

 Simulation of an N-Body System and Swing-by Maneuver

 13.09.2022

 Aaron Nagel – aaron.nagel@stud.uni-goettingen.de

Yannik Feldner – yannik.feldner@stud.uni-goettingen.de

Supervisor: Jack Ogaja

1

Presentation Outline

• Motivation

• Approach

► Numerical Setup and Initialization
► Sequentiel Implementation

• Performance analysis

[https://www.deutschlandfunk.de]

• Problem description: N-Body Solarsystem and Physics

► Parallel Implementation

• Conclusion

2

Motivation

• project Idea is inspired by the Voyager program [VP]

[https://en.wikipedia.org/wiki/Gravity_assist]

• goal of the VP:

- Observations and studies of the
 outer planets of our solar system

- Observations of the interstellar space

needs to reach the Solar escape
velocity in order to leave the heliosphere

• one of the most successful programs conducted by NASA

• periodic alignment of the outer planets in 1970s
 as foundation

Our goal: perform a Grand Tour
 maneuver with gravity assist

 similar to the VP

3

The Problem – N-Body Solor System

• Simulation of a standard model solar system

- Sun: Msun >> mN

- „Terrestrial“ or rocky bodies

- Gas Giants

- Ice Giants

• problem is given by the N-Body problem of
 physics

gravitational interaction of the N-Bodies
with each other

4

The Problem – Physics

• gravitational force between two bodies:

• using Newton's second law:

with

• interaction of the N-bodies as:

• N²-interactions

5

The Problem – Physics

• Interaction of the N-bodies as:

• use Lagrangian of the system:

 using the momentum:

.

5

The Problem – Physics

• Interaction of the N-bodies as:

• use Lagrangian of the system:

.

Ekin = T Epot = U H = T + U

5

The Problem – Physics

• Interaction of the N-bodies as:

• use Lagrangian of the system:

• Hamiltons equations of motion:

and 4N differential equations

Ekin = T Epot = U H = T + U

6

Approach – Numerical Setup

• Initialization of System Parameters

Nondimensionalization

Astronomical Unit [AU]: distance earth-sun

Anomalistic year: Time in which earth
is crossing the perihelion (nearest
point so the sun)

Earth mass in [kg]

Gravitational constant in terms of
Earth masses, anomalistic years and
Astronomical Units

• Therefore earth velocity is given by 2π

• Object parameters are scaled with earth velocities,
 earth mass and AU

• code is written in C++

7

Approach – Initialization of Objects

• every object is defined with:

- positions

- velocities

- accelerations

- radius and animation radius

- mass

- pixel corresponding to the scaled position

- orbit array

- type

7

Approach – Initialization of Objects

• initialization by specifying desired parameters or
 initialization function:

7

Approach – Initialization of Objects

• initialization by specifying desired parameters or
 initialization function:

Orbital velocity:

7

Approach – Initialization of Objects

• initialization by specifying desired parameters or
 initialization function:

for rocket escape velocity:

earth escape velocity: ~ 12 km/s

8

Sequentiel Approach – Calculate Forces

• first calculate the distances between the Object i N and every other object in N∈

• calculate gravitational force via:

• calculate the force in x/y direction

• calculate accelerations via:

9

Sequentiel Approach – Update State

• Euler Scheme for temporal discretization:
[http://lrhgit.github.io/tkt4140/allfiles/digital_compendium/._main010.html]

- calculate acceleration of the N-Bodies:

- calculate new velocities:

- do the same for positions.

10

Sequentiel Solution

Spacecraft TrajectorySimulation Video

Aaron Nagel
Yannik Feldner
13.09.2022

MPI Parallelization and Performance
N-Body System with Swing-by

Parallelization
Distribution of work: Where to parallelize

2

Simulation Loop:

update

Attraction Calculate forces  
from all positions

Distribute to P-1 processors 
to calculate N/P-1 forces

Collect forces from P-1 procs.

Update positions Distribute to P-1 processors 
to perform Euler step

Parallelization
Initialization

3

Rank 0: coordination Rank 1 to P-1: calculation
Simulation Loop:

All Ranks:

• Initialize MPI
• Initialize own System *sys for allocating memory and usage of methods
• Allocating memory for sending and receiving data

Parallelization
Distribution of data

4

Rank 0: coordination Rank 1 to P-1: calculation
Simulation Loop:

• Prepare data to send • Receive all positions
• Sort positions in Objects

• Receive forces
• sys.attraction(sys.Objects)
• Prepare data to send

send

send

for N/(P-1) Objects:

• Sort forces into system of rank 0

at
tr

ac
tio

n

Parallelization
Distribution of data

5

Rank 0: coordination Rank 1 to P-1: calculation
Simulation Loop:

• Prepare data to send • Receive all , and ⃗x ⃗v ⃗a
• Sort data in Objects

• Receive data
• sys.update(sys.Objects)
• Prepare data to send

for N/(P-1) Objects:

• Sort data into system of rank 0

U
pd

at
e

send

send

Parallelization
Expectation between sequential and parrallel

6

Sequential Solution (np = 1) Parallel Solution on np = 2

Simulation Loop:

update

Attraction

Simulation Loop:

update

Attraction

Proc 0 Proc 1

prep/sort data send

send

sendprep/sort data

Expectation: t(np = 1) < t(np = 2)

Parallelization
Work on processors 1 to P-1

7

Rank 1 to P-1: calculation

• Receive all positions
• Sort positions in Objects

• sys.attraction(sys.Objects)
• Prepare data to send

for N/(P-1) Objects:

Parallelization
8

Simulation time 
dependence

Performance

Parallelization
Performance

9

Simulation time 
dependence

Parallelization
Performance

10

System size dependence

 Find balance between
 efficient work load
 distribution and
 MPI communications

→
 timing without MPI_Init()→

Parallelization
Performance

11

System size dependence

 Find balance between
 efficient work load
 distribution and
 MPI communications

→

Sequential solution (np = 1)
faster than parallel solution
on two procs (np = 2)

 Expectation →

 timing without MPI_Init()→

Parallelization
Performance

12

Number of Objects: N = 211

np = 2 np = 10

np = 5

Parallelization
Imporvements

13

• Masses don't change and mass[N]
vector should be accessible by every
proc. after sys.init() on every proc.
by sys.mass MPI_Send(mass, ...)

• Only send necessary data for performing
Euler Step on procs.

 array length N/(P-1) instead of 2N

m

→

→

Parallelization
Work on processors 1 to P-1

14

• Receive all , and ⃗x ⃗v ⃗a
• Sort data in Objects

• sys.update(sys.Objects)
• Prepare data to send

for N/(P-1) Objects:

send 
 

 is sufficient
i ∈ (p − 1)N/(P − 1)
i ∈ pN/(P − 1)

Conclusion

• Results show exactly expected behavior

• Find balance between efficient work load distribution and MPI communications
 minimum in plot

• Can not reduce number of Send() and Recv() calls
but the amount of data by reducing array length

• MPI not the best choice for N-body problems
 e.g. shared memory approach should perform better

• Advantage: gained good understanding on how MPI works by N-body

→ t t(np)

→

15

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16

