ZombieSim Project

Practical Course on High-Performance Computing

Abdullah Amawi, Maaike Bierenbroodspot

September 30, 2022

Supervised by Prof. Dr. Julian Kunkel. University of Göttingen

- Introduction & Recap
- Solution & Performance Analysis
- Conclusion & Future Work

Introduction & Recap

Introduction - ZombieSim

- Zombie simulator to investigate how infection spreads based on:
 - Behavior, such as humans going from their homes to work.
 - Environment, such as the population density.
 - Biological factors, such as transmission rate.
 - We intend making factors easy to add, to allow the freedom of research for additional factors.
 - Goal is to learn more about parallel computing and how to analyze parallel efficiency.

General Flow - ZombieSim

Figure 1: ZombieSim general flow & structure

Land Overview - ZombieSim

- Residential area in green.
- Business area in blue.
- Different city sizes and densities

Land (Country)

Figure 2: ZombieSim visual overview

- C++ as the programming language in use.
- Boost library[6]for parallel execution.
- olcPixelGameEngine[2] for the visualisation.
- Hotspot[1] for performance analysis.

- Vampir[5] & usage of Boost[6] library.
- Compilation for Scientific Linux distribution.
- Likwid[3] ease of use was hindered by the limited hardware support[4].
- Resorted to the use of Hotspot[1].

Solution & Performance Analysis

ZombieSim Demo

Sequential Vs Parallel

- · Started the design for the parallel execution
 - We have a plug & play config file that we can manipulate the threads easily.
 - Some base threads exist for the game engine.
- Multiple Threads
 - Visualization thread
 - Moving threads
 - Managing threads 10 base

- Human object scaling, more humans, slower, or more threads..
- More threads are needed to scale.
- Infection rate, more people infected, more overlap has to be done, so its slower.
- Value overlap threads, more threads, workload is divided, so it scales better

- Compared 1 thread performance to 10.
- Ran for 120 seconds as configured in the conf file, makes it modular.
- Hotspot demonstrates a lot of degradation.
- Over 60% degradation in the performance.

		olc::Spr	
		olc::Pixel	
		olc::PixelG	olc::Spri
?? [??]	<pre>77 [li ?? [swrast_dri.so]</pre>	CPhysicsEngine::0	olc::PixelGameEnç

1.061E+12 aggregated cycles:u cost in total

Figure 3: Hotspot graph result

cycles:u (incl.) ~	cycles:u (self)
47.1%	47.1%
24.5%	24.5%
10.8%	0.223%
10.5%	4.36%
4.13%	4.13%
1.02%	1.02%
0.762%	0.499%
0.521%	0.521%
0.419%	0.382%
0.0951%	0.0644%
0.0593%	0.0593%
0.0295%	0.0295%
0.0127%	0.0127%
0.0117%	0.0067%
0.0105%	0.0105%
0.00816%	0.00816%
0.0063%	0.0063%
0.00574%	0.00574%
0.00518%	0.00518%
0.00428%	0.00428%
0.00383%	0.00383%
0.00375%	0.00375%
	yelesu (incl.) ✓ 47.1% ✓ 10.8% ✓ 10.5% ✓ 10.5% ✓ 1.12% ✓ 0.762% ✓ 0.419% ✓ 0.0551% ✓ 0.0593% ✓ 0.0127% ✓ 0.0117% ✓ 0.0015% ✓ 0.00518% ✓ 0.00518% ✓ 0.00383% ✓ 0.00383% ✓

Figure 4: Hotspot results

Conclusion & Future Work

- A lot was learned about parallel execution importance.
- Challenges were an eye opener in many areas.
- Goals were partially obtained, more to do in the work for the report.
- The practical course & the project were a great learning experience.

- Play around with thread count usage.
- Supply corresponding graphs for the new tests.
- We could try to test the simulation without the visual layer.
- We can try to adapt it sequentially by removing the visual layer for the sake of testing.
- Provide instructions for the config file for others to play around with the simulation.

Thank you!

Questions?

For additional information, please refer to our Technical Design document for ZombieSim, or the references for the libraries and tools used.

https://docs.google.com/document/d/1URngIbPCFHhuE6nuxOl2-06GZLJOniEb/edit

- https://github.com/kdab/hotspot#getting-hotspot.
- https://github.com/onelonecoder/olcpixelgameengine.
- https://github.com/rrze-hpc/likwid.
- https://github.com/rrze-hpc/likwid/issues/289.
- https://vampir.eu/.
- https://www.boost.org/.