
POSIX Threads

Vanessa End

GWDG (AG Computing)

04/28/22 Practical Course High-Performance Computing

SH

∞

)



Reminders on Shared Memory POSIX Threads

Table of contents

1 Reminders on Shared Memory

2 POSIX Threads

Vanessa End Practical Course High-Performance Computing 2 / 28



Reminders on Shared Memory POSIX Threads

Good Morning!

Grab your coffee, start your systems
and grab the exercise sheet and the
code snippets from
https://hps.vi4io.org/teaching/
summer_term_2022/pchpc
Today we’ll be going through

1 Reminders on Shared Memory
2 POSIX Threads

Basics
Mutexes
Further Means of Access
Restriction

Vanessa End Practical Course High-Performance Computing 3 / 28

https://hps.vi4io.org/teaching/summer_term_2022/pchpc
https://hps.vi4io.org/teaching/summer_term_2022/pchpc


Reminders on Shared Memory POSIX Threads

Learning Objectives

After this session, the participants should be able to

� compile and run a pthread program

� know how to spawn and join threads with pthreads

� know what a critical section is and how to handle it with mutexes and
semaphores

Vanessa End Practical Course High-Performance Computing 4 / 28



Reminders on Shared Memory POSIX Threads

Reminder

CPU

ALU CTRL

Interconnect

Memory

Processor

c0 c1

Processor

c0 c1

Interconnect

Memory

Many processors share the same memory→ communication and coordination
through memory.

Vanessa End Practical Course High-Performance Computing 5 / 28



Reminders on Shared Memory POSIX Threads

Breakout 1: Shared Memory - 10 minutes

What needs to be kept in mind in shared memory programming?

� access control on variables

� deadlocks

� data races

� timing threads

� ...

Vanessa End Practical Course High-Performance Computing 6 / 28



Reminders on Shared Memory POSIX Threads

Breakout 1: Shared Memory - 10 minutes

What needs to be kept in mind in shared memory programming?

� access control on variables

� deadlocks

� data races

� timing threads

� ...

Vanessa End Practical Course High-Performance Computing 6 / 28



Reminders on Shared Memory POSIX Threads

What are POSIX threads

� standard for Unix-like operating systems

I i.e.: Linux, MacOS, Solaris, ...

� library to be linked with C programs

� very low level programming

I low overhead
I not very user-friendly

� let’s you explicitely control threads with additional functions

Vanessa End Practical Course High-Performance Computing 7 / 28



Reminders on Shared Memory POSIX Threads

Compiling and Running

� Include in source file: #include <pthread.h>

� Compile and link: gcc -g -Wall -o pth_hello pth_hello.c -lpthread

� Run: ./pth_hello <number of threads>

Vanessa End Practical Course High-Performance Computing 8 / 28



Reminders on Shared Memory POSIX Threads

Spawning/Forking and Joining threads

� explicitely spawn thread(s) with a given function func
pthread_create(&thread_handle, NULL, func, (void *)thread);

� explicitely join threads once done
pthread_join(thread_handle, NULL);

Vanessa End Practical Course High-Performance Computing 9 / 28



Reminders on Shared Memory POSIX Threads

Breakout 2: Hello World - 10 minutes

1 Take a look at pth_hello.c.

1 Identify the thread function. Where does the the function get the value of
thread_count from?

2 What is special about the variable thread_count?

2 Compile and run the program multiple times with different thread counts.
What do you see?

Vanessa End Practical Course High-Performance Computing 10 / 28



Reminders on Shared Memory POSIX Threads

Breakout 2: Hello World - 10 minutes

1 Take a look at pth_hello.c.

1 Identify the thread function. Where does the the function get the value of
thread_count from?
The value is defined over the command line and stored in the global variable
thread_count.

2 What is special about the variable thread_count?
It is a global variable, meaning all threads can use and alter it.

2 Compile and run the program multiple times with different thread counts.
What do you see?
The print statements are printed out in different orders.

Vanessa End Practical Course High-Performance Computing 10 / 28



Reminders on Shared Memory POSIX Threads

Hello World - sample outputs

1 ./pth_hello 4
2 Hello from thread 0 of 4
3 Hello from thread 1 of 4
4 Hello from the main thread
5 Hello from thread 3 of 4
6 Hello from thread 2 of 4

1 ./pth_hello 4
2 Hello from thread 0 of 4
3 Hello from thread 1 of 4
4 Hello from thread 2 of 4
5 Hello from thread 3 of 4
6 Hello from the main thread

Vanessa End Practical Course High-Performance Computing 11 / 28



Reminders on Shared Memory POSIX Threads

Estimation of π

π = 4 ·
(

1− 1

3
+

1

5
− 1

7
+ ...+ (−1)n

1

2n+ 1
+ ...

)
Single thread code

1 int n = 100, i;
2 double factor = 1.0;
3 double sum = 0.0, pi;
4 for (i = 0; i < n; i++, factor = -factor) {
5 sum += factor/(2*i+1);
6 }
7 pi = 4.0*sum;

Vanessa End Practical Course High-Performance Computing 12 / 28



Reminders on Shared Memory POSIX Threads

Breakout 3: Estimation of π - 10 minutes

1 What steps do you need to take to parallelize the above code snippet with
pthreads?

Vanessa End Practical Course High-Performance Computing 13 / 28



Reminders on Shared Memory POSIX Threads

Breakout 3: Estimation of π - 10 minutes

1 What steps do you need to take to parallelize the above code snippet with
pthreads?

I add pthreads header
I get number of threads and n from the command line as global variables
I add global variable sum
I create thread handle array
I create threads
I create a threaded sum function

• this computes a private sum my_sum
• divide n between the number of given threads
• make sure the factor has the correct sign
• sum up the threaded sums

I join threads
I free thread handles
I calculate the final estimation of π in master thread

Vanessa End Practical Course High-Performance Computing 13 / 28



Reminders on Shared Memory POSIX Threads

Breakout 4: Estimation of π 2/2 - 20 minutes

1 Try to parallelize the code snippet above yourself. Use pth_pi_skeleton.c
for some guidelines if you do not want to try it all by yourself. If you do
create the source code from scratch, please consider the following:
I It should take the number of threads and n as input.
I Add print statements in the thread function, which print the thread rank, the

current value of the thread private sum (my_sum) and the current value of the
global sum (sum).

I Add a print statement for the global sum after joining the threads.
I Add a print statement for the estimation of π.

2 Compile and run pth_pi.c or your program. Run it with: ./pth_pi <num
threads> <n>

1 What changes, when you change the number of threads? E.g., try 1, 2, 4, 8.
2 What changes, when you change n? E.g., try 8, 100, 200, 1000
3 Run the program multiple times with 4 threads and n = 100. Is the output

always the same?

Vanessa End Practical Course High-Performance Computing 14 / 28



Reminders on Shared Memory POSIX Threads

Breakout 4: Estimation of π 2/2 - 20 minutes

1 Compile and run pth_pi.c or your program. Run it with: ./pth_pi <num
threads> <n>

1 What changes, when you change the number of threads? E.g., try 1, 2, 4, 8.
Speedup, different rounding errors, different private sums.

2 What changes, when you change n? E.g., try 8, 100, 200, 1000 More precise
estimate of π.

3 Run the program multiple times with 4 threads and n = 100. Is the output
always the same? No. The order of the print statements changes, the printed
value of sum is not always correct, the final sum and accordingly the estimate
of π is not necessarily correct.

Vanessa End Practical Course High-Performance Computing 14 / 28



Reminders on Shared Memory POSIX Threads

Estimation of π - sample outputs

1 ./pth_pi 4 1000
2 [0] my_sum: 0.784398
3 [3] my_sum: 0.000083
4 [3] sum: 0.785148
5 [0] sum: 0.785148
6 [1] my_sum: 0.000500
7 [1] sum: 0.785148
8 [2] my_sum: 0.000167
9 [2] sum: 0.785148

10 Sum after join: 0.785148
11 Estimation of PI: :3.140593

1 ./pth_pi 4 1000
2 [1] my_sum: 0.000500
3 [3] my_sum: 0.000083
4 [3] sum: 0.000750
5 [2] my_sum: 0.000167
6 [2] sum: 0.000750
7 [0] my_sum: 0.784398
8 [0] sum: 0.000750
9 [1] sum: 0.000750
10 Sum after join: 0.000750
11 Estimation of PI: :0.003000

Vanessa End Practical Course High-Performance Computing 15 / 28



Reminders on Shared Memory POSIX Threads

Critical Sections.

In the last example you saw, that threaded programs have so called critical
sections. Theses are sections, where multiple threads want to access the same
variable.

1 void *Thread_sum(void *rank) {
2 [...]
3 sum += my_sum;
4

5 printf("[%ld] my_sum: %f\n",my_rank, my_sum);
6 printf("[%ld] sum: %f\n",my_rank, sum);
7 [...]

This means we want to sequentialize the access to these variables.

Vanessa End Practical Course High-Performance Computing 16 / 28



Reminders on Shared Memory POSIX Threads

Mutexes in pthreads

� Mutexes ensure mutually exclusive access to critical sections and are
natively supported by Pthreads.

� Mutexes need to be initialized, can then lock and unlock a section and
should be destroyed, once they are not needed anymore:

1 int pthread_mutex_init(pthread_mutex_t *mutex_p,
2 const pthread_mutexattr_t *attr_p);
3 int pthread_mutex_destroy(pthread_mutex_t *mutex_p);
4 int pthread_mutex_lock(pthread_mutex_t *mutex_p);
5 int pthread_mutex_unlock(pthread_mutex_t *mutex_p );

Vanessa End Practical Course High-Performance Computing 17 / 28



Reminders on Shared Memory POSIX Threads

Steps to mutexify the estimation of pi.

What steps need to be taken to protect the critical section?

Vanessa End Practical Course High-Performance Computing 18 / 28



Reminders on Shared Memory POSIX Threads

Steps to mutexify the estimation of pi.

What steps need to be taken to protect the critical section?

1 mutex as a global variable

2 initialize mutex in main function

3 identify code lines which need to be protected

4 lock mutex in the thread function before accessing critical code

5 unlock mutex in the thread function after accessing critical code

6 destroy mutex in main function

Vanessa End Practical Course High-Performance Computing 18 / 28



Reminders on Shared Memory POSIX Threads

Breakout 5: Mutexify the estimation of π - 15 minutes

1 In the lecture, we discussed what steps need to be taken to protect the
access to sum with mutexes. Now take the threaded estimation of π and add
the mutex yourself. You can use pth_pi_mutex_skeleton.c for guidelines
or use your code from above.

2 Compile and run pth_pi_mutex.c with different numbers of threads and
different values of n. Run it with: ./pth_pi_mutex <num threads> <n>

1 Run the program multiple times with 4 threads and n = 100. Is the output
always the same? What differences do you see compared to the version
without mutexes?

Vanessa End Practical Course High-Performance Computing 19 / 28



Reminders on Shared Memory POSIX Threads

Breakout 5: Mutexify the estimation of π - 15 minutes

1 In the lecture, we discussed what steps need to be taken to protect the
access to sum with mutexes. Now take the threaded estimation of π and add
the mutex yourself. You can use pth_pi_mutex_skeleton.c for guidelines
or use your code from above.

1 void *Thread_sum(void *rank) {
2 [...]
3 printf("[%ld] my_sum: %f\n",my_rank, my_sum);
4

5 pthread_mutex_lock(&mutex);
6 sum += my_sum;
7 printf("[%ld] sum: %f\n",my_rank, sum);
8 pthread_mutex_unlock(&mutex);
9 [...]

Vanessa End Practical Course High-Performance Computing 20 / 28



Reminders on Shared Memory POSIX Threads

Breakout 5: Mutexify the estimation of π - 15 minutes

1 Compile and run pth_pi_mutex.c with different numbers of threads and
different values of n. Run it with: ./pth_pi_mutex <num threads> <n>

1 Run the program multiple times with 4 threads and n = 100. Is the output
always the same? What differences do you see compared to the version
without mutexes?
No, there are still differences in the ordering of the threads and accordingly
they might have different sum values. But it is ensured that they always have
the correct sum value and the result is always the same.

Vanessa End Practical Course High-Performance Computing 21 / 28



Reminders on Shared Memory POSIX Threads

Mutexify the estimation of π - sample outputs

1 ./pth_pi_mutex 4 1000
2 [0] my_sum: 0.784398
3 [0] sum: 0.784398
4 [1] my_sum: 0.000500
5 [1] sum: 0.784898
6 [3] my_sum: 0.000083
7 [3] sum: 0.784981
8 [2] my_sum: 0.000167
9 [2] sum: 0.785148

10 Sum after join: 0.785148
11 Estimation of PI: :3.140593

1 ./pth_pi_mutex 4 1000
2 [1] my_sum: 0.000500
3 [1] sum: 0.000500
4 [0] my_sum: 0.784398
5 [0] sum: 0.784898
6 [2] my_sum: 0.000167
7 [2] sum: 0.785065
8 [3] my_sum: 0.000083
9 [3] sum: 0.785148
10 Sum after join: 0.785148
11 Estimation of PI: :3.140593

Vanessa End Practical Course High-Performance Computing 22 / 28



Reminders on Shared Memory POSIX Threads

Mutex Wrapup

So, what can mutexes do and what can’t they do?

� they can serialize access to a critical section

� there is no way of ordering threads with one mutex

� you can run into a deadlock, if you do not unlock the mutex properly

I this is also critical when using multiple mutexes!

Vanessa End Practical Course High-Performance Computing 23 / 28



Reminders on Shared Memory POSIX Threads

Further Means of Access Restriction

� read/write-locks

I part of the pthread interface
I access control depending on whether variable is read or written to

� Semaphores

I not part of pthreads→ more details following

� Condition Variables and mutexes

I used to save resources instead of blocking on a mutex

� Barriers

I need to be implemented by the programmer
I e.g., with busy-wait, condition variables or semaphores

Vanessa End Practical Course High-Performance Computing 24 / 28



Reminders on Shared Memory POSIX Threads

Semaphores

A semaphore is a means for signalling, and not part of the Pthreads standard.

1 #include <semaphore.h>
2

3 sem_t semaphore;
4 int initial_value;
5

6 int sem_init(&semaphore, 0, initial_value);
7 int sem_destroy(&semaphore);
8 int sem_post(&semaphore); //increments semaphore value
9 int sem_wait(&semaphore); //decrements semaphore value
10 int sem_getvalue(&semaphore, &value); //does not alter value

Especially useful in producer-consumer scenarios.

Vanessa End Practical Course High-Performance Computing 25 / 28



Reminders on Shared Memory POSIX Threads

Producer-Consumer with Mutex vs Semaphore

� imagine the producer filling an array and the consumers wanting to do
something with the contents

� the consumers need to know, when they can read from the array

� With a mutex, I can lock the complete array or design a node structure with
on mutex per array entry

� with a semaphore, the consumers can take a value as long as the
semaphore value is positive→ more flexibe and dynamic

Vanessa End Practical Course High-Performance Computing 26 / 28



Reminders on Shared Memory POSIX Threads

Ordering access with semaphores

In some scenarios it might make sense to order access to a shared variable (i.e.,
non-commutative functions like matrix multiplication)

� using the value of the semaphore together with, e.g., the rank of a thread,
access can be ordered

� see the optional exercise for more details on that

Vanessa End Practical Course High-Performance Computing 27 / 28



Reminders on Shared Memory POSIX Threads

Questions and Further Reading

� https://man7.org/linux/man-pages/man7/pthreads.7.html

� https://man7.org/linux/man-pages/man0/semaphore.h.0p.html

Vanessa End Practical Course High-Performance Computing 28 / 28

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man0/semaphore.h.0p.html

	Reminders on Shared Memory
	POSIX Threads
	Basics
	Mutexes
	Further Means of Access Restriction


