Report oft Practical Course on High-Performance
Computing
Parallel Deep Learning pipelines using Go and MPI

Persentor: Silin Zhao Supervisor: Patrick Michaelis

September 27, 2022

Project notation

Youtube link
https://www.youtube.com/watch?v=2siZQBvRPuY&t=6s
executing project in local computer

git clone it

cd go_mpi_network/goai
uncomment one case in myai.go
go build

./goai

https://www.youtube.com/watch?v=2siZQBvRPuY&t=6s

Datasets

» This project source code can be found
https://github.com/scofild429/go_mpi_network,This
is the README page.

» lIris dataset (https:
//wwu.kaggle.com/datasets/saurabh00007/iriscsv)

> Intel image classification,
(https://www.kaggle.com/datasets/puneet6060/
intel-image-classification?resource=download).
Download it, put archive it in the folder ./datasets/

All training data will equally divied for each training network,
specially for mpi

https://github.com/scofild429/go_mpi_network
https://www.kaggle.com/datasets/saurabh00007/iriscsv
https://www.kaggle.com/datasets/saurabh00007/iriscsv
https://www.kaggle.com/datasets/puneet6060/intel-image-classification?resource=download
https://www.kaggle.com/datasets/puneet6060/intel-image-classification?resource=download

Configuration example

» ./goai/.irisenv
» ./goai/.imgenv

inputdataDims=4
inputLayerNeurons=30
hiddenLayerNeurons=20
outputLayerNeurons=3
labelOnehotDims=3
numEpochs=100
learningRate=0.01
batchSize=4

Sumbit the job in cluster

no singularity, installing golang 1.18 was failed always
using binary executable code of golang, go build and then
transfering goai to cluster.

#!/bin/bash

#SBATCH --job—name mpi-go-neural-network
#SBATCH -N 1

#SBATCH -p fat

#SBATCH -n 20

#SBATCH --time=01:30:00

module purge
module load openmpi

mpirun -n 20 ./goai

Deep learning'’s problem

As Al comes to deep learning, the computing resource becomes
more critical for training process.
Applications:

» Image Classification

> NLP

» Semantic segmentation
Solution

> GPU

> TPU

» Distributed learning

Single network architecture

raining data -> inputlayer(wl, bl) -> dinputLayer
Normalization

dinputLayer -> hiddenLayer(w2, b2) -> dhiddenLayer
Normalization

dhiddenLayer -> OutputlLayer(w3, b3) -> doutputLayer

Loss = L2: (doutputLayer - onehotlable)?

Backpropagation from Loss of Outputlayer to w3, b3
Backpropagation from error of Hiddenlayer to w2, b2
Backpropagation from error of Inputlayer to wl, bl

Derivative of sigmoid, Normalization, Standardization
» Stochastic Gradient Descent (SGD)
» Mini-batch Gradient Descent (MBGD)
» Batch Gradient Descent (BGD)

lllustration of weights updating

Train Network Train Network

onerorowps (|| [| [] CL L[] 1D

/' sigmoid Prime
sigmoid, softmax o

OQutputlayer

sigmoid Prime

HiddenLayer

InputLayer

Input data X

Code implementation

func main() {
~~Isinglenode.Single_node_iris(true)
~~Impicode.Mpi_iris_Allreduce()
~~Impicode.Mpi_iris_SendRecv()
~~Impicode.Mpi_images_Allreduce()
~~Impicode.Mpi_images_SendRecv()

}

You can review my code, and choose one of them to be executed
in /goai/myai.go main function.
Comparing with python:

» . /pytorchDemo/irisfromscratch.py
» . /pytorchDemo/iriswithpytorch.py
» . /pytorchDemo/logisticRcuda.py

Network performance(iris dataset

Loss Accuarcy

740 —1%
o5 0se
| osn 05
| 602 089
557 ose
s 05z
ass o 5
& F
- onf
223 | 0se &
200 | 0ss
234 060
|
— e | os
06 050
10 W0 W@ ma BB 40 4% 0% we 470 71 7980 8550 5700 10000 1o e em w0 BW wm BB om Ta 7 T 75w s s 0o

Training Epoches Traiing Epoches

MPI| communication

github.com/sbromberger/gompi
import CGO as C

» Collective

» gompi.BcastFloat64s() -> C.MPI _Bcast()

» gompi.AllreduceFloat64s -> C.MPI _Allreduce()
»> Non Collective

> gompi.SendFloat64s() -> C.MPI _Send()
> gompi.SendFloat64() -> C.MPI _Send()
> gompi.RecvFloat64s() -> C.MPI _Recv()
» gompi.RecvFloat64() -> C.MPI _Recv()

Non collective architecture

Train Network Main Network Train Network

One-hot output

Outputlayer

HiddenLayer

InputLayer

MPIDATA
Input data with batchsize

Cne epoch training data

Non collective design

rank = 0
> in main network weights will be initialized, but not for
training,

P> weights will broadcast to all other training networks

rank 1= 0
P in train network receive weights from main network for
initialization

> After each batch training done, sending its weights variance to
main network

rank = 0
P receiving the variance from all training network

» accumulating and then sending back to training network

rank =0
P start next training batch

Collective architecture

Train Network

Train Network

Train Network

One-hot output [‘ ‘

Outputiayer

HiddenLayer

InputLayer

Input data with batchsize [

One epoch training data

(o

Fr4r»o-0=

Collective design

> All network train its data respectively,

> After each train batch, pack all weights into array
> MPlajireduce for new array

P> updating weights with new array

Iris dataset performance for non-collective

Send&Recv loss Send&Recv accuracy

Iris dataset performance for collective

Allreduce loss

Allreduce accuracy

Intel image classification performance

Send&Recv loss (220 images) Allreduce loss (220 images)

Speedup Diagrams

Iris for Allreduce and Send&Recv
with different nodes

Intel Image Classification for
Allreduce and Send&Recv with

different nodes

nnnnnnnnn

Discussion

neural network model implement is not perfect, so the
accuracy performance not so well
For each epoch:

» Allreduce: about 2 minutes

» Send&Recv: about 3.6 minutes, because of synchronization of
each batch training

Change nodes, scaling behavior, such as speedup diagrams is
missing
Change the batchsize, reducing mpi communication

Conclusion

» Golang can also be used for parallel computing
» neural network implementation of golang can be improved

» HPC cluster for distributed learning has significant benefits for
large dataset

