
Parallelisation with Python
Practical Course on Parallel Computing

Hendrik Nolte

Parallelization in Python

25.05.2021 2

 Python offers two ways of parallelization:

– Multi-Threading:

Sub-tasks on several CPUs share the same memory

 Requires proper memory synchronisation

– Multi-Processing:

Each process has own memory, processes run completely independent from
each other

More stable, but additional overhead in in memory consumption

Multi-Threading

25.05.2021 3

 Included modules in Python:

– thread (deprecated, not supported any more in Python3)

– threading

 The threading module:

– Provides the following functions:

●

●

●

threading.activeCount() − Returns the number of thread objects that
are active.

threading.currentThread() − Returns information of the thread from
where it is called.

threading.enumerate() − Returns a list of all thread objects that are
currently active.

args=(var1, var2,))

 Threads can be initialized and started with

thread = threading.Thread(target=f,

thread.start()
(executes function f(var1,var2) in a thread)

Simple example

 Example ThreadTest_0.py:

25.05.2021 4

The Thread Class

25.05.2021 5

 Everything that you want to execute in a parallel thread can also be written in a
Thread class:

 Methods of the class:

–

–

–

–

–

–

– __init__ (self [,args]) − Initialization

run() − The method contains the code to be ran in parallel.

start() − The method starts a thread by calling the run method.

join(timeout=None) − Waits for threads to terminate.

isAlive() − The method checks whether a thread is still executing.

getName() − The method returns the name of a thread.

setName() − The method sets the name of a thread.

 To use threading, you have to write your own sub-class of the Thread class:

–

– Define new sub-class

Override the __init__() and run() methods

Multi-Threading Example

...

 Example ThreadTest_1.py:

25.05.2021 6

Multi-Threading Example

...

25.05.2021 7

Multi-Threading Example

25.05.2021 8

 Output:

Starting

Starting

 Exiting

Thread-1

Thread-2

Main Thread

Thread-1: Wed May 8 16:37:06 2019
Thread-1: Wed May 8 16:37:07 2019

Thread-2: Wed May 8 16:37:07 2019

Thread-1: Wed May 8 16:37:08 2019

Thread-1: Wed May 8 16:37:09 2019

Thread-2: Wed May 8 16:37:09 2019

Thread-1: Wed May 8 16:37:10 2019

Exiting Thread-1

Thread-2: Wed May 8 16:37:11 2019

Thread-2: Wed May 8 16:37:13 2019

Thread-2: Wed May 8 16:37:15 2019

Exiting Thread-2

Monitoring Threads

 Add the following lines to your code after you started the threads:

 Output:

<_MainThread(MainThread, started 139672845326144)>
<myThread(Thread-1, started 139672823293696)>

<myThread(Thread-2, started 139672814900992)>

 There will always be a MainThread

25.05.2021 9

Synchronizing Threads

25.05.2021 10

 Synchronization needed for threads that depend on each other

→ Requires communication between threads

 Easiest way for communication: the threading.Event() object:

Provided functions:

–

–

– set() and clear(): set an internal flag to true or false

isSet(): checks if the event has been set by the set() method

wait(): blocks further processing until another thread calls the set()
 method; can be used with wait(t) to time-out after t second

Synchronizing: Example

 Example ThreadTest_2.py:

25.05.2021 11

Synchronizing: Example

25.05.2021 12

blocking waiting process

 Output:

Start

Start

event

doing

event

doing

event

doing

event

doing

event

set:

other

 set:

other

 set:

other

 set:

other

 set:

False

things

 False

things

 False

things

 False

things

 False

End blocking

True

event

event set:

processing

 Exiting

Synchronizing: Locking

25.05.2021 13

 Locking is alternative method to synchronize threads

 The threading.Lock() object:

– acquire(): change the state to locked

– release(): unlock the state

 If one thread calls acquire() for a lock object, all other threads calling
acquire() have to wait until the first thread calls release().

Locking: Example

 Modify previous example (see ThreadTest_3.py):

–Add definition of Lock object to main part of the program:

– Modify run() function of first example:

25.05.2021 14

Locking: Example

25.05.2021 15

 Output:

Starting

Starting

Thread-1

Thread-2

Thread-1: Fri May 10 17:18:50 2019
Thread-1: Fri May 10 17:18:51 2019

Thread-1: Fri May 10 17:18:52 2019

Thread-2: Fri May 10 17:18:54 2019

Thread-2: Fri May 10 17:18:56 2019

Thread-2: Fri May 10 17:18:58 2019

→ Thread 2 has to wait for thread 1 to finish

Multi-Processing

 Multi-core processing configuration is very similar to threading

 The multiprocessing class:

– Similar methods as the threading class, but:

●

●

Thread → Process

threading → multiprocessing

– Example (MPTest_0.py):

25.05.2021 16

Difference to Threading

 In multi-threading, each thread accesses the same memory
 In multi-processing, memory is completely separated

 Example (MPTest_1.py):

Now run myfunction() in multiprocessing and threading
mode

25.05.2021 17

Difference to Threading

 Output:

Multi-processing

Multi-threading

25.05.2021 18

result: [9, 2]

result: []

Multiprocessing Pool

25.05.2021 19

 Multi-processing can be done by creating a Pool:

– How to create a pool:

Import multiprocessing as mp

#create

 pool=

a pool with all available CPUs

mp.Pool(mp.cpu_count())

– The Pool class provides the following functions:

●

●

●

●

apply

map

starmap

close(): stops the pool cluster

apply and map are similar to the default functions apply and map,
but arguments are executed in parallel on the pool.

Pool: Example 1

 Calling apply executes a single function on the pool, see MPTest_2.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 20

Pool: Example 2

 map takes one iterable as argument and executes processes for each iterable

object, see MPTest_3.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 21

Pool: Example 3

 starmap (available only since Python 3.3) also takes one iterable as argument,

but each iterable object can be iterable again, see MPTest_4.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 22

Asynchronous Execution

25.05.2021 23

 Asynchronous execution is often faster then the default synchronized way
 Output of individual jobs is not ordered
 Need specific functions to retrieve the unordered output
 In python:

–

–

–

– Pool.apply_async

 Pool.map_async

Methods provide just list of output objects, not the output of the parallel
calculation

Output can be collected via:

 - Call the pool.ApplyResult.get()
 - Define callback routine as argument of apply_async or
map_async that is called after all jobs finished

Asynchronous: Example 1

 Example with get(), see MPTest_5.py:

25.05.2021 24

Asynchronous: Example 2

 Example with callback function, see

MPTest_6.py:

25.05.2021 25

	THOMAS PEIFFER
	Parallelization in Python
	Multi-Threading
	Slide 4
	The Thread Class
	Multi-Threading Example
	Slide 7
	Multi-Threading Example
	Monitoring Threads
	Synchronizing Threads
	Slide 11
	Synchronizing: Example
	Synchronizing: Locking
	Locking: Example
	Locking: Example
	Multi-Processing
	Difference to Threading
	Difference to Threading
	Multiprocessing Pool
	Pool: Example 1
	Pool: Example 2
	Pool: Example 3
	Asynchronous Execution
	Slide 24
	Slide 25

