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RUST History

B Invented by - Graydon Hoare
B Development Focus

» Network Services
» Command Line Applications
» WebAssembly (WASM)
» Embedded Devices
B 4 Epochs
» Personal years (2006 - 2010)
» The Graydon years (2010 - 2012)
» The Type-system years (2012 - 2014)
» The Release year (2015 - 2016)

B First Release - RUST 1.0
B Current Release - RUST 1.62.0 (30 June, 2022)
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RUST Features

B Systems Programming Language
B Statically Typed Language

B Memory Safety

B Thread Safety

B Efficient C Bindings

B 2 MODES

» Safe RUST (Default)
» Unsafe RUST

Yuvraj Singh 4/35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
00@00000000000

RUST Development Tools

B Compiler
» rustc
B Package Manager
» cargo
B Editor Support Examples
» Vim, Emacs, Kate and gedit
B IDE Support Examples
» VScode and Eclipse
B Version Translator
» RustFix
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RUST "Hello, World!"

(base) yuvrajsingh@Yuvrajs-MBP ~ % cargo new hello
Created binary (application) ‘hello’ package
(base) yuvrajsingh@Yuvrajs-MBP ~ % cd hello
(base) yuvrajsingh@Yuvrajs-MBP hello % cargo build
Compiling hello v@.1.8 (/Users/yuvrajsingh/hello)
F d dev [unoptimized + debuginfo] target(s) in 3.77s
(base) yuvrajsingh@Yuvrajs-MBP hello % cargo run
Finished dev [unoptimized + debuginfo] target(s) in @.0@s
Running ‘target/debug/hello’
Hello, world!
(base) yuvrajsingh®Yuvrajs-MBP hello % [

Cargo.lock Cargo.toml target
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HPC Applications with RUST

Conclusion

RUST "Hello, World!"

main.rs

ain() {
rintint(“He

Cargotoml
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Data-Types (1)

Integer Types Integer Literals

Length Signed Unsigned
8-bit i8

Number literals Example

Decimal 98_222
i16

Hex oxff
i32
) Octal 0077
i64

128-bit 128 IEDY ©b1111_0000

Byte (u8 only) DAY

arch isize
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Data-Types (2)

B Float Type

» 32 and f64
B Boolean Type

» true and false
B String Type

» strand String
B Also supports

» Arrays
» Tuples
» Structs and Enums
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M Variables

» Declared using "let" keyword

» "mut" keqord makes variable mutable E.g.-> let mut i8
B Constants

» Declared using "const"
» Immutable

B Shadowing

Yuvraj Singh
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RUST’s Ownership Feature

B Responsible for memory-safety and high performance
B Prevents Bugs
B Manages Memory

B Rules

» each variable has owner
» one owner at a time
» value drops when out of scope
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RUST'’s Borrowing Feature

B Shares variable’s past
» uses reference

B Temporary owner

B Cannot exceed scope of owner
B Immutable by default
» ONLY one mutation possible

Yuvraj Singh
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RUST'’s Fearless Concurrency Feature

B Goal
» Handling concurrent programming safely and efficiently
B Based on

» Ownership
» Type System
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Unsafe RUST

B "unsafe" keyword
B Unsafe Superpowers

» Calling unsafe functions

» Dereference a raw pointer

» Implement an unsafe trait

» Access or modify a mutable static variable
B Unsafe Disadvantage

» Memory Unsafety
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RUST’s Popularity

[3]1nterest in Rust programming language over time
(May 2012-May 2022, generated from google trends)
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RUST’s Popularity

Loved vs. Dreaded

Want to continue

2022 Stack Overflow Developer Survey: The 20 most popular programming languages
(Image: Stack Overflow)
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General Comparision

[1] Overview of different possible programming languages

Language Aspect Memory Systems | Bare-metal
management program.

Rust Zero-cost safety Automatic Yes Yes
(6] Currently in use Manual + Automatic Yes Yes
Ada Safety critical apps | Manual + Automatic Yes Yes
Python Interpreted Garbage Collected No No
Java JIT Compiler Garbage Collected No No

Go Modern language Garbage Collected Yes Not officially
Haskell Functional Garbage Collected No No
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Performance Comparison

M Time taken by each language in milliseconds to complete 1M operations

2800
2100
1400

700

[+ RUST C++ Python Swift
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Performance and Memory Usage Comparison

==

Bubble Sort Algorithm
Monte Carlo Pi Estimation Algorithm
Monte Carlo Pi Estimation SimpleRNG Algorithm

C

C++ Go Java Rust

Average CPU time benchmark results

Python

Yuvraj Singh

Bubble Sort Algorithm
Monte Carlo Pi Estimation Algorithm
Monte Carlo Pi Estimation SimpleRNG Algorithm

==
100 4

0,180.00

)

=

Average memory usage benchmark results

Go Java Python  Rust
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1. RUST-ArrayFire, a library for parallel computing

B Library for parallel computing with an API
B RUST-ArrayFire mechanism
» ArrayFire abstraction
» Memory manager
B Array, as generic container type
B Additional supported datatypes
» C32 -> complex single-precision
» C64 -> complex double-precision
» B8 -> 8-bit boolean values
» F16 -> 16-bit float number

B Setup

» Min. RUST version "1.31"
» DEPENDENCIES -> arrayfire = "*"

Yuvraj Singh 22/35
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2. RUSTA-CUDA, an interface to NVIDIA CUDA Driver API

B RUST-CUDA design
» High-level

» Safe and fast + cZn\nDlA
B Setup CUDA

» CUDA Version 8.0 or newer
» CUDA Capable GPU
» DEPENDENCIES -> rustacuda = "*"
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3. RUST-SmartCore, library for Machine learning

B Features

» Support most ML algorithms
» NO hard dependencies

B Include tools for
» Linear-algebra _
» Optimization
» Scientific-computing

B Setup

» DEPENDENCIES -> smartcore = "*"
» "ndarray" and "nalgebra"
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RUST-SmartCore, library for Machine learning

Model Evaluation Model Selection
> <
Clussification | Clustering Regression Dlmensmflallty
Reduction
> <
Linear Algebra Optimization
A S

[7] SmartCore's architecture represented as layers.
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4. RUST-BIO, a library for bioinformatics

B RUST-BIO design
» Bioinformatic algorithms
» Bioinformatic data structures (e.g.
alphabets)
B Some tools for Bioinformatics
» Major pattern matching algorithms
» Convenient alphabet implementation
» Pairwise alignment
» g-gram index
B Setup

» Min. RUST version "1.53.0"
» DEPENDENCIES -> bio =" *"

B Performance equivalent to C++
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Transpiling Python to Rust

B Objective
» High performance implementations
B Advantages

» Semiautomatic procedure
» Retains readability
» Easy to switch

B Tools required

> pyrs
» MonkeyType
» Intelli)

Yuvraj Singh
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Transpiling Python to Rust
Record Runtime Review
PYTHON Source Code Types (Optional) Runtime Types
Apply Syntax Rewrite &
Conversion Refactor y fail
pass
Validate ‘ RuUST Source Code
[4] Transpiling Python to Rust.
Yuvraj Singh 29/35
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Transpiling Python to Rust for Black-Scholes Model

B Model for Dynamics of financial markets

B Results based on
» Time consumed
» Memory consumed
» Efforts consumed

B Result

[4] Execution profile of Black-Scholes on PC (allocations included)

Black—Scholes |Python (MKL) |Rust (native)

Execution time 27.29 s 11.70 s
Peak memory consumption|9.372 GB 3.456 GB

>
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RUST for astrophysics

B Advantages

» Fast
» Provides Safety
» More Accurate results

Bl Example - N-Body Dynamical simulator
» Compared with Fortran, C and Go
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RUST for astrophysics Benchmarks

B Machine Used
» 1,6 GHz Intel Core i5

B Time taken to calculate positions for the two particles after 1 million years.
B Result

Best execution times of pure N-body simulations, for an integration time of 1 million
[5] years using a leap-frog integrator.

Rust | Fortran | C | Go
0m13.660s |Om14.6405 | 2m32.910s* |4m26.24()s
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Conclusion

B RUST is a GOOD candidate to performance HPC.

B RUST is getting better (inc. HPC Libraries, ecosystem, etc.).
B RUST has variety of HPC Libraries.

B RUST is very well documented.

B RUST is safe a language.
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Sources

Nico Borgsmlller, RUST for Embedded Software Development
Michal Sudwoj, RUST in HPC environment

William Bugden, RUST for Safety and Performance

Timo Hamalainen, Transpiling Python to RUST

Sergi Blanco-Cauresma, RUST for AstroPhysics ?

www.rust.org

N o A WN R

https://smartcorelib.org
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