
SH

∞

Seminar Report

RUST Programming for HPC application

Yuvraj Singh

MatrNr: 21621819

Supervisor: Prof. Dr. Christian Boehme

Georg-August-Universität Göttingen
Institute of Computer Science

Summer Semester 2022

Abstract

Languages like FORTRAN, C, and C++ are usually chosen to perform High-Performance Com-
puting (HPC) applications due to the performance they offer. But, these languages are now
getting old, and are not safe. Whereas, RUST is relatively a new programming language that
offers features like memory safety and user-friendly tooling.

This seminar report will first give an overview of the RUST programming language and
the features it offers, to understand how it is a safe programming language. Second, How
RUST compares to other programming languages. Finally, where RUST stands to perform HPC
applications by covering some actively maintained RUST HPC libraries followed by some used
HPC application examples.

i

Contents

List of Tables iii

List of Figures iii

Listings iii

List of Abbreviations iv

1 Rust Programming Language 1
1.1 "Hello, world!" . 1
1.2 Variables and Mutability . 2
1.3 Data types . 2

2 RUST Features 3
2.1 Ownership . 3
2.2 Borrowing . 4
2.3 Fearless Concurrency . 4
2.4 Error Handling . 4
2.5 Unsafe RUST . 4

3 General Comparison 5
3.1 Memory Management . 5
3.2 Performance . 5

3.2.1 Test 1 . 6
3.2.2 Test 2 . 6

4 HPC with RUST 6
4.1 Some actively maintained RUST libraries for HPC 7

4.1.1 RusataCUDA, an interface to NVIDIA CUDA Driver API 7
4.1.2 RUST-SmartCore, library for Machine learning 7
4.1.3 RUST-Rayon, a library for Data-parallelism 8
4.1.4 RUST-ArrayFire, a library for parallel computing 8
4.1.5 RUST-BIO, a library for bioinformatics 8

4.2 Examples of HPC applications with RUST . 8
4.2.1 RUST for Astrophysics; simple N-body physics simulation 8
4.2.2 Transpiling Python to RUST . 9

5 Conclusion 11

References 12

A Codes Used A1

ii

List of Tables
1 Overview of different possible programming languages [Bor21] 5
2 Results for Test-1 . 6
3 Results for N-body simulator based on leapfrog integrator [BB16] 9
4 Energy consumption for binary-trees [Rui17] . 9
5 Results for Black-Scholes Model [HH20] . 10

List of Figures
1 Integer types in RUST . 2
2 Results for Test-2 . 6
3 RUST-SmartCore . 8
4 RUST-py . 10

Listings
1 RUST "Hello, world!" using Bash . 1
2 "Hello, world!" main.rs . 1
3 Cargo.toml example . 1
4 immutable variable . 2
5 mutable variable example . 2
6 Boolean Type example . 3
7 Character, Array and Tuple example . 3
8 Unsafe RUST example . 4
9 General comparison Test-1 RUST code . A1
10 General comparison Test-1 C code . A1
11 General comparison Test-1 C++ code . A1
12 General comparison Test-1 Python code . A1
13 General comparison Test-1 Swift code . A1
14 Simple N-body physics simulator RUST code . A1
15 Simple N-body physics simulator C code . A2
16 Simple N-body physics simulator Go code . A4
17 Simple N-body physics simulator FORTRAN code A5

iii

List of Abbreviations
HPC High-Performance Computing

HPDA High-Performance Data Analytics

KB Kilobyte

MB Megabyte

GB Gigabyte

ms Milliseconds

s seconds

m minutes

J Joules

AST Abstract Syntax Tree

iv

RUST Programming for HPC application

1 Rust Programming Language
RUST is a new programming language with numerous application areas. It was initially de-
veloped for network services, command line applications, web assembly, and embedded devices.
RUST is a systems programming language that strives for safety and performance. It is typed,
compiled, and has the property of both functional programming and object-oriented languages.
RUST is a strongly statically typed language where data types of the variables are present at
compile time instead of run time which boosts the performance.[Vii20; Ash22] RUST’s history
can be divided into four epochs. The first epoch was from 2006 to 2010 which is known as
"The personal years". As it was a personal project of the inventor Graydon Hoare to develop a
memory-safe programming language. The second phase lasted from 2010 to 2012, named "The
Graydon years", where Graydon Hoare was still the primary maintainer, but the language was
already developed as a Mozilla project. Following that, steady improvements on the core con-
cepts led-up to "The type system years" which were from 2012 to 2014, where RUST’s type
system was majorly overhauled and improved. But after Graydon Hoare stepping back, RUST
development became a community-driven project. Finally, the epoch from 2015 to 2016 is known
as "The release year" and RUST version 1.0 was released in May of 2015. Since the release 1.0,
RUST has evolved over the years, the goal is to provide a complete concurrent, safe, and system
programming language. The development of RUST additionally focuses on language stability,
user-friendly tooling, and ecosystem.[KN22; Bor21]

1.1 "Hello, world!"

RUST has a compiler named "rustc". "cargo" as a package manager and build system. In RUST,
"cargo" is also used to make, build and run programs. One way to make "Hello, world!" program
is by using "cargo" commands in shell/ terminal.

1 $ curl https ://sh.rustup.rs -sSf | sh # To install RUST and Cargo in Linux/Mac
2 $ source "$HOME /. cargo/env"
3 $
4 $ cargo new hello # To make package "hello ".
5 $ cd hello # Navigating to package "hello ".
6 $ cargo build # TO compile local packages and all of the dependencies.
7 $ cargo run # To execute "main.rs"
8 Hello , world!

Listing 1: RUST "Hello, world!" using Bash

1 fn main() {
2 println!("Hello , world!")
3 }

Listing 2: "Hello, world!" main.rs

1 [package]
2 name = "hello"
3 version = "1.61.0"
4 edition = "2022"
5

6 [dependencies]
7 log = "0.4"
8 ndarray = "0.10.0"
9 num = "0.2"

Listing 3: Cargo.toml example

"cargo new {package name}" command makes the package, and in it creates "Cargo.toml"
and "Cargo.lock" files, with "src" and "target" folders. The "Corgo.toml" file is crucial as all

Section 1 Yuvraj Singh 1

RUST Programming for HPC application

the dependencies/crates are managed in it. The "main.rs" file holds the main execution code,
which is located in "src" folder.

1.2 Variables and Mutability

Variables in RUST are immutable by default. They are declared using the let keyword. A RUST
variable is immutable when its value is bound to a name and can not be changed. The code in
listing-4 would not compile by showing a compile time error: cannot assign twice to immutable
variable ’y’.

1 fn main() {
2 let y = 5; // declaring variable (immutable by default)
3 println!("The value of y is: {y}"); // printing value of "y"
4 y = 6; // assigning new value to "y" which will cause compile time error.
5 }

Listing 4: immutable variable

But, it is also possible to make variables in RUST mutable which makes it more convenient
to write code. RUST’s immutable variable can be made mutable by adding mut keyword in front
of variable name as shown in listing-5. This time program would not issue any error and will
compile.

1 fn main() {
2 let mut y = 51; // declaring mutable variable
3 println!("The value of x is: {y}"); // printing value of "y"
4 y = 16; // assigning new value to "y"
5 println!("The value of x is: {y}"); // printing last assigned value to "y"
6 }

Listing 5: mutable variable example

In RUST there are also constant value types, which are bound to a name as immutable.
Moreover, it is not possible to use mut keyword with constants to make them mutable - as they
can not be mutated. Constants are declared using const keyword, instead of let keyword.

1.3 Data types

Values in RUST are of certain data types. Which explains RUST what type of data is being
specified so it knows how to work with it. RUST is statically typed language, meaning it should
know all the variables at compile time. There are primarily four scalar types: integers, numbers,
floating points, Boolean, and characters. RUST’s signed integer type starts with i, and unsigned
integer with u. For example, u64 is for unsigned 64-bit integer type. Signed variants can store
numbers from -(2n−1) to (2n−1)-1 . Where the number of bits is denoted by n. And unsigned
variants store numbers from 0 to 2n -1. Moreover, the isize and usize types are defined with the
respect to the register width of the current architecture. For example, “arch”: 64 bits for the
machine with 64-bit architecture. Figure-1 shows built-in integer types in RUST.[KN22; Bor21]

Figure 1: Integer types in RUST [KN22]

Section 1 Yuvraj Singh 2

RUST Programming for HPC application

There are two floating point size types in RUST, f32 and f64. which are 32-bit and 64-bit in
size, respectively.

RUST supports basic mathematics for all number types: subtraction, addition, division,
multiplication, and remainder. Boolean types are also supported. With two possible values: true
and false.[KN22]

1 fn main() {
2 let T = true;
3 let F: bool = false; // explicit type annotation
4 }

Listing 6: Boolean Type example

RUST also supports, string type with complete UTF-8 support, characters, arrays (compound
type), tuples (compound type), structs and enums. Where character literal is specified by
single quotes, and string literal by double quotes. In RUST, both arrays and tuples have fixed
length/size: once declared, they can not grow/shrink.[KN22]

1 fn main() {
2 // Character type example
3 let char = ’A’;
4 let H: char = ’B’;
5

6 // Array example
7 let array1 = [10, 221, 33, 434, 52, 67, 0, 1];
8 let array2: [i64; 6] = [12, 231, 333, 434, 532, 12];
9

10 // Tuple example
11 let tuple: (f64 , i32 , u16) = (6.8239 , 5892, 9);
12 let (p, q, r) = tuple; // turning into three separate variables.
13 }

Listing 7: Character, Array and Tuple example

2 RUST Features
2.1 Ownership

The majority of computer programming languages manage memory either by garbage collector
or by explicitly allocating and de-allocating the memory. Whereas in RUST, memory is man-
aged by a system called ownership. Memory is only valid as long as the owner lives and it is
automatically dropped/freed as soon the owner goes out of scope. Ownership is a set of rules
that govern how RUST program manages memory with a set of rules that the compiler checks at
compile time. The Ownership feature of RUST is one of the most important factor that enables
this language to achieve high performance and memory safety without a garbage collector.

Three Ownership rules are:

1. Each value in RUST has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

If any of these three rules are not obeyed, the program will not compile. [KN22]

Section 2 Yuvraj Singh 3

RUST Programming for HPC application

2.2 Borrowing

Another important aspect of RUST’s type system are references, which are also known as bor-
rowers. In order to share the past of variables without taking ownership, the borrowing technique
is used, which is done by using references to the owned variable instead of copying the original
variable. The ownership of value is temporarily transferred to an entity and then returned to
the original owner. The lifetime of the borrower is only within the function until the ownership
is transferred to the original variable. Moreover, the scope of the borrower can not exceed the
scope of the owner. The borrowers are immutable by default. But, RUST allows one mutable
borrower per variable. This avoids the race condition when two pointers modify or access the
same data without synchronization. [Ash22]

2.3 Fearless Concurrency

Splitting the program into multiple threads to run multiple tasks at the same time improves
performance, but on other hand also increases complexity. As threads can run simultaneously,
there is no assurance about the order in which parts of code on the different threads will run.
This can cause problems like:-

• Race conditions: When threads access data in an inconsistent order.

• Deadlocks: When two threads wait for each other, as a result preventing both threads to
continue.

• Bugs: These happen in certain situations that are hard to reproduce and fix.

As the majority of computers take advantage of their multiple processors. RUST’s one of ma-
jor goal is to handle concurrent programming safely and efficiently. RUST fearless concurrency
addresses both concurrent and parallel programming. It is based on the concept of ownership
and type system. In Concurrent programming, separate parts of a program are executed inde-
pendently. In Parallel programming, different parts of the program execute at the same time. By
leveraging the concept of Fearless concurrency, many concurrency errors are compile-time errors
rather than run-time errors. In other words, incorrect code will refuse to compile and output
an error at compile time. This allows to write the code that is free of subtle bugs and easy to
refactor without introducing new bugs.[KN22]

2.4 Error Handling

2.5 Unsafe RUST

RUST is a safe programming language. But, RUST also has a second language mode hidden
inside that does not enforce memory safety guarantees. This mode is known as Unsafe RUST.
To switch to Unsafe RUST, unsafe keyword has to be added at beginning of the function block
that holds Unsafe RUST code as shown in listing-8. This mode is very useful to write code for
GPUs, as it is sometimes difficult to accommodate RUST safety guarantees while programming
for GPUs.[KN22]

1 fn main() {
2 // safe code
3 unsafe fn unsafe_function () {
4 // unsafe code
5 }
6 unsafe {
7 unsafe_function ();
8 }
9 }

Listing 8: Unsafe RUST example

Section 2 Yuvraj Singh 4

RUST Programming for HPC application

Unsafe RUST five Superpowers :-

• Deference a raw pointer.

• Calling an unsafe function.

• Implementing an unsafe trait

• Accessing or modifying a mutable static variable

• Accessing fields of union

3 General Comparison
RUST distinct itself from C++ and FORTRAN by bundling tooling with the compiler, which
allows for easy dependency management, document generation, and testing. RUST, is still
developing - it is not as developed as C++ and FORTRAN. Features like constant generics,
constant functions, and support for GPU targets are still under development. Macros in RUST
are more hygienic and ergonomic than C and C++, as identifiers declared in macros will not
"leak" or collide with one declared by user.[Sud20]

General comparison between computer programming languages can be done based on their
performance, how they manage memory, and how much memory they use.

3.1 Memory Management

There are three common types of memory management, The first one is, automatic manage-
ment, where memory is automatically managed. Second, manual management, which is done
by the programmer itself. In the third type, memory is managed by garbage collection. Where
memory allocation can be either automatic or manual, and memory deallocation is done by the
garbage collector. Most higher-level programming languages that ensure save memory manage-
ment, come with a huge performance overhead through the use of either a garbage collector or
interpreter. The Rust programming language on the other hand promises zero-cost abstractions
for guaranteed memory safety. RUST’s ownership is behind this. Table 1 provides a comparison
of listed languages according to some basic criteria.

Language Aspect Memory management System program Bare-metal
RUST Zero-cost safety Automatic Yes Yes
C Currently in use Manual +Automatic Yes Yes
Ada Safety critical apps Manual +Automatic Yes Yes
Python Interpreted Garbage Collected NO NO
Java JIT Compiler Garbage Collected NO NO
Go Modern language Garbage Collected Yes NOT officially
Haskell Functional Garbage Collected NO NO

Table 1: Overview of different possible programming languages [Bor21]

3.2 Performance

Performance means a lot of different things. For example, better performance can also mean
better resource utilization. To compare the performance and memory used by different computer
programming languages, one of the approaches could be to write the same code in different
computer programming languages, respectively.

Section 3 Yuvraj Singh 5

RUST Programming for HPC application

3.2.1 Test 1

In this test, simple codes to print integers from zero to one million in C, C++, RUST, Python,
and Swift were run. 9-13

Machine used - 2,3 GHz 8-Core Intel Core i9 (Mac OS)

Language Time taken (ms) Memory Usage (KB)
C 1500 827
RUST 1420 913
C++ 1856 860
Python 3016 8300
Swift 3848 1200

Table 2: Results for Test-1

3.2.2 Test 2

In the second test, five other programming languages than RUST were considered; C, C++, Go,
Java and Python. For this test, three algorithms; 1. Bubble sort Algorithm. 2. The Monte Carlo
Pi estimation and, 3. Monte Carlo pi estimation simpleRNG algorithm was considered. Code
for all three algorithms in each programming language mentioned was written. Figure 2 shows
the results. Bar-chart on left shows average CPU time benchmark results and the bar chart on
right shows average memory usage benchmark results.[Wil22]

It can be seen RUST achieved the first position for average CPU time in bubble sort and
Monte Carlo Pi Estimation algorithm, and lost by a very small margin for the third test from C
and C++. The bar chart on the right-hand side shows memory usage. Here we can see RUST
came at second position just after C.

Figure 2: Results for Test-2 [Wil22]

4 HPC with RUST
It is estimated that 49% - 88% of software bugs are caused by memory unsafely. For exam-
ple, double-free, use-after-free, under-flows and buffer over-, use of uninitialized memory or data
races.[Sud20] Choice of programming language and technologies are important to scientific soft-
ware development, which is dictated by support interface to legacy systems, architectures, con-
venient usage of modern technologies, and developer familiarity. It is believed that user-friendly

Section 4 Yuvraj Singh 6

RUST Programming for HPC application

languages like RUST have better potential to gain traction in the developer and scientific commu-
nity. Moreover, RUST is inline with modern coding standards. In RUST, rayon crate supports
shared-memory parallelism and Multi-threading. The central package repository is located on
https://crates.io and can be used to build complex projects. Some crates are still in development
but the feature set is very broad. But, there is a lack of support for GPU programming. The
RUST compiler back-end support for NVIDIA graphic cards. Further, RUST code written for
GPU will be unsafe on most occasions. Crates like rustcuda and accel provide their best to com-
plete CUDA programming experience in RUST. RUST is capable of doing HPC but of making it
fully HPC capable, some environment variables need to be set. For example, rustacuda requires
CUDA_LIBRARY_DIRECTORY to find CUDA run time libraries. [Sud20]

Lower-level programming languages like C/C++ are the most used for HPC applications.
But, they do not offer much in terms of safety (by default). Therefore, it is completely the
developer’s responsibility to not access invalid memory regions. In the previous section, it was
discussed that the RUST programming language addresses safety issues like race conditions,
deadlocks, accessing invalid memory regions, and offers convenient error messaging at compile
time.[Sud20]

RUST does not include in-built support for multidimensional arrays and complex numbers.
But, RUST libraries like num-complex offers support for complex numbers, nalgebra and ndarray
for algebra and n-dimensional array.

4.1 Some actively maintained RUST libraries for HPC

4.1.1 RusataCUDA, an interface to NVIDIA CUDA Driver API

RusataCUDA is a High-level interface NVIDIA CUDA Driver API in RUST. which helps to
bring GPU acceleration by an easy-to-use interface to the CUDA toolkit. RustaCUDA makes
it easy to transfer data, manage GPU memory, loading and launch compute kernels written
in any language. One of the primary design goals of RusataCUDA is to make it familiar to
RUST code developers. The second is to provide the safest interface even if many aspects of
GPU accelerated computations are difficult to conceal with RUST safety guarantees. In order
to use RusataCUDA, one is required to install CUDA version 8 or newer with a CUDA-capable
GPU and modify cargo.toml file by adding the latest rustacuda dependencies. RusataCUDA is
still under development. Moreover, it does not support Multi-GPU support, Run time linking,
CUDA Graphs, and more.[Now22]

4.1.2 RUST-SmartCore, library for Machine learning

RUST-Smartcore is a machine learning library also for numerical computing. It supports a large
number of well-used machine learning algorithms. Moreover, RUST-Smartcore does not have
any hard dependencies on other RUST crates. Compared to other RUST libraries for machine
learning it is very well documented with tutorials on RUST-Smartcore’s website. This library
additionally provides a set of tools for optimization, scientific computing, and linear algebra.
To set up RUST-Smartcore, it is required to modify cargo.toml file by adding dependencies,
and also need to include linear algebra library dependencies like ndarray and nalgebra. These
libraries enable us to use n-dimensional containers for numerical and general-purpose linear
algebra.[Vla22]
Figure 3 shows SmartCore library architecture represented in layers, in which linear algebra and
optimization functions are at the first level, as the majority of machine learning algorithms rely
on them to fit a model or to make a prediction. Due to this, machine learning algorithms are
defined on top of the first level. And then, model evaluation and model selection functions are
defined at the top level.

Section 4 Yuvraj Singh 7

RUST Programming for HPC application

Figure 3: SmartCore’s architecture represented as layers. [Vla22]

4.1.3 RUST-Rayon, a library for Data-parallelism

For data-parallelism rayon crate is used in RUST. It is a lightweight library that makes it easy to
convert sequential computations to parallel ones. Parallel execution causes many kinds of bugs,
but rayon crate guarantees data-race freedom.[Sud20]

4.1.4 RUST-ArrayFire, a library for parallel computing

RUST-ArrayFire is a high-performance library for parallel computing. It comes with an easy-
to-use API. It enables to write portable computing code that is portable across CUDA and
OpenCL. Few lines of code in RUST-ArrayFire can replace numerous lines of parallel computing
code. This is possible as RUST-ArrayFire abstracts away much of the details by providing a
high-level container object, which is an array. Array, represents data stored on a GPU, CPU or
FPGA. This abstraction allows developers to write parallel applications in a high-level language
without thinking about low-level optimization. RUST-ArrayFire also includes its own memory
manager which reuses device memory whenever possible. Moreover, it also provides additional
datatypes like C32 and C64 for complex single and double-precision values. B8 for 8-bit Boolean
values and F16 for 16-bit float numbers. To use this library cargo.toml file needs to be modified
by adding latest ArrayFire dependency.[Now22]

4.1.5 RUST-BIO, a library for bioinformatics

The amount of data is increasing in most sectors. It is the same for experimental data in bioin-
formatics. Thus, it becomes challenging for computational analysis. So far, many computational
libraries for bioinformatics are written in languages like C++ and Python. Languages like C
and C++, provide optimal performance but at cost of high complexity and low safety. Whereas,
high-level languages like Python come with computational overhead. On the other hand, RUST
has abilities of low-level, system programming languages and other features like enforcing thread
safety, so that race conditions do not occur as discussed in the RUST features section.

RUST-Bio is a general-purpose bioinformatics library. It also provides a fast, safe set, and
high-level API for many algorithms and data structures that are used in bioinformatics. For
example, RUST-bio provides suffix arrays, pairwise alignment, an open reading frame (ORF)
search algorithm, q-gram index, and major pattern matching algorithms. The performance of
this RUST-bio is comparable to that of C++. This library is supported on RUST 1.53.0 or later.
And to set up RUST-bio it is required to modify the cargo.toml file by adding the most recent
RUST-bio dependencies. [Kös15]

4.2 Examples of HPC applications with RUST

4.2.1 RUST for Astrophysics; simple N-body physics simulation

The Astrophysics community generally uses lower-level programming languages like C, C++,
and FORTRAN due to the performance they offer. As these languages also rely on developers
for memory control and concurrency, which usually causes errors. For example, accessing an

Section 4 Yuvraj Singh 8

RUST Programming for HPC application

invalid memory region, which can produce random execution behavior and can also affect the
scientific results. As RUST is a safe programming language and performance is comparable to
C and C++ and also addresses errors caused by accessing an invalid memory region, memory
leaks, and race conditions. Therefore, RUST is a good candidate for performing algorithms used
in astrophysics.[BB16]

Results - Simple N-body physics simulator
A simple N-Body dynamical simulator code based on a leapfrog integrator was written in Rust,
FORTRAN, C, and Go to compare execution time for each language. 14-17 The value of N was
set to 2, meaning the position of the two particles after one million years was calculated.

Machine used - 1,6 GHz Intel Core i5 (Linux)

Language Time taken
RUST 2m33.082s
C 2m53.504s
FORTRAN 3m16.314s
Go 4m10.233s

Table 3: Results for N-body simulator based on leapfrog integrator [BB16]

From the result in Table 3, it can be inferred that RUST is the fastest followed by C,
FORTRAN, and Go respectively.

4.2.2 Transpiling Python to RUST

Python is one of the computer programming languages which is loved by the machine learning and
scientific computing community. But it is difficult to achieve high-performance implementation,
and it becomes even more difficult with limited computational resources. Nowadays, energy
awareness in scientific and industrial computing is becoming a big concern. As the heat generated
from computers is not as much responsible for carbon emissions than the resources that are used
to generate energy to power computers. A large adaptation of the Python programming language
by the developer community can sum up to a huge amount of energy consumption. It can be
observed from the table-4 that Python is among the programming languages that use a large
amount of energy, for example, to run binary-tree code.[Rui17]

Language Energy(J)
C 39.80
C++ 41.23
RUST 49.07
FORTRAN 69.82
Ada 95.02
Java 111.84
C# 189.74
JavaScript 312.14
Go 636.71
Ruby 855.12
PHP 1,397.51
Python 1,793.49
Perl 3,542.20

Table 4: Energy consumption for binary-trees [Rui17]

Section 4 Yuvraj Singh 9

RUST Programming for HPC application

Moreover, the execution time and memory that the Python program consumes are not work-
able in constrained systems. In General, Python-like high-level language code depends on opti-
mized libraries. The main challenge of optimizing to a target are platform-specific optimization,
parallelization and cross-library parallelization. [HH20]

In transpiling Python to RUST approach, existing python code is transpiled to RUST. This
is based on RUST as an intermediate source code step.

Another good thing is that source-to-source transpiled code allows optimization of code as
a whole including the libraries and allows a path from a high level of abstraction to optimized
machine code. As Python programs that depend on optimized libraries like SciPy or on other
libraries can be transpiled to RUST semi-automatically.

The tools used in this technique are MonkeyType and pyrs. Transpilation consists of syntax
conversion, manual refactoring, runtime types, and validation testing. First, the python program
is run to get all the information about the types used by the program. This allows information
required in later steps of transpilation. Second, syntax conversion is applied using a publicly
available Abstract Syntax Tree (AST) to Python code. The Python AST is automatically con-
verted into RUST code by visiting each and every AST node using the visitor pattern, which
outputs RUST code. After syntax conversion, it is advised to manually check the code, as it
might not compile just after syntax conversion. Once the code compiles, it should also be vali-
dated that its code functionality is equivalent to that of the original.[HH20] Further, this code
can be modified or optimized for better performance. Finally, the performance of the RUST
code can be measured. The outline of this approach is depicted in Figure 4.

Figure 4: Transpiling Python to RUST [HH20]

Used Case - Black-Scholes Model The Black-Scholes is a model for financial market
dynamics, this model was used to compare performance. First, Python code for Black-Scholes
model was executed and this source code was transpiled to RUST code.[HH20]

Machine used - 1,6 GHz Intel Core i5 (Linux)
Results

Language Time taken Peak memory consumed
RUST 11.70s 3.456 GB
Python 27.29ss 9.372 GB

Table 5: Results for Black-Scholes Model [HH20]

The result shows that RUST uses 2.7 times less memory resources with 2.3 times less execu-
tion time.

Using this approach optimized Python code or Python code for HPC applications can be

Section 4 Yuvraj Singh 10

RUST Programming for HPC application

transpiled to RUST to get better performance, possibly with less execution time and energy
consumption.

5 Conclusion
Before shifting to the RUST programming language, one should examine that the specific RUST
library for HPC has all the desired capabilities, as many of RUST HPC libraries are still under
development and are not fully functional. RUST is a comparatively new programming language,
which is also difficult to learn due to its complex syntax with a different ecosystem; for example
crate/library management system. Thus, training must be given to students, researchers, em-
ployees, and other users for better exposure. Regardless of that, RUST is very well documented
with numerous tutorials and a cooperative RUST community. From the sections presented in this
report, it can be concluded that RUST is a viable choice for HPC applications. This is due to its
performance in comparison with languages like FORTRAN and C++. Moreover, RUST provides
memory safety which hinders the possibility of errors like accessing invalid memory regions, data
races, deadlocks, and compile time errors. However, so far RUST programming with GPU is not
been that developed so far. And according to [Sud20] it will difficult for GPGPU programming
would be hard to achieve while maintaining RUST safety guarantees. Most of the GPU code in
RUST written will be unsafe. Nevertheless, RUST has no problems calling GPU kernels written
in any other programming language. Another advantage of RUST is clean and clear error mes-
sages at compile time. There is also the possibility an OpenMP-similar, parallelization model can
also be implemented currently in RUST using procedural macros. Unfortunately, the developer
and the scientific community seem not that aware of this quality of RUST, and movement in
this direction is quite slow.[Sud20] Last but not least, RUST’s results were more promising than
other programming languages in tests conducted, from performance, memory consumption, and
energy consumption perspective. Because of automatic memory management in RUST, users
like scientists would be able to focus more on their research work rather than thinking about
allocating and freeing memory. Also, not forgetting the fearless concurrency of RUST which
allows for parallelization with safety guarantees. By combining all the points RUST is a
serious contestant for the next big language in high-performance computing.

The conclusion further sum-up as:-

• RUST is a GOOD candidate to perform HPC applications.

• RUST is getting better (inc. HPC Libraries, ecosystem, etc.).

• RUST has a variety of HPC Libraries.

• RUST is very well documented.

• RUST is safe a language.

• RUST is one of the green languages to perform HPC applications.

Section 5 Yuvraj Singh 11

RUST Programming for HPC application

References
[Ash22] Gaurav Nattanmai Ganesh Ashwin Kumar Balakrishnan. “Modern C++ and Rust in

embedded memory-constrained systems”. In: (2022), pp. 9–11.

[BB16] Sergi Blanco-Cuaresma1 and Emeline Bolmont. “What can the programming language
Rust do for astrophysics?” In: (2016), pp. 1–4.

[Bor21] Nico Borgsmüller. “The Rust Programming Language for Embedded Software Devel-
opment”. In: (Jan. 2021), pp. 3–6, 56–62.

[HH20] Kai Jylkkä Henri Lunnikivi and Timo Hämäläinen. “Transpiling Python to Rust for
Optimized Performance”. In: (Oct. 2020).

[KN22] Steve Klabnik and Carol Nichols. “The Rust Programming Language”. In: (May 2022).
url: https://doc.rust-lang.org/book/title-page.html.

[Kös15] Johannes Köster. “Rust-Bio: a fast and safe bioinformatics library”. In: (Oct. 2015).

[Now22] Anthony Nowell. “Are we learning yet?; A work-in-progress to catalog the state of
machine learning in Rust”. In: (Sept. 2022). url: https://www.arewelearningyet.
com.

[Rui17] Marco Couto Rui Pereira. “Energy Efficiency across Programming Languages”. In:
(2017). url: https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/
paperSLE.pdf.

[Sud20] Michal Sudwoj. “Rust programming language in the high-performance computing en-
vironment”. In: (Sept. 2020), pp. 5–18.

[Vii20] Rasmus Viitanen. “Evaluating Memory for Graph-Like Data Structures in the Rust
Programming language: Performance and Usability”. In: (2020), pp. 3–12.

[Vla22] Lorenzo Moriondo Vlad Orlov Luis Moreno. “SmartCore user guide”. In: (2022). url:
https://smartcorelib.org/user_guide/quick_start.html.

[Wil22] Ayman Alahmar William Bugden. “Rust: The Programming Language for Safety and
Performance”. In: (June 2022), pp. 3–8.

Section Yuvraj Singh 12

https://doc.rust-lang.org/book/title-page.html
https://www.arewelearningyet.com
https://www.arewelearningyet.com
https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf
https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf
https://smartcorelib.org/user_guide/quick_start.html

RUST Programming for HPC application

A Codes Used

1 fn main() {
2 for i in 0..1000000 {
3 println!("{}", i);
4 }
5 }

Listing 9: General comparison Test-1 RUST code

1 #include <stdio.h>
2 int main(void)
3 {
4 int count;
5 for(count = 0; count <= 1000000; count ++)
6 {
7 printf("%d \n", count);
8 printf("\n");
9 }

10 }

Listing 10: General comparison Test-1 C code

1 #include <iostream >
2 int main() {
3 int input;
4 for (int input = 0; input <= 1000000; input ++)
5 {
6 std::cout << "\n" << input;
7 }
8 }

Listing 11: General comparison Test-1 C++ code

1 for i in range(0, 1000000):
2 print(i)

Listing 12: General comparison Test-1 Python code

1 for i in 0...1000000
2 {
3 print(i)
4 }

Listing 13: General comparison Test-1 Swift code

1 // open source code https :// github.com/marblestation/benchmark -leapfrog
2 const N_PARTICLES: usize = 2;
3

4 fn main() {
5 let mut time: f64 = 0.;
6 let time_step: f64 = 0.08;
7 let half_time_step: f64 = time_step /2.;
8 let time_limit: f64 = 365.25 * 1e6;
9 let mut x: [[f64; 3]; N_PARTICLES] = [[0.; 3]; N_PARTICLES];

10 let mut v: [[f64; 3]; N_PARTICLES] = [[0.; 3]; N_PARTICLES];
11 let mut a: [[f64; 3]; N_PARTICLES] = [[0.; 3]; N_PARTICLES];
12 let mut m: [f64; N_PARTICLES] = [0.; N_PARTICLES];
13 m[0] = 0.08; // M_SUN
14 m[1] = 3.0e-6; // M_SUN
15 x[1][0] = 0.0162; // AU
16 x[1][1] = 6.57192058353e-15; // AU
17 x[1][2] = 5.74968548652e-16; // AU

Section A Yuvraj Singh A1

RUST Programming for HPC application

18 v[1][0] = -1.48427302304e-14;
19 v[1][1] = 0.0399408809121;
20 v[1][2] = 0.00349437429104;
21

22 while time <= time_limit {
23 integrator_leapfrog_part1(N_PARTICLES , &mut x, &v, half_time_step);
24 time += half_time_step;
25 gravity_calculate_acceleration(N_PARTICLES , &m, &x, &mut a);
26 integrator_leapfrog_part2(N_PARTICLES , &mut x, &mut v, &a, time_step ,

half_time_step);
27 time += half_time_step;
28 }
29 // println! ("Hello , world! ");
30 println!("{:?}", x)
31 }
32

33 fn integrator_leapfrog_part1(n_particles: usize , x: &mut [[f64; 3]; N_PARTICLES
], v: &[[f64; 3]; N_PARTICLES], half_time_step: f64) {

34 for i in 0.. n_particles {
35 x[i][0] += half_time_step * v[i][0];
36 x[i][1] += half_time_step * v[i][1];
37 x[i][2] += half_time_step * v[i][2];
38 }
39 }
40

41 fn integrator_leapfrog_part2(n_particles: usize , x: &mut [[f64; 3]; N_PARTICLES
], v: &mut [[f64; 3]; N_PARTICLES], a: &[[f64; 3]; N_PARTICLES], time_step:
f64 , half_time_step: f64) {

42 for i in 0.. n_particles {
43 v[i][0] += time_step * a[i][0];
44 v[i][1] += time_step * a[i][1];
45 v[i][2] += time_step * a[i][2];
46 x[i][0] += half_time_step * v[i][0];
47 x[i][1] += half_time_step * v[i][1];
48 x[i][2] += half_time_step * v[i][2];
49 }
50 }
51

52 fn gravity_calculate_acceleration(n_particles: usize , m: &[f64; N_PARTICLES], x:
&[[f64; 3]; N_PARTICLES], a: &mut [[f64; 3]; N_PARTICLES]) {

53 let g = 6.6742367e-11; // m^3.kg^-1.s^-2
54 for i in 0.. n_particles {
55 a[i][0] = 0.;
56 a[i][1] = 0.;
57 a[i][2] = 0.;
58 for j in 0.. n_particles {
59 if j == i {
60 continue;
61 }
62 let dx = x[i][0] - x[j][0];
63 let dy = x[i][1] - x[j][1];
64 let dz = x[i][2] - x[j][2];
65 let r = (dx*dx + dy*dy + dz*dz).sqrt();
66 let prefact = -g/(r*r*r) * m[j];
67 a[i][0] += prefact * dx;
68 a[i][1] += prefact * dy;
69 a[i][2] += prefact * dz;
70 }
71 }
72 }

Listing 14: Simple N-body physics simulator RUST code

1 // open source code https :// github.com/marblestation/benchmark -leapfrog

Section A Yuvraj Singh A2

RUST Programming for HPC application

2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <math.h>
5

6 void integrator_leapfrog_part1(int n_particles , double x[][3] , double v[][3],
double half_time_step){

7 for (int i=0;i<n_particles;i++){
8 x[i][0] += half_time_step * v[i][0];
9 x[i][1] += half_time_step * v[i][1];

10 x[i][2] += half_time_step * v[i][2];
11 }
12 }
13 void integrator_leapfrog_part2(int n_particles , double x[][3] , double v[][3],

double a[][3] , double time_step , double half_time_step){
14 for (int i=0;i<n_particles;i++){
15 v[i][0] += time_step * a[i][0];
16 v[i][1] += time_step * a[i][1];
17 v[i][2] += time_step * a[i][2];
18 x[i][0] += half_time_step * v[i][0];
19 x[i][1] += half_time_step * v[i][1];
20 x[i][2] += half_time_step * v[i][2];
21 }
22 }
23

24 void gravity_calculate_acceleration(int n_particles , double m[], double x[][3] ,
double a[][3]) {

25 double G = 6.6742367e-11; // m^3.kg^-1.s^-2
26 for (int i=0; i<n_particles; i++){
27 a[i][0] = 0;
28 a[i][1] = 0;
29 a[i][2] = 0;
30 for (int j=0; j<n_particles; j++){
31 if (j == i) {
32 continue;
33 }
34 double dx = x[i][0] - x[j][0];
35 double dy = x[i][1] - x[j][1];
36 double dz = x[i][2] - x[j][2];
37 double r = sqrt(dx*dx + dy*dy + dz*dz);
38 double prefact = -G/(r*r*r) * m[j];
39 a[i][0] += prefact * dx;
40 a[i][1] += prefact * dy;
41 a[i][2] += prefact * dz;
42 }
43 }
44 }
45

46 int main(int argc , char* argv []) {
47 const int n_particles = 2;
48 double time = 0;
49 double time_step = 0.08;
50 double half_time_step = 0.5* time_step;
51 double time_limit = 365.25 * 1e6;
52 double x[n_particles][3];
53 double v[n_particles][3];
54 double a[n_particles][3];
55 double m[n_particles];
56

57 for (int i=0; i<n_particles; i++) {
58 m[i] = 0;
59 x[i][0] = 0;
60 x[i][1] = 0;
61 x[i][2] = 0;

Section A Yuvraj Singh A3

RUST Programming for HPC application

62 v[i][0] = 0;
63 v[i][1] = 0;
64 v[i][2] = 0;
65 a[i][0] = 0;
66 a[i][1] = 0;
67 a[i][2] = 0;
68 }
69 m[0] = 0.08; // M_SUN
70 m[1] = 3.0e-6; // M_SUN
71 x[1][0] = 0.0162; // AU
72 x[1][1] = 6.57192058353e-15; // AU
73 x[1][2] = 5.74968548652e-16; // AU
74 v[1][0] = -1.48427302304e-14;
75 v[1][1] = 0.0399408809121;
76 v[1][2] = 0.00349437429104;
77

78 while(time <= time_limit) {
79 integrator_leapfrog_part1(n_particles , x, v, half_time_step);
80 time += half_time_step;
81 gravity_calculate_acceleration(n_particles , m, x, a);
82 integrator_leapfrog_part2(n_particles , x, v, a, time_step ,

half_time_step);
83 time += half_time_step;
84 }
85 printf("Position 1: %f %f %f | Position 2: %f %f %f\n", x[0][0] , x[0][1] , x

[0][2] , x[1][0] , x[1][1] , x[1][2]);
86 }

Listing 15: Simple N-body physics simulator C code

1 // open source code https :// github.com/marblestation/benchmark -leapfrog
2 package main
3

4 import (
5 "fmt"
6 "math"
7)
8

9 const (
10 n_particles = 2
11 G = 6.6742367e-11 // m^3.kg^-1.s^-2
12)
13

14 func main() {
15 var time float64 = 0
16 var time_step float64 = 0.08
17 var half_time_step float64 = time_step /2.
18 var time_limit float64 = 365.25 * 1e6
19

20 //// Create slices and not arrays , since arrays are passed by copy to func
21 x := &[n_particles][3] float64{
22 {0, 0, 0},
23 {0.0162 , 6.57192058353e-15, 5.74968548652e-16}, // AU
24 }
25 v := &[n_particles][3] float64{
26 {0, 0, 0},
27 { -1.48427302304e-14, 0.0399408809121 , 0.00349437429104} ,
28 }
29 a := &[n_particles][3] float64 {}
30 m := &[n_particles]float64 {0.08, 3.0e-6} // M_SUN
31

32 for time <= time_limit {
33 integrator_leapfrog_part1(x, v, half_time_step)
34 time += half_time_step

Section A Yuvraj Singh A4

RUST Programming for HPC application

35 gravity_calculate_acceleration(m, x, a)
36 integrator_leapfrog_part2(x, v, a, time_step , half_time_step)
37 time += half_time_step
38 }
39 fmt.Println("Positions:", x)
40 }
41

42 func integrator_leapfrog_part1(x, v *[n_particles][3] float64 , half_time_step
float64) {

43 for i := 0; i<n_particles; i++ {
44 x[i][0] += half_time_step * v[i][0]
45 x[i][1] += half_time_step * v[i][1]
46 x[i][2] += half_time_step * v[i][2]
47 }
48 }
49

50 func integrator_leapfrog_part2(x, v, a *[n_particles][3] float64 , time_step ,
half_time_step float64) {

51 for i := 0; i<n_particles; i++ {
52 v[i][0] += time_step * a[i][0]
53 v[i][1] += time_step * a[i][1]
54 v[i][2] += time_step * a[i][2]
55 x[i][0] += half_time_step * v[i][0]
56 x[i][1] += half_time_step * v[i][1]
57 x[i][2] += half_time_step * v[i][2]
58 }
59 }
60

61 func gravity_calculate_acceleration(m *[n_particles]float64 , x, a *[n_particles
][3] float64) {

62 for i := 0; i<n_particles; i++ {
63 a[i][0] = 0
64 a[i][1] = 0
65 a[i][2] = 0
66 for j := 0; j<n_particles; j++ {
67 if j == i {
68 continue
69 }
70 dx := x[i][0] - x[j][0]
71 dy := x[i][1] - x[j][1]
72 dz := x[i][2] - x[j][2]
73 r := math.Sqrt(dx*dx + dy*dy + dz*dz)
74 prefact := -G/(r*r*r) * m[j]
75 a[i][0] += prefact * dx
76 a[i][1] += prefact * dy
77 a[i][2] += prefact * dz
78 }
79 }
80 }

Listing 16: Simple N-body physics simulator Go code

1 ! open -source code https :// github.com/marblestation/benchmark -leapfrog
2 program leapfrog
3 implicit none
4

5 integer , parameter :: n_particles = 2
6 real , dimension(n_particles) :: m
7 real , dimension(3, n_particles) :: x, v, a
8 real , dimension (3) :: dR
9 real :: t, dt , t_end , r2

10 real :: time , time_step , time_limit , half_time_step
11 real , parameter :: G = 6.6742367e-11 ! m^3.kg^-1.s^-2
12 integer :: i

Section A Yuvraj Singh A5

RUST Programming for HPC application

13

14 time = 0
15 time_step = 0.08 ! time step , days
16 time_limit = 365.25 e6 ! days
17 ! Set initial conditions
18 m(:) = (/0.08 ,3.0e-6/) ! M_SUN
19 x(:,1) = 0.0
20 x(:,2) = (/0.0162 ,6.57192058353e -15 ,5.74968548652e-16/) ! AU
21 v(:,1) = 0.0
22 v(:,2) = (/ -1.48427302304e -14 ,0.0399408809121 ,0.00349437429104/)
23 a(:,:) = 0.0
24

25 half_time_step = 0.5d0*time_step
26 do while (time.le.time_limit)
27 call integrator_leapfrog_part1(n_particles ,x,v,half_time_step)
28 time = time + half_time_step
29 call gravity_calculate_acceleration(n_particles ,m,x,a)
30 call integrator_leapfrog_part2(n_particles ,x,v,a,time_step ,

half_time_step)
31 time = time + half_time_step
32 enddo
33 write (*,*) x
34

35 end program leapfrog
36

37 subroutine integrator_leapfrog_part1(n_particles ,x,v,half_time_step)
38 implicit none
39

40 ! Input/Output
41 integer ,intent(in) :: n_particles
42 real ,intent(out) :: x(3, n_particles)
43 real ,intent(in) :: v(3, n_particles)
44 real ,intent(in) :: half_time_step
45

46 ! Local
47 integer :: i
48

49 do i=1, n_particles
50 ! Positions
51 x(1,i) = x(1,i) + half_time_step * v(1,i)
52 x(2,i) = x(2,i) + half_time_step * v(2,i)
53 x(3,i) = x(3,i) + half_time_step * v(3,i)
54 enddo
55 end subroutine integrator_leapfrog_part1
56

57 subroutine integrator_leapfrog_part2(n_particles ,x,v,a,time_step ,half_time_step)
58 implicit none
59

60 ! Input/Output
61 integer ,intent(in) :: n_particles
62 real ,intent(out) :: x(3, n_particles), v(3, n_particles)
63 real ,intent(in) :: a(3, n_particles)
64 real ,intent(in) :: time_step , half_time_step
65

66 ! Local
67 integer :: i
68

69 do i=1, n_particles
70 ! Velocities
71 v(1,i) = v(1,i) + time_step * a(1,i)
72 v(2,i) = v(2,i) + time_step * a(2,i)
73 v(3,i) = v(3,i) + time_step * a(3,i)
74

Section A Yuvraj Singh A6

RUST Programming for HPC application

75 ! Positions
76 x(1,i) = x(1,i) + half_time_step * v(1,i)
77 x(2,i) = x(2,i) + half_time_step * v(2,i)
78 x(3,i) = x(3,i) + half_time_step * v(3,i)
79 enddo
80 end subroutine integrator_leapfrog_part2
81

82 subroutine gravity_calculate_acceleration(n_particles ,m,x,a_grav)
83 implicit none
84

85 ! Input/Output
86 integer ,intent(in) :: n_particles
87 real ,intent(in) :: x(3, n_particles)
88 real ,intent(in) :: m(n_particles)
89 real , intent(out) :: a_grav(3, n_particles)
90

91 ! Local
92 integer :: i,j
93 real :: dx ,dy ,dz ,rr,prefact ,G
94 !---
95

96 G = 6.6742367e-11 ! m^3.kg^-1.s^-2
97 do i = 1,n_particles
98 ! Initialization
99 a_grav(1,i) = 0.0d0

100 a_grav(2,i) = 0.0d0
101 a_grav(3,i) = 0.0d0
102

103 do j = 1,n_particles
104 if (i.ne.j) then
105 dx = x(1,i) - x(1,j)
106 dy = x(2,i) - x(2,j)
107 dz = x(3,i) - x(3,j)
108 rr = sqrt(dx*dx + dy*dy + dz*dz)
109 prefact = -G*m(j)/(rr*rr*rr)
110

111 a_grav(1,i) = a_grav(1,i) + prefact * dx
112 a_grav(2,i) = a_grav(2,i) + prefact * dy
113 a_grav(3,i) = a_grav(3,i) + prefact * dz
114 endif
115 enddo
116 enddo
117

118 !---
119 return
120 end subroutine gravity_calculate_acceleration

Listing 17: Simple N-body physics simulator FORTRAN code

Section A Yuvraj Singh A7

	Contents
	List of Tables
	List of Figures
	Listings
	List of Abbreviations
	Rust Programming Language
	"Hello, world!"
	Variables and Mutability
	Data types

	RUST Features
	Ownership
	Borrowing
	Fearless Concurrency
	Error Handling
	Unsafe RUST

	General Comparison
	Memory Management
	Performance
	Test 1
	Test 2

	HPC with RUST
	Some actively maintained RUST libraries for HPC
	RusataCUDA, an interface to NVIDIA CUDA Driver API
	RUST-SmartCore, library for Machine learning
	RUST-Rayon, a library for Data-parallelism
	RUST-ArrayFire, a library for parallel computing
	RUST-BIO, a library for bioinformatics

	Examples of HPC applications with RUST
	RUST for Astrophysics; simple N-body physics simulation
	Transpiling Python to RUST

	Conclusion
	References
	Codes Used

