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The Laplace equation

f : Rn → R

∆f = 0

∆f = ∇2f = div grad f

∇ =

(
∂

∂x1
, . . .

∂

∂xn

)
left: f(x, y) ≈ x2 − y2

∂2f

∂x2
+

∂2f

∂y2
= 2 − 2 = 0✓
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Laplace Operator
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Intuition

∆f = 0

■ No max or min

■ In 2D: ∆f = ∂2f
∂x2 +

∂2f
∂y2 = 0 → ∂2f

∂x2 = − ∂2f
∂y2

▶ Curvature in one dimension cancels curvature in other direction

■ Equilibrium equation

■ Influx equals efflux at every point
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Applications
Gauß’s law for
gravity:Gauß’s law for
gravity:

∇g = −4πGρ

g = −∇ϕ

Poisson’s equation for
gravitational fields:

∆ϕ = 4πGρ

ρ = 0 → ∆ϕ = 0

Laplace’s equation for
gravitational fields.

Heat equation:

∂

∂t
u(x, t) = −a∆xu(x, t)

∂
∂tu(x, t) = 0 → Laplace
equation

Electrostatics:

E = −∇VE

∇E = ∇(−∇VE)

= −∆VE = ρε0

VE satisfies Laplace
equation where ρ = 0
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Boundary Conditions

■ Laplace equation

▶ infinitely many solutions

■ Dirichlet boundary conditions

▶ fixed continuous values at some boundary

■ Dirichlet boundary conditions

▶ unique solution
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Solutions

Analytic solution infeasible
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Goal

■ We created numeric solver

■ Scales to large problem size on a cluster
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Finite element method

Discretize domain into grid cells with spacing h:

ui,j+1 = f(x, y+ h)

ui−1,j = f(x− h, y) ui,j = f(x, y) ui+1,j = f(x+ h, y)

ui,j−1 = f(x, y− h)
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Finite difference method

Approximate Laplace operator at grid cells.
By Taylor expansion in x-dimension:

ui+1,j ≈ ui,j + h
∂f

∂x
+

1

2
h2 ∂

2f

∂x2

ui−1,j ≈ ui,j − h
∂f

∂x
+

1

2
h2 ∂

2f

∂x2

Then:

ui+1,j + ui−1,j ≈ 2ui,j + h2 ∂
2f

∂x2
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Finite difference method

Similarly for y-dimension:

ui,j+1 + ui,j−1 ≈ 2ui,j + h2 ∂
2f

∂y2

Adding both together leads to:

∆f ≈ (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j)/h
2

Since ∆f = 0:
ui,j ≈ (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j)/4

Each grid cell is roughly the average of its neighbors!
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Relaxation

■ n× n grid

▶ n2 linear equations

▶ Solving directly infeasible

■ Relaxation method

▶ Iteratively apply approximation to grid cells until convergence

• Jacobi: out-of-place, pleasingly parallel
• Gauß-Seidel: in-place, twice as fast, sequential, allows overrelaxation

▶ O(n2) iterations, O(n4) runtime.
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Overrelaxation

Idea: overcorrecting with w ∈ [1,2)

next = u+ w ∗ (average− u)

O(n) iterations, O(n3) runtime.
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Function: data struct

1 struct Data {
2 std::ptrdiff_t width;
3 std::ptrdiff_t height;
4 std::vector<scalar_t> data;
5

6 scalar_t& idx(std::ptrdiff_t x, std::ptrdiff_t y) {
7 return data[x + width * y];
8 }
9 };
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Function: get_input 1

1 Data get_input() {
2 const int heat = 100;
3

4 Data input;
5 input.width = 1000;
6 input.height = 1000;
7 input.data.resize(input.width*input.height, std::numeric_limits<scalar_t

↪→ >::quiet_NaN());
8 //see next slide
9 }
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Function: get_input 2

1 for (auto y = 0z; y < input.height; ++y) {
2 for (auto x = 0z; x < input.width; ++x) {
3 if (y == 0) {
4 input.idx(x,y) = heat;
5 } else if (x == 0 || x == input.width-1 || y == input.height-1) {
6 input.idx(x,y) = 0;
7 }
8 }
9 }

10

11 return input;
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Function: get_variable_coordinates

1 std::vector<Coordinate> variable_coordinates;
2

3 for (auto y = 0z; y < data.height; ++y) {
4 for (auto x = 0z; x < data.width; ++x) {
5 if (std::isnan(data.idx(x,y))) {
6 if (is_border(x,y)) {
7 throw std::runtime_error{"Error"};
8 }
9 variable_coordinates.push_back({x,y});

10 }
11 }
12 }
13 return variable_coordinates;
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Function: make_first_guess

1 void make_first_guess(Data& data, const std::vector<Coordinate>&
↪→ variable_coordinates) {

2 for (auto [x, y] : variable_coordinates) {
3 data.idx(x,y) = 0;
4 }
5 }
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Function: zeitschritt

1 const auto max_iterations = 10000;
2 auto i = 0;
3 for (; i < max_iterations; ++i) {
4 scalar_t residual = 0;
5 for (auto [x,y] : variable_coordinates) {
6 const auto old_value = data.idx(x,y);
7 const auto average = (data.idx(x,y-1) + data.idx(x-1,y) + data.idx

↪→ (x+1,y) + data.idx(x,y+1)) / 4;
8 data.idx(x,y) = data.idx(x,y) + relaxation_factor * (average -

↪→ data.idx(x,y));
9 residual += std::pow(data.idx(x,y) - old_value, 2);

10 }
11 if (residual < precision) {
12 break;
13 }
14 }
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Problems with sequential version

■ Higher accuracy → Bigger Grid

▶ Needs more Performance

■ Bigger Grid → More iterations to converge

▶ Also needs more Performance

⇒ Parallelization needed!
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Parallelization approach

■ Split up iterations or grid

▶ Iterations can’t be split

• Every iteration depends on previous one

■ Grid needs to be split!

▶ Means that boundarys have to be communicated
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Parallelization difficulties

■ Find a way to split the grid

Figure: Split in 2
dimensions

Figure: Split in 1
dimension

■ one dimension is easier to initialize!
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Divide the grid

1 auto smaller_tasks_size = input.global_width / world.size();
2 auto smaller_task_amount = world.size() - input.global_width % world.size();
3

4 if(world.rank() < smaller_task_amount){
5 input.width = lower_local_width
6 }
7 else{
8 input.width = lower_local_width + 1
9 }

10

11 input.height = size;
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Function: get_input

■ Uses data from grid division

■ Every thread gets it’s local borders...

■ ...and storage space for it’s and it’s neighbours data

■ Otherwise works as in the sequential
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Parallelization difficulties

■ Communicating the borders

▶ After every iteration
▶ Using sendrecieve

1 if (const auto result = MPI_Sendrecv(
2 &data.idx(0, 0), data.height, mpi_type_scalar, left_neighbor, 0,
3 &data.idx(data.width, 0), data.height, mpi_type_scalar,
4 right_neighbor, 0, cart, MPI_STATUS_IGNORE
5 );
6

7 result != MPI_SUCCESS) {
8 throw mpi::exception{"MPI_Sendrecv", result};
9 }
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Parallelization difficulties

■ Residual needs to be communicated

▶ Only happens every 100 iterations

1 if constexpr (with_residual) {
2 residual = mpi::all_reduce(cart, residual, std::plus<>{});
3 return residual;
4 }
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Strong scaling

■ Strong scaling tests made with 2500x2500 grid

■ 1, 2, 4, 8, 16, 32, 64 and 128 threads

■ 128 threads on more than one node
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Strong scaling graph

■ 128 Tasks: 99/128 = 0.778

1 2 4 8 16 32 64 128
ntasks

100

101

102

sp
ee

du
p

speedup
ideal speedup
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Weak scaling

■ Also 1, 2, 4, 8, 16, 32, 64 and 128 tasks

■ Iterations are fixed at 20000

■ n2 = 10002 · tasks

■ n = 1000 ·
√
tasks
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Weak scaling graph
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Interpretation

■ 2 · test16 ≈ test32

■ Suboptimal grid division

▶ per task communication ∝ n
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Scorep

■ 32 task experiment

■ Scorep instrumentation

■ Profile

▶ 70.2% in zeitschritt without residual

▶ 20.5% in MPI_Sendrecv

▶ 0.7% in zeitschritt with residual

■ Run with tracing
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Vampir
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Vampir
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Denormalized Floating Point

1 auto grid_point_step(float a, float b, float c, float d, float prev_result) {
2 const auto average = (a + b + c + d) / 4;
3 const auto result = prev_result + 1.7 * (average - prev_result);
4 return result;
5 }
6 static void normal(benchmark::State& state) {
7 volatile float a = 1;
8 volatile float b = 1;
9 volatile float c = 1;

10 volatile float d = 1;
11 volatile float prev_result = 1;
12 for (auto _ : state) {
13 const auto result = grid_point_step(a, b, c, d, prev_result);
14 benchmark::DoNotOptimize(result);
15 }
16 }
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Denormalized Floating Point

1 static void neighbors_denormal(benchmark::State& state) {
2 volatile float a = std::numeric_limits<float>::denorm_min();
3 volatile float b = std::numeric_limits<float>::denorm_min();
4 volatile float c = std::numeric_limits<float>::denorm_min();
5 volatile float d = std::numeric_limits<float>::denorm_min();
6 volatile float prev_result = 1;
7 for (auto _ : state) {
8 const auto result = grid_point_step(a, b, c, d, prev_result);
9 benchmark::DoNotOptimize(result);

10 }
11 }
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Denormalized Floating Point

■ normal: 1.95 ns

■ neighbors_denormal: 50.9 ns

■ simple fix: initial guess = 1

■ 28s→21s
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Improved Vampir profile

■ 85.7% in zeitschritt without residual

■ 9.8% in MPI_Init

■ 3.0% in MPI_Sendrecv

■ 0.9% in zeitschritt with residual
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Improved Vampir profile
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Conclusion

■ Goals achived?

▶ Yes!

■ Lots of Performance improvements

■ n-Dimensional

■ Input-file
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