-threading
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result: [9, 2]

result: []



Multiprocessing Pool
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  Multi-processing can be done by creating a Pool:

– How to create a pool:

Import multiprocessing as mp

#create 

 pool=

a pool with all available CPUs  

mp.Pool(mp.cpu_count())

– The Pool class provides the following functions:

●

●

●

●

apply  

map  

starmap

close(): stops the pool cluster

apply and map are similar to the default functions apply and map, 
but  arguments are executed in parallel on the pool.



Pool: Example 1

  Calling apply executes a single function on the pool, see MPTest_2.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...
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Pool: Example 2

  map takes one iterable as argument and executes processes for each iterable  

object, see MPTest_3.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...
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Pool: Example 3

  starmap (available only since Python 3.3) also takes one iterable as argument,  

but each iterable object can be iterable again, see MPTest_4.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...
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Asynchronous Execution
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 Asynchronous execution is often faster then the default synchronized way
 Output of individual jobs is not ordered
 Need specific functions to retrieve the unordered output
 In python:

–

–

–

– Pool.apply_async 

 Pool.map_async

Methods provide just list of output objects, not the output of the parallel  
calculation

Output can be collected via:

 - Call the pool.ApplyResult.get()
 - Define callback routine as argument of apply_async or 
map_async that is called after all jobs finished



Asynchronous: Example 1

  Example with get(), see MPTest_5.py:
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Asynchronous: Example 2

  Example with callback function, see 

MPTest_6.py:
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