
Parallelisation with Python
Practical Course on Parallel Computing

Hendrik Nolte

Parallelization in Python

25.05.2021 2

 Python offers two ways of parallelization:

– Multi-Threading:

Sub-tasks on several CPUs share the same memory

 Requires proper memory synchronisation

– Multi-Processing:

Each process has own memory, processes run completely independent from
each other

More stable, but additional overhead in in memory consumption

Multi-Threading

25.05.2021 3

 Included modules in Python:

– thread (deprecated, not supported any more in Python3)

– threading

 The threading module:

– Provides the following functions:

●

●

●

threading.activeCount() − Returns the number of thread objects that
are active.

threading.currentThread() − Returns information of the thread from
where it is called.

threading.enumerate() − Returns a list of all thread objects that are
currently active.

args=(var1, var2,))

 Threads can be initialized and started with

thread = threading.Thread(target=f,

thread.start()
(executes function f(var1,var2) in a thread)

Simple example

 Example ThreadTest_0.py:

25.05.2021 4

The Thread Class

25.05.2021 5

 Everything that you want to execute in a parallel thread can also be written in a
Thread class:

 Methods of the class:

–

–

–

–

–

–

– __init__ (self [,args]) − Initialization

run() − The method contains the code to be ran in parallel.

start() − The method starts a thread by calling the run method.

join(timeout=None) − Waits for threads to terminate.

isAlive() − The method checks whether a thread is still executing.

getName() − The method returns the name of a thread.

setName() − The method sets the name of a thread.

 To use threading, you have to write your own sub-class of the Thread class:

–

– Define new sub-class

Override the __init__() and run() methods

Multi-Threading Example

...

 Example ThreadTest_1.py:

25.05.2021 6

Multi-Threading Example

...

25.05.2021 7

Multi-Threading Example

25.05.2021 8

 Output:

Starting

Starting

 Exiting

Thread-1

Thread-2

Main Thread

Thread-1: Wed May 8 16:37:06 2019
Thread-1: Wed May 8 16:37:07 2019

Thread-2: Wed May 8 16:37:07 2019

Thread-1: Wed May 8 16:37:08 2019

Thread-1: Wed May 8 16:37:09 2019

Thread-2: Wed May 8 16:37:09 2019

Thread-1: Wed May 8 16:37:10 2019

Exiting Thread-1

Thread-2: Wed May 8 16:37:11 2019

Thread-2: Wed May 8 16:37:13 2019

Thread-2: Wed May 8 16:37:15 2019

Exiting Thread-2

Monitoring Threads

 Add the following lines to your code after you started the threads:

 Output:

<_MainThread(MainThread, started 139672845326144)>
<myThread(Thread-1, started 139672823293696)>

<myThread(Thread-2, started 139672814900992)>

 There will always be a MainThread

25.05.2021 9

Synchronizing Threads

25.05.2021 10

 Synchronization needed for threads that depend on each other

→ Requires communication between threads

 Easiest way for communication: the threading.Event() object:

Provided functions:

–

–

– set() and clear(): set an internal flag to true or false

isSet(): checks if the event has been set by the set() method

wait(): blocks further processing until another thread calls the set()
 method; can be used with wait(t) to time-out after t second

Synchronizing: Example

 Example ThreadTest_2.py:

25.05.2021 11

Synchronizing: Example

25.05.2021 12

blocking waiting process

 Output:

Start

Start

event

doing

event

doing

event

doing

event

doing

event

set:

other

 set:

other

 set:

other

 set:

other

 set:

False

things

 False

things

 False

things

 False

things

 False

End blocking

True

event

event set:

processing

 Exiting

Synchronizing: Locking

25.05.2021 13

 Locking is alternative method to synchronize threads

 The threading.Lock() object:

– acquire(): change the state to locked

– release(): unlock the state

 If one thread calls acquire() for a lock object, all other threads calling
acquire() have to wait until the first thread calls release().

Locking: Example

 Modify previous example (see ThreadTest_3.py):

–Add definition of Lock object to main part of the program:

– Modify run() function of first example:

25.05.2021 14

Locking: Example

25.05.2021 15

 Output:

Starting

Starting

Thread-1

Thread-2

Thread-1: Fri May 10 17:18:50 2019
Thread-1: Fri May 10 17:18:51 2019

Thread-1: Fri May 10 17:18:52 2019

Thread-2: Fri May 10 17:18:54 2019

Thread-2: Fri May 10 17:18:56 2019

Thread-2: Fri May 10 17:18:58 2019

→ Thread 2 has to wait for thread 1 to finish

Multi-Processing

 Multi-core processing configuration is very similar to threading

 The multiprocessing class:

– Similar methods as the threading class, but:

●

●

Thread → Process

threading → multiprocessing

– Example (MPTest_0.py):

25.05.2021 16

Difference to Threading

 In multi-threading, each thread accesses the same memory
 In multi-processing, memory is completely separated

 Example (MPTest_1.py):

Now run myfunction() in multiprocessing and threading
mode

25.05.2021 17

Difference to Threading

 Output:

Multi-processing

Multi-threading

25.05.2021 18

result: [9, 2]

result: []

Multiprocessing Pool

25.05.2021 19

 Multi-processing can be done by creating a Pool:

– How to create a pool:

Import multiprocessing as mp

#create

 pool=

a pool with all available CPUs

mp.Pool(mp.cpu_count())

– The Pool class provides the following functions:

●

●

●

●

apply

map

starmap

close(): stops the pool cluster

apply and map are similar to the default functions apply and map,
but arguments are executed in parallel on the pool.

Pool: Example 1

 Calling apply executes a single function on the pool, see MPTest_2.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 20

Pool: Example 2

 map takes one iterable as argument and executes processes for each iterable

object, see MPTest_3.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 21

Pool: Example 3

 starmap (available only since Python 3.3) also takes one iterable as argument,

but each iterable object can be iterable again, see MPTest_4.py:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108

,
...

25.05.2021 22

Asynchronous Execution

25.05.2021 23

 Asynchronous execution is often faster then the default synchronized way
 Output of individual jobs is not ordered
 Need specific functions to retrieve the unordered output
 In python:

–

–

–

– Pool.apply_async

 Pool.map_async

Methods provide just list of output objects, not the output of the parallel
calculation

Output can be collected via:

 - Call the pool.ApplyResult.get()
 - Define callback routine as argument of apply_async or
map_async that is called after all jobs finished

Asynchronous: Example 1

 Example with get(), see MPTest_5.py:

25.05.2021 24

Asynchronous: Example 2

 Example with callback function, see

MPTest_6.py:

25.05.2021 25

	THOMAS PEIFFER
	Parallelization in Python
	Multi-Threading
	Slide 4
	The Thread Class
	Multi-Threading Example
	Slide 7
	Multi-Threading Example
	Monitoring Threads
	Synchronizing Threads
	Slide 11
	Synchronizing: Example
	Synchronizing: Locking
	Locking: Example
	Locking: Example
	Multi-Processing
	Difference to Threading
	Difference to Threading
	Multiprocessing Pool
	Pool: Example 1
	Pool: Example 2
	Pool: Example 3
	Asynchronous Execution
	Slide 24
	Slide 25

