GEORG-AUGUST-UNIVERSITAT
=7 GOTTINGEN

Hendrik Nolte

Parallelisation with Python

Practical Course on Parallel Computing

G comiarmee Parallelization in Python

Python offers two ways of parallelization:

- Multi-Threading:
Sub-tasks on several CPUs share the same memory

Requires proper memory synchronisation

— Multi-Processing:

Each process has own memory, processes run completely independent from
each other

More stable, but additional overhead in in memory consumption

@ gé(iilGr\]élEJSUST—UNIVERSITAT M U Iti-Th rea d i ng

Included modules in Python:

- thread (deprecated, not supported any more in Python3)
— threading
The threading module:

— Provides the following functions:

°* threading.activeCount () - Returnsthe number of thread objects that
are active.
* threading.currentThread () - Returnsinformation of the thread from

where itis called.

* threading.enumerate () - Returns a list of all thread objects that are
currently active.

Threads can be initialized and started with

thread = threading.Thread(target=f, args=(varl, varZz,))

thread.start ()
(executes function f(vari,var2) in a thread)

@ g(ﬁj?ilG[\]él;SUST—UNIVERSITAT Si m p I e exa m p | e

Example ThreadTest_0.py:

#!/usr/bin/python
import threading

def myfunction(a,b):
print a*b

Create new threads
threadl = threading.Thread(target=myfunction, args=(2,3))
thread2 = threading.Thread(target=myfunction, args=(4,6))

Start the threads
threadl.start()
thread2.start()

@ et The Thread Class

Everything that you want to execute in a parallel thread can also be written in a
Thread class:

Methods of the class:

__init__ (self [,args]) - Initialization

run () - The method contains the code to be ran in parallel.

start () - The method starts a thread by calling the run method.
join (timeout=None) - Waitsfor threads to terminate.
isAlive () - The method checks whether a thread is still executing.
getName () - The method returns the name of a thread.

setName () - The method sets the name of a thread.

To use threading, you have to write your own sub-class of the Thread dass

Define new sub-class

~ QOverridethe init () and run () methods

(g commcremee Multi-Threading Example

Example ThreadTest_1.py:
#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):

def init (self, threadID, name, counter):
threading.Thread. 1init (self)
self.threadID = threadID
self.name = name
self.counter = counter

def run(self):
print "Starting + self.name
print time(self.name, 5, self.counter)
print "Exiting " + self.name

(g commcremee Multi-Threading Example

def print time(threadName, counter, delay):
while counter:
time.sleep(delay)

print "%s: %s" % (threadName, time.ctime(time.time()))
counter -=1

Create new threads
threadl = myThread(l, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
threadl.start()
thread2.start()

print "Exiting Main Thread"

(g commcremee Multi-Threading Example

Output:

Starting Thread-1
Starting Thread-2
Exiting Main Thread

Thread-1: Wed May 8 16:37:06 2019
Thread-1: Wed May 8 16:37:07 2019
Thread-2: Wed May 8 16:37:07 2019
Thread-1: Wed May 8 16:37:08 2019
Thread-1: Wed May 8 16:37:09 2019
Thread-2: Wed May 8 16:37:09 2019
Thread-1: Wed May 8 16:37:10 2019
Exiting Thread-1

Thread-2: Wed May 8 16:37:11 2019

Thread—-2: Wed May 8 16:37:13 2019
Thread—-2: Wed May 8 16:37:15 2019

Exiting Thread-2

(g commcremee Monitoring Threads

Add the following lines to your code after you started the threads:

for t in threading.enumerate():
print t

Output:

< MainThread (MainThread, started 139672845326144) >
<myThread (Thread-1, started 139672823293696) >

<myThread (Thread—-2, started 139672814900992) >

There will always be a MainThread

(g commcremee Synchronizing Threads

Synchronization needed for threads that depend on each other
— Requires communication between threads

Easiest way for communication: the threading.Event () obect

Provided functions:

- set () andclear ():setaninternal flag to true or false
~ 1sSet ():checks if the event has been set by the set () method

~ wait (): blocks further processing until another thread calls the set()
method; can be used with wait (t) totime-out aftert second

@ et Synchronizing: Example

if(self.threadID==2):

Example ThreadTest_2.py: s g S - ——

I . while not self.e.isSet():
F1/UST/ RN/ pytnen event is set = self.e.wait(2)
_ _ print "event set: ", event is set
import threading if event is set:
import time print "processing event"
else:
class myThread (threading.Thread): print "doing other things”

def init (self, threadID, name, e):
threading.Thread. 1init (self)
self.threadID = threadID

e = threading.Event()

Create new threads

self.name = name threadl = myThread(1l, "blocking", e)
self.e = e thread2 = myThread(2, "non-blocking", e)
def run(self): # Start new Threads

threadl.start()

thread2.start
if(self.threadID==1): Fead2starty)

print "Start blocking” #Wait for threads to finish
time.sleep(10) threadl.join()
self.e.set() thread2.join()

print "End blocking"

print "Exiting"

g’737\::'

GEORG-AUGUST-UNIVERSITAT

GOTTINGEN

Output:

Start
Start
event
doing
event
doing
event
doing
event
doing

event

End blocking

event

blocking

set:
other
set:
other
set:
other
set:
other

set:

set:

processing

Exiting

False
things
False
things
False
things
False
things

F'alse

True

event

Synchronizing: Example

walting process

Gz o Synchronizing: Locking

Locking is alternative method to synchronize threads

The threading.Lock () object:

— acquire ():change the state to locked

— release ():unlock the state

If one thread calls acquire () for alock object, all other threads calling
acquire () have to wait until the first thread calls release ().

@ gé(iilGr\]élEJSUST—UNIVERSITAT LOCki N g: Exa m p I e

Modify previous example (see ThreadTest_3.py):

-Add definition of Lock object to main part of the program:

myLock = threading.Lock()

— Modify run () function of first example:

def run(self):
print "Starting " + self.name
Get lock to synchronize threads
myLock.acquire()
print time(self.name, self.counter, 3)
Free lock to release next thread
myLock.release()

@ gé(iilGr\]élEJSUST—UNIVERSITAT LOCki N g: Exa m p I e

Output:

Starting Thread-1
Starting Thread-2

Thread-1: Fri May 10 17:18:50 2019
Thread—-1: Fri May 10 17:18:51 2019

Thread—-1: Fri May 10 17:18:52 2019
Thread—-2: Fri May 10 17:18:54 2019
Thread—-2: Fri May 10 17:18:56 2019

Thread-2: Fri May 10 17:18:58 2019

— Thread 2 has to wait for thread 1 to finish

@ gé(iilGr\]élEjl\GJUST—UNIVERSITAT M U I‘ti- P rocessi N g

Multi-core processing configuration is very similar to threading

Themultiprocessing class:

- Similar methods as the threading class, but:
* Thread - Process
* threading - multiprocessing
- Example (MPTest_0.py):
#!'/usr/bin/python

import multiprocessing

def myfunction(a,b):
print a*b

Create new processs
processl = multiprocessing.Process(target=myfunction, args=(2,3))
processZ2 = multiprocessing.Process(target=myfunction, args=(4,6))

Start the processs
processl.start()
process2.start()

@ et Difference to Threading

In multi-threading, each thread accesses the same memory
In multi-processing, memory is completely separated

Example (MPTest_1.py):

#!/usr/bin/python
import multiprocessing
import threading
import random

result =[]

def myfunction():
result.append(random.randint(1,10))

Now runmyfunction () in multiprocessing and threading
mode

GEORG-AUGUST-UNIVERSITAT
=7 GOTTINGEN

Create new processes

Difference to Threading

processl = multiprocessing.Process(target=myfunction)
process?2 = multiprocessing.Process(target=myfunction)

Start the processes
processl.start()
process2.start()

#Wait for processes to finishlj
processl.join()
process2.join()

print "Multi-processing result: , result

result=[]

Create new threads
threadl = threading.Thread(target=myfunction)
thread2 = threading.Thread(target=myfunction)

Start the threads
threadl.start()
thread2.start ()

#Wait for threads to finish
threadl.join()
thread2.join()

print "Multi-threading result: , result

Output:
Multi-processing result:

Multi-threading yreguit: [9,

[]
2]

@ et Multiprocessing Pool

Multi-processing can be done by creating a Pool :

- How to create a pool:

Import multiprocessing as mp

#create apool with all available CPUs
pool= mp.Pool (mp.cpu_count ())
— The Pool class provides the following functions:
* apply
* map
* starmap

* close (): stops the pool cluster

apply andmap are similar to the default functions apply and map,
but arguments are executed in parallel on the pool.

g’737\::'

GEORG-AUGUST-UNIVERSITAT
GOTTINGEN

Pool: Example 1

Calling apply executes a single function on the pool, see MPTest_2.py:

#!/usr/bin/python

import multiprocessing as mp

def myfunction(a, b):

return a*b

pool = mp.Pool(mp.cpu count())

results =

pool.close()

print results

32,
00,
88,

[21 4/ 6/ 8/
34, 3o,
62, 64,
90, 92,

10,
38,
00,
94,

40,
63,
90,

12,
42,
70,
98,

14, 1o,
44,
12,

100,

18,
46, 43,
74, 76,
102,

20,
50,
78,
104,

22, 24,

106,

[pool.apply(myfunction, args=(a,2)) for a in range(l,100)]

20,
54,
82,
108

4

23,

56,
84,

30,

58,
86,

@ gé(iilGr\]élEJ[\GlUST—UNIVERSITAT POOI: Example 2

map takes one iterable as argument and executes processes for each iterable
object, see MPTest_3.py:

#!/usr/bin/python
import multiprocessing as mp

def myfunction(a):
return a*2

pool = mp.Pool(mp.cpu count())
results = pool.map(myfunction, [a for a in range(1,100)])
pool.close()

print results

(2, 4, o, &, 10, 12, 14, 16, 18, 20, 22, 24, 206, 28, 30,

32,
00,
88,

34, 30, 38, 40, 42, 44, 40, 48, 50, 52, 54, 56, 58,
c2, 04, 0o, 03, 70, 72, 74, 776, 778, 80, 82, 84, 3o,
°0, 92, 94, 960, 98, 100, 102, 104, 106, 108

4

GEORG-AUGUST-UNIVERSITAT
=7 GOTTINGEN

Pool: Example 3

starmap (available only since Python 3.3) also takes one iterable as argument,
but each iterable object can be iterable again, see MPTest_4.py:

#!/usr/bin/python3
import multiprocessing as mp

def myfunction(a,b):
return a*b

pool = mp.Pool(mp.cpu count())
results = pool.starmap(myfunction,

pool.close()

print(results)

[21 4/ 6/ 8/
32, 34, 30,
60, 62, 04,
88, 90, 92,

10,
38,
00,
94,

12,
40,
63,
90,

14,
42,
70,
98,

16,
44,
12,
100,

18,
46, 43,
74, o,
102,

20, 22,
50,
78,

104,

52,
80,
106,

24,

[(a,2) for a in range(1l,100)])

20,

54,
82,
108

4

23,

56,
84,

30,

58,
86,

Car oo Asynchronous Execution

Asynchronous execution is often faster then the default synchronized wy
Output of individual jobs is not ordered

Need specific functions to retrieve the unordered output
In python:

- Pool.apply_async

Pool.map_async

Methods provide just list of output objects, not the output of the parallel
calculation

Output can be collected via:

- Callthe pool.ApplyResult.get ()
= Define callback routine as argument of apply_async or
map_async thatis called after all jobs finished

G comiarmee Asynchronous: Example 1

Example with get (), see MPTest_5.py:
#!/usr/bin/python

import multiprocessing as mp

def myfunction(a, b):
return a*b

pool = mp.Pool(mp.cpu count())

results objects = [pool.apply async(myfunction, args=(a,2)) for a in range(1l,100)]
results = [r.get() for r in results objects]

pool.close()

print results

G comiarmee Asynchronous: Example 2

Example with callback function, see
#!/usr/bin/python

import multiprocessing as mp
results = []

def myfunction(a, b):
return a*b

Define callback function to collect the output:
def collect result(result):

global results

results.append(result)

pool = mp.Pool(mp.cpu count())

for a in range(1l,100):
pool.apply async(myfunction, args=(a,2), callback=collect result)

pool.close()

print results

	THOMAS PEIFFER
	Parallelization in Python
	Multi-Threading
	Slide 4
	The Thread Class
	Multi-Threading Example
	Slide 7
	Multi-Threading Example
	Monitoring Threads
	Synchronizing Threads
	Slide 11
	Synchronizing: Example
	Synchronizing: Locking
	Locking: Example
	Locking: Example
	Multi-Processing
	Difference to Threading
	Difference to Threading
	Multiprocessing Pool
	Pool: Example 1
	Pool: Example 2
	Pool: Example 3
	Asynchronous Execution
	Slide 24
	Slide 25

