
Introduction to benchmarking and performance engineering

Julian Kunkel

Department of Computer Science

2022-04-29

)

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Learning Objectives

■ Describe basic system characteristics with typical values

■ Create (strong/weak) scaling measurements and diagrams

■ Utilize a basic system model to assess performance

■ Sketch the system optimization cycle

■ Define (strong/weak) scalability

■ Describe challenges for performance analysis/optimization

Julian M. Kunkel PCHPC22 2 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics

3 Scaling

4 Models

5 Understanding Behavior

6 Benchmarking

7 Summary

Julian M. Kunkel PCHPC22 3 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Goals for HPC

HPC

■ Empowers users to complete computation that needs vast compute/storage ressources.

Requirements to fullfill this goal

■ Usability: Should empower users to easily compute/store what they need

■ Programmability: Easy to code applications for developers

■ Efficiency is important for High-Performance Computing

▶ If you obtain only 1% of efficiency, then you need 100x compute nodes!
▶ Computation on 1000’s of nodes is high, so efficiency is important

■ Cost-efficiency: Cheap to compute, well-utilize bought hardware

■ Performance-portability: Allow reuse of code between systems retaining performance

▶ Also, if possible, only little code changes/tunings should be neccessary

Julian M. Kunkel PCHPC22 4 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Efficiency

■ We will focus on efficiency in this talk.

■ What is efficiency?

System/data center perspective

■ Efficiency = Utilization of the capabilities of hardware

■ We paid for the porsche, so we want to drive faster than 10 km/h

■ Examples:

▶ CPU/GPU utilization 100%
▶ Network/storage bandwidth = 10 GBit/s, use on average 9 GBit/s
▶ Memory/storage capacity 90%

■ However, an applications may not need much of a single resource ...

Julian M. Kunkel PCHPC22 5 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Efficiency (2)

User perspective

■ User perception: Execution time of the application should be low

■ Users often do not care about system efficiency

■ Using 10x nodes/cores should lead to 1/10th of runtime

■ Running with 10x input size and 10x compute nodes should lead to same execution time

■ If performance isn’t sufficient for a science use case, optimize application/system

Performance Engineering

■ Definition: Process of analyzing/understanding and optimizing applications

■ Requires good understanding of system and application behavior

■ Tools and models can help users, centers offer help, too

Julian M. Kunkel PCHPC22 6 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Optimization Cycle (for Any System)

#include <stdio.h>
#include <mpi.h>

int main(){
…

...
}

Current state

Measure
performance
characteristics

Measure
performance
characteristics

Analyze data
and localize

issues

Analyze data
and localize

issues
Generate
alternatives

Generate
alternatives

Modify the
system

Modify the
system

Start

Julian M. Kunkel PCHPC22 7 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Understanding of Application and System-Behavior

How can we understand system behavior?

■ Theory: Performance models

▶ Models - Determine performance for a system or workload
▶ Behavioral models - build models based on ensemble of observations
▶ System characteristics are a basic model of system capabilities

■ Observation

▶ Measure runs on the system - note measurements perturb behavior
▶ Benchmarking: specific applications geared to exhibit certain system behavior
▶ Tracing: record relevant operations of the application with their timing
▶ Profiling: record operations of the application and create statistics

■ Monitoring: system/tool-provided creation of observations

■ System/application simulation

▶ Based on system and workload models

Julian M. Kunkel PCHPC22 8 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Code Optimization

Alternatives/Options

1 Run code on a more suitable system - e.g., faster, more memory, different CPUs

2 Tune execution without changing code

3 Increase efficiency by modifying code - this is complex...

Tuning

■ Definition: Process of analyzing and optimizing system parameters without changing code

■ Examples: Compiler options, system settings, changing tunable parameters...

■ Any user should have a basic understanding of systems

Julian M. Kunkel PCHPC22 9 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics
HPC Clusters
Big Data Clusters

3 Scaling

4 Models

5 Understanding Behavior

6 Benchmarking

7 Summary
Julian M. Kunkel PCHPC22 10 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Reminder: Parallel & Distributed Architectures

In practice, systems are a mix of two paradigms:

Shared memory

C
o
m
p
u
te
r

Network

Processor ProcessorProcessor

Memory

■ Processors can access a joint memory

▶ Enables communication/coordination

■ Cannot be scaled up to any size

■ Very expensive to build one big system

Distributed memory systems

Processor

C
o
m
p
u
te
r

Memory

Extra HW

Processor
Memory

...

Processor
Memory

...

Network(s)

C
o
m
p
u
te
r

C
o
m
p
u
te
r

■ Processor can only see own memory

■ Performance of the network is key

Julian M. Kunkel PCHPC22 11 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Hardware Performance

Computation

■ CPU performance (frequency × cores × sockets)

▶ E.g.: 2.5 GHz × 12 cores × 2 sockets = 60 Gcycles/s
▶ The number of cycles per operation depend on the instruction stream

■ Memory (throughput × channels) + latency per access

▶ E.g.: 25.6 GB/s per DDR4 DIMM × 3 – L1/L2/L3 caches are somewhat relevant

Communication via the network
■ Throughput, e.g., 125 MiB/s with Gigabit Ethernet

■ Latency, e.g., 0.1 ms with Gigabit Ethernet

Input/output devices

■ HDD mechanical parts (head, rotation) lead to expensive seek

⇒ Access data consecutively and not randomly

⇒ Performance depends on the I/O granularity

▶ E.g.: 150 MiB/s with 10 MiB blocks
Julian M. Kunkel PCHPC22 12 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Benchmark for Memory Throughput

Figure: Memory performance using the fbui benchmark (on an older system)

Julian M. Kunkel PCHPC22 13 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Performance Varies!

MiB/s

F
re

qu
en

cy

5500 6000 6500 7000 7500 80005500 6000 6500 7000 7500 8000

0
20

00
40

00
60

00
80

00
0

20
00

40
00

60
00

80
00

Figure: Histogram for many (identical) 64 Byte accesses

Julian M. Kunkel PCHPC22 14 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Limitations

■ Performance of any parallel application is bound by a ressource

▶ Compute, Memory, Network

■ Application profiles decide if the app is compute/network/memory/IO bound

▶ Application demand specific ressources more than others
E.g., the communication is optimized

▶ Even within a single compute core, apps utilize ALU differently
The instruction mix differs...

■ Let’s first look at a single process and compute node
▶ Apps are often memory or compute bound, this can be somewhat easily analyzed

• Aim: Identify which part of code we must optimize, or shall we move to a different system?

▶ We can compute or measure memory traffic (Q) and (arithmetic) work (W)
▶ Operational intensity I = W

Q is the number of ops per byte memory traffic

• Often: use number of FLOP (floating point ops) as work

Julian M. Kunkel PCHPC22 15 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Roofline Model: Illustates Memory and Compute Limitations

Figure: Giu.natale / Wikipedia
Julian M. Kunkel PCHPC22 16 / 55

https://en.wikipedia.org/wiki/Roofline_model

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Roofline Model: Naive Model

Figure: Giu.natale / Wikipedia

Julian M. Kunkel PCHPC22 17 / 55

https://en.wikipedia.org/wiki/Roofline_model

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

HPC Cluster Characteristics

■ High-end components
■ Extra fast interconnect, global/shared storage with dedicated servers
■ Network provides high (near-full) bisection bandwidth. Various topologies are possible.

Node …
Node … Node

…
Node … Node

SwitchSwitch

Cut-Through-SwitchCut-Through-Switch

SwitchSwitch

L:600 ns

L:0,5 µs
B: 56 GBit/s
B: 24 TBit/s

SwitchSwitch

I/O-
Server

I/O-
Server

I/O-
Server

I/O-
Server……

SAN

L:0,5 µs
B: 56 GBit/s

Figure: Architecture of a typical HPC cluster (here fat-tree network topology)Julian M. Kunkel PCHPC22 18 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Big Data Cluster Characteristics
■ Usually commodity components
■ Cheap (on-board) interconnect, node-local storage
■ Communication (bisection) bandwidth between different racks is low

Node

SwitchSwitch

SwitchSwitch

L:120 µs
B: 1 GBit/s
B: 48 GBit/s

B: 10 GBit/s

…

Rack
Node Node

SwitchSwitch

…

Rack
Node

Figure: Architecture of a typical big data cluster
Julian M. Kunkel PCHPC22 19 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Impact of Software

■ Efficiency of programming languages: Java needs 1.2x - 2x of cycles compared to C1

■ All hardware components should be utilized concurrently, i.e., asynchronous

▶ Pipeline computation, I/O, and communication
▶ At best hide two of them ⇒ 3x speedup vs sequential
▶ Asynchronous (ni barriers) – avoid waiting for the slowest component

■ Balance and distribute workload among all processes
i.e., 10 processes, each should compute 10% of the work and finish at the same time
▶ Slowest process determines performance

• Q: if slowest process computes 10% of work, how fast can you be?

▶ If only 1 works you cannot benefit from parallelism

■ Avoid I/O, if possible (keep data in memory)

■ Avoid communication and memory access, if possible

1This does not matter much compared to the other factors. But vectorisation matters.
Julian M. Kunkel PCHPC22 20 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics

3 Scaling

4 Models

5 Understanding Behavior

6 Benchmarking

7 Summary

Julian M. Kunkel PCHPC22 21 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Amdahl and Speedup
■ Amdahl: fraction of parallelizable code

■ Speedup is bound by S = 1
1−p

■ p is the proportion of parallelizable code

■ Assumption: infinite ressources
Speedup

■ How much faster is the parallel program?

■ Definition: time parallel / time sequential
Speedup of 1 == as fast as sequential

■ Determine speedup by running app

▶ Vary parallelism = # procs/threads

Efficiency

■ Definition: Speedup / Parallelism

■ 100% Efficiency means perfect speedup Figure: Source: Daniels220, Wikipedia

Julian M. Kunkel PCHPC22 22 / 55

https://en.wikipedia.org/wiki/Amdahl%27s_law

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Strong Scaling

■ Situation: Keeping the problem size, increase parallelism

■ Example: Compute 10 days of weather forecast on 1 node, then on 10 nodes

■ Optimal result: 10x resources ⇒1/10th of runtime

■ Naturally, there is a limit as work cannot be distributed infinitely

▶ Two examples of speedup curves

▶ X mark the measured points

▶ Note: Typical* are more similar than expected

Parallelism ->
S

p
ee

d
u

p
 -

> Optimal

10

10 x

x

Typical 1

Typical 2

x

x

x
x x

x x
x

x
x

x

x

x
|

|

Julian M. Kunkel PCHPC22 23 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Groupwork: Assessing Speedup Diagrams

Task: Assess the two strong scaling curves Typical1 and Typical2

■ Are the measurements of T1/T2 good?

■ T2: What could be the cause for the observed performance changes?

■ Is there any relationship between the shape of T1 and T2?

■ Time: 5 minutes

Parallelism ->

S
p

ee
d

u
p

 -
> Optimal

10

10 x

x

Typical 1

Typical 2

x

x

x
x x

x x
x

x
x

x

x

x

|

|

Julian M. Kunkel PCHPC22 24 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

(Self-) Cheating

■ Measuring less points
Typical1 can look like Typical2

■ Interpolate the remaining points

■ Some people show how their app scales

⇒ Be careful with the assessment

■ Speedups > Parallism is suspicuous

▶ Means efficiency > 100%

Parallelism ->

S
p

ee
d

u
p

 -
>

10

10 x

x

Interpolation

Extrapolation

x

x

x

|

|

Julian M. Kunkel PCHPC22 25 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Causes for Observation

Parallelism ->

S
p

ee
d

u
p

 -
>

10

10 x

x

Caching
Suddenly fits into L* cache

Overhad communication
Load imbalance

x

x

x
x x

x x
x

x

|

|

Julian M. Kunkel PCHPC22 26 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Weak Scaling

■ Situation: Increase the problem size with parallelism

▶ This can scale to large configs as the amount of work per processor stays the same

■ Example: 10x number of nodes, 10x problem size

■ Optimal result: runtime stays the same

Parallelism/Problem Size ->

S
p

ee
d

u
p

10

1 xx x x x

x

x

|

|

Julian M. Kunkel PCHPC22 27 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics

3 Scaling

4 Models
Approach
Assessing Compute and Storage Workflow

5 Understanding Behavior

6 Benchmarking

7 Summary
Julian M. Kunkel PCHPC22 28 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Our Basic Network Model and Observations

Figure: Inter-socket Communication

■ Utilizing the basic hardware model: latency + throughput

Julian M. Kunkel PCHPC22 29 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Collective Algorithms: Simulated and Measurements

Figure: MPI_Bcast(), 100 MiB Data, Inter-Node Communication (1), X-Axis (Nodes-Procs)

Julian M. Kunkel PCHPC22 30 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Basic Modelling Approach for Applications
Question
Is the observed performance acceptable?

Basic Approach

Start with a simple model

1 Measure time for the execution of your workload

2 Quantify the workload with some metrics

▶ E.g., amount of tuples or data processed, computational operations needed
▶ E.g., you may use the statistics output for each Hadoop job

3 Compute W, the workload you process per time

4 Compute the expected performance P based on the system’s hardware characteristics

5 Compare W with P, the efficiency is E = W
P

▶ If E << 1, e.g., 0.01, you are using only 1% of the potential!

Refine the model as needed, e.g., include details about intermediate steps

Julian M. Kunkel PCHPC22 31 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Groupwork: Assessing Performance (Compute Only)
Task: Aggregating 10 Million integers with 1 thread/process

■ Vendor-reported performance from [14] indicates improvements

Figure: Source: Reference [14]

■ These are the advancements when using “Spark DF” instead of “RDD”

■ Can we trust in such numbers? Are these numbers good?

■ Discuss these numbers in your group (Time: 5 minutes)

Julian M. Kunkel PCHPC22 32 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Assessing Performance of In-Memory Computing

Measured performance numbers and theoretic considerations

■ Spark [14]: 160 MB/s, 500 cycles per operation2

▶ Invoking external programming languages is even more expensive!

■ Python (raw): 0.44s = 727 MB/s, 123 cycles per operation

■ Numpy: 0.014s = 22.8 GB/s, 4 cycles per operation (memory BW limit)

■ One line to measure the performance in Python using Numpy:

1 timeit.timeit(stmt="np.sum(d)", setup="import numpy as np; d =
↪→ np.array(range(1,10*1000*1000))", number=1)

■ Hence, the big data solution is 125x slower in this example than expected!

Julian M. Kunkel PCHPC22 33 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Assessing Compute and Storage Workflow

■ Daytona GraySort: Sort at least 100 TB data in files into an output file
▶ Generates 500 TB of disk I/O and 200 TB of network I/O [12]
▶ Drawback: Benchmark is not very compute intense

■ Data record: 10 byte key, 90 byte data
■ Performance Metric: Sort rate (TBs/minute)

Figure: Source: Reference [12]
Julian M. Kunkel PCHPC22 34 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Assessing Performance of In-Memory Computing

Hadoop

■ 102.5 TB in 4,328 seconds [13]

■ Hardware: 2100 nodes, dual 2.3Ghz 6cores, 64 GB memory, 12 HDDs

■ Sort rate: 23.6 GB/s = 11 MB/s per Node ⇒ 1 MB/s per HDD

■ Clearly this is suboptimal!

Apache Spark (on disk)

■ 100 TB in 1,406 seconds [13]

■ Hardware: 207 Amazon EC2, 2.5Ghz 32vCores, 244GB memory, 8 SSDs

■ Sort rate: 71 GB/s = 344 MB/s per node

■ Performance assessment

▶ Network: 200 TB ⇒ 687 MiB/s per node
Optimal: 1.15 GB/s per Node, but we cannot hide (all) communication

▶ I/O: 500 TB ⇒ 1.7 GB/s per node = 212 MB/s per SSD
▶ Compute: 17 M records/s per node = 0.5 M/s per core = 4700 cycles/record

Julian M. Kunkel PCHPC22 35 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Executing the Optimal Algorithm on Given Hardware
An utopic algorihm

Assume 200 nodes and well known key distribution

1 Read input file once: 100 TB

2 Pipeline reading and start immediately to scatter data (key): 100 TB

3 Receiving node stores data in likely memory region: 500 GB/node
Assume this can be pipelined with the receiver

4 Output data to local files: 100 TB

Estimating optimal runtime

Per node: 500 GByte of data; I/O: keep 1.7 GB/s per node

1 Read: 294s

2 Scatter data: 434s ⇒ Reading can be hidden

3 One read/write in memory (2 sockets, 3 channels): 6s

4 Write local file region: 294s

Total runtime: 434 + 294 = 728 ⇒ 8.2 T/min ⇒ The Spark record is quite good!

Julian M. Kunkel PCHPC22 36 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics

3 Scaling

4 Models

5 Understanding Behavior

6 Benchmarking

7 Summary

Julian M. Kunkel PCHPC22 37 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Understanding of Application and System-Behavior

How can we understand system behavior?

■ Theory: Performance models

■ System/application simulation

■ Observation

■ Monitoring: system/tool-provided creation of observations

Observation and monitoring of behavior

■ System-level, i.e., observable statistics such as CPU utilization, bytes read

■ Application-level, record individual operations performance

■ There are many interesting metrics that can be recorded

■ Many tools exists that aid this analysis

Julian M. Kunkel PCHPC22 38 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

System-Wide Monitoring

■ Center tools

▶ Example: Grafana

■ Various metrics for

▶ Compute
▶ Network
▶ I/O

■ Here: Focus I/O

Julian M. Kunkel PCHPC22 39 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

DKRZ Monitoring System

Details

■ Periodicity: 10s

■ Record metrics

▶ From /proc

■ Jobs are linked to the data

Mistral Supercomputer

■ 3,340 Nodes

■ 2 Lustre file systems

■ 52 PByte capacity

■ 100+ OSTs per fs

Julian M. Kunkel PCHPC22 40 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Visualizing Job Behavior and Comparing different jobs

0

10

fil
e_

cr
ea

te

0

10

fil
e_

de
le

te

0

10

m
d_

m
od

0

10

m
d_

ot
he

r

0

10

m
d_

re
ad

0

10

re
ad

_b
yt

es

0

10

re
ad

_c
al

ls

0

10

wr
ite

_b
yt

es

0 5 10 15 20
Segment number

0

10

wr
ite

_c
al

ls

0 10 20 30 40
Segment number

0

2

4

6

8

Va
lu

e

md_read
write_bytes
write_calls

Figure: For this job, other metrics == 0

■ Different jobs differ significantly

■ We can compare jobs based on metrics

■ Example:

▶ I/O metrics
▶ Segments represent 10 min

Julian M. Kunkel PCHPC22 41 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Vampir: Analyzing Application Performance

Julian M. Kunkel PCHPC22 42 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Outline

1 Introduction

2 System Characteristics

3 Scaling

4 Models

5 Understanding Behavior

6 Benchmarking

7 Summary

Julian M. Kunkel PCHPC22 43 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

How Can Benchmarks Help to Analyze Systems and Workloads?

■ Benefits of benchmarks
▶ Can use simple/understandable sequence of operations

• Ease comparison with theoretic values (that requires understandable metrics)

▶ May use a pattern like a realistic workloads

• Provides performance estimates or bounds for workloads!

▶ Sometimes only possibility to understand hardware capabilities

• Because the theoretic analysis may be infeasible

■ Benefits of benchmarks vs. applications

▶ Are easier to code/understand/setup/run than applications
▶ Come with less restrictive "license" limitations

■ Flexible testing (strategies)

▶ Single-shot: e.g., acceptance test
▶ Periodically: regression tests

Julian M. Kunkel PCHPC22 44 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Benchmarks

■ Benchmarks measure system behavior and implement (simple) well-known behavior

▶ Might be

■ Many benchmarks exist covering various aspects of the system

▶ Low-level hardware: CPU, Memory, Storage
▶ Software: MPI
▶ Application kernels: Linpack, HPCC
▶ Mini-apps representing application behavior

■ Might be synthetic or inspired by a real workload

Julian M. Kunkel PCHPC22 45 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Predictability and Latency Matters

Performance Predictability

■ How long does an I/O / metadata operation take?

■ Important to predict runtime

■ Important for bulk-synchronous parallel applications

▶ The slowest straggler defines the performance

Measurement

■ In the following, we plot the timelines of metadata create operations

▶ Sparse plot with randomly selected measurements
▶ Every point above 0.1s is added

■ All results obtained on 10 Nodes using MD-Workbench
https://github.com/JulianKunkel/md-workbench

▶ Options: 10 PPN, D=1, I=2000, P=10k, precreation phase

Julian M. Kunkel PCHPC22 46 / 55

https://github.com/JulianKunkel/md-workbench

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Latencies: Lustre / Mistral at DKRZ

Julian M. Kunkel PCHPC22 47 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Probing Approach

■ Many sites run periodic regression tests, e.g., nightly

▶ Helps to identify performance regressions with updates

■ Instead, we run a non-invasive benchmark (a probe) with a high frequency

▶ Mimic the user-visible client behavior
▶ Measuring latency for metadata and data operations

■ Generate and analyze generated statistics

■ Derive a slowdown factor (file system load)

Julian M. Kunkel PCHPC22 48 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Probing: Performance Measurement

Preparation

■ Data: Generate a large file (e.g., > 4x main memory of the client)

■ Metadata: Pre-create a large pool of small files (e.g., 100k+ files)

Benchmarks

■ Repeat the execution of the two patterns every second

■ DD: Read/Write a random 1 MB block

■ MD-Workbench: stat, read, delete, write a single file per iteration

▶ Allows regression testing, i.e., retain the number of files
▶ J. Kunkel, G. Markomanolis. Understanding Metadata Latency with MDWorkbench.

Executed as Bash script or an integrated tool: https://github.com/joobog/io-probing

Julian M. Kunkel PCHPC22 49 / 55

https://github.com/joobog/io-probing

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Goals of the IO-500 Benchmarking Effort

■ Bound performance expectations for realistic workloads

■ Track storage system characteristics behavior over the years

▶ Foster understanding of storage performance development
▶ Support to identify potent architectures for certain workloads

■ Document and share best practices

▶ Tuning of the system is encouraged
▶ Submitters must submit detailed run parameters

■ Support procurements, administrators and users

https://io500.org

500IOIO

Julian M. Kunkel PCHPC22 50 / 55

https://io500.org

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Covered Access Patterns

Data pattern complexity

IOR Easy

IOR Hard

MD Hard
MD Easy

N
am

es
p

ac
e

co
m

p
le

xi
ty

Find ■ IOR-easy: large seq on file(s)

■ IOR-hard: small random shared file

■ MD-easy: mdtest, per rank dir, empty files

■ MD-hard: mdtest, shared dir, 3900 byte

■ find: query and filter files based on
name and creation time

■ Executing concurrent patterns not covered
(another dimension)

Julian M. Kunkel PCHPC22 51 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Probing Response Time on Archer when Running IO-500

Figure: Response time (all measurements)

■ Run on 100 nodes
score 8.45

■ The IO-500 various phases
Data and metadata heavy

■ First, all measurements

Julian M. Kunkel PCHPC22 52 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Validating Slowdown on All Measurements

Figure: Slowdown (all measurements)

■ Computed median slowdown
Expected: median of 30 days

■ Influence of phases is visible

■ MDHard 1000x slowdown
Influences data latency!
10s of seconds latency

■ IOREasy 100x slowdown

■ IORHard not too much

■ Data read is stable

Julian M. Kunkel PCHPC22 53 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Slowdown for 4h Statistics

Figure: JASMIN, computed on 4 hour intervals

■ Slowdown: Using the median

■ Typically value is 1

■ Sometimes a system is 10x slower

▶ Due to user interactions
▶ Concurrent application execution

■ Values below 1, unusual (caching)

■ Performance can vary significantly!

Julian M. Kunkel PCHPC22 54 / 55

Introduction System Characteristics Scaling Models Understanding Behavior Benchmarking Summary

Summary

■ Performance

▶ Goal (user-perspective): Optimise the time-to-solution
▶ Understanding a few HW throughputs help to assess the performance
▶ Linear scalability of the architecture is the crucial performance factor
▶ Basic performance analysis

1 Estimate the workload
2 Compute the workload throughput per node
3 Compare with hardware capabilities

■ Achieving performance is challenging due to

▶ complex systems, deep software stack, performance variability, optimizations

■ Monitoring, performance analysis and benchmarking is needed

■ We will analyze HPC applications using some of the techniques introduced

Julian M. Kunkel PCHPC22 55 / 55

	Introduction
	System Characteristics
	HPC Clusters
	Big Data Clusters

	Scaling
	Models
	Approach
	Assessing Compute and Storage Workflow

	Understanding Behavior
	Benchmarking
	Introduction
	Latency
	Probing
	Validating Slowdown using the IO-500
	The IO-500
	Slowdown for Long Periods

	Summary

