
Node-Level Performance Analysis

Jack Ogaja
jack.ogaja@gwdg.de

29. April 2022

https://www.gwdg.de/
mailto:jack.ogaja@gwdg.de


Learning Objectives

• To help develop ideas on how to use performance tools to explore the optimization

space of widely used computational kernels in common computer architectures.

29. April 2022 J. Ogaja 1

https://www.gwdg.de/


Node-Level Performance Analysis

Performance Modelling

Performance Measurements

LIKWID Toolset

Topology

Affinity

Hardware Performance Counters

MPI Wrapper

Micro-benchmarking

Roofline Model

29. April 2022 J. Ogaja 2

https://www.gwdg.de/


Node-Level Performance Analysis

https://www.gwdg.de/


Node-Level Performance Analysis

• Modelling: Derivation of a model based on the functionality and topology of

interconnected elements of a computational unit of a specific architecture.

• Measurements: Collection of events data through program instrumentation and

events sampling.

• Visualization: Usage of performance tools to visualize collected events’ data and

traces.

29. April 2022 J. Ogaja Node-Level Performance Analysis 3

https://www.gwdg.de/


Node-Level Performance Analysis
Modelling

Performance models are important in application’s performance engineering and

analysis. Models are key for:

• Comparing application performance against the machine capabilities

• Evaluating the optimality of application

• Identify possible bottlenecks in application computational performance

• Identifying software and hardware limitations

29. April 2022 J. Ogaja Node-Level Performance Analysis Performance Modelling 4

https://www.gwdg.de/


Node-Level Performance Analysis
Measurements: Machine and Application Characterizations

1. Data Collection and Sampling

• Automatic instrumentation - increases overhead, e.g. Compilers, Vampir, Score-P,

• Manual instrumentation. e.g. Print-statements, Score-P

• Binary instrumentation - requires re-addressing, replacements and patching of

instructions and memory accesses, e.g. Gprof, Valgrind, GDB

• Sampling - execution is itnerupted at regular intervals to sample addresses of

executed instruction, e.g. LIKWID, Gprof

2. Data Processing

• For simple applications with small amount of events, events can be counted and

performance data can be processed and displayed in a graphical viewer in real-time.

3. Data transfer and storage

• For complex applications, events data should be stored in disks. e.g. Vampir

29. April 2022 J. Ogaja Node-Level Performance Analysis Performance Measurements 5

https://www.gwdg.de/


LIKWID Toolset

https://www.gwdg.de/


LIKIWD
• LIKWID: A toolset for performance-oriented developers and users:

• likwid-topology : Get system (thread/core/cache/NUMA) topology

• likwid-pin : Pin threads to cores according to system’s topology (for

maintenance of spatial locality)

• likwid-bench : Provides a set of micro-benchmark kernels including stream, triad

and daxpy, to check system features as FLOPS , bandwidth and vectorization

efficiency.

• likwid-perfctr : Measure hardware events during application runs and show

derived metrics including FLOPS , bandwidth, TLB misses and power. integrates the

likwid-pin functionality.

• likwid-mpirun : MPI wrapper for likwid-pin and likwid-perfctr .

Profiles MPI and Hybrid applications. Utilizes likwid-pin and

likwid-perfctr at the backend.

29. April 2022 J. Ogaja LIKWID Toolset 6

https://www.gwdg.de/


LIKWID: Topology

Check the options using likwid-topology -h

29. April 2022 J. Ogaja LIKWID Toolset Topology 7

https://www.gwdg.de/


LIKWID: Affinity

• Provides thread-to-core pinning for an application for maintenance of spatial

locality.

• likwid-pin accepts 6 options for processor lists:

1. physical numbering: processors are numbered acording to the numbering in the

operating system

2. logical numbering: processors are logically numbered over the whole node - N

3. logical numbering in socket: processors are logically numbered in every socket -

S#

4. logical numbering in cache group: processors are logically numbered in last level

cache group - C#.

5. logical numbering in memory domain: Processors are logically numbered in

NUMA domain - M#

6. logical numbering within cpuset: processors are numbered inside Linux cpuset - L

29. April 2022 J. Ogaja LIKWID Toolset Affinity 8

https://www.gwdg.de/


LIKWID: Hardware Performance Counters

• Uses the Linux msr module to access the model specific registers stored in

/dev/cpu/*/msr then alculates performance metrics, FLOPS , bandwidth, etc,

based on the formula defined by LIKWID or customized by user.

• likwid-perfctr -a lists performance metrics and/or groups supported by

LIKWID

• likwid-perfctr -e lists all hardware events or counters available

• likwid-perfctr -E <perf group> shows the events or counters used to

calculate a particular performance group.

• likwid-perfctr -H -g <perf group> reveals the formula being used to

derive performance metrics using the performance counters.

29. April 2022 J. Ogaja LIKWID Toolset Hardware Performance Counters 9

https://www.gwdg.de/


LIKWID: MPI wrapper

• Detects MPI environments and wraps a job launcher around likwid-perfctr

to measure performances for MPI and hybrid applications.

• It also integrates the functionality of likwid-pin

29. April 2022 J. Ogaja LIKWID Toolset MPI Wrapper 10

https://www.gwdg.de/


LIKWID: Micro-benchmarking

• Provides a list of benchmark kernels for users to quickly test some characteristics

of an architecture.

• A number of basic benchmark kernels are readily available:

• copy Standard memcpy benchmark. A[i ] = B[i ]

• copy mem The same as above but with non temporal store.

• load One load stream. This one does some software prefetching you can

experiment with.

• store One store stream.

• store mem The same as above but with non temporal store.

• stream Classical STREAM triad. A[i ] = B[i ] + aC [i ]

• stream mem The same as above but with non temporal store.

• triad Full vector triad. A[i ] = B[i ] + C [i ] ∗ D[i ]

• triad mem The same as above but with non temporal store

29. April 2022 J. Ogaja LIKWID Toolset Micro-benchmarking 11

https://www.gwdg.de/


Emperical Roofline Model with LIKIWD

Roofline Model: A visually-intuitive graphical representation of a machine’s

performance (P) characteristics considering two principal performance bounds,

computation and communication.1

• Memory bandwidth, bs :

Communication is bounded by the

characteristics of the machine’s

processor-memory interconnect.

• Arithmetic Intensity, I [flops:bytes]:

The ratio of kernel’s computation to

memory traffic (volume of data to a

particular memory).

1Samuel W. Williams. Auto-tuning Performance on Multicore Computers. Berkley: University of California at Berkley, 2008.

29. April 2022 J. Ogaja LIKWID Toolset Roofline Model 12

https://www.gwdg.de/


Tutorial

• Download the tutorials

• Load LIKWID module

Note: Use slurm to start an interactive session in a compute node.

29. April 2022 J. Ogaja LIKWID Toolset Roofline Model 13

https://www.gwdg.de/

	Node-Level Performance Analysis
	Performance Modelling
	Performance Measurements

	LIKWID Toolset
	Topology
	Affinity
	Hardware Performance Counters
	MPI Wrapper
	Micro-benchmarking
	Roofline Model


