
RUST Programming for HPC Application

7 July 2022 Yuvraj Singh

SH

∞

)



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Table of contents

1 RUST Programming Language

2 Comparing RUST

3 HPC with RUST

4 HPC Applications with RUST

5 Conclusion

Yuvraj Singh 2 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST History

■ Invented by - Graydon Hoare

■ Development Focus

▶ Network Services
▶ Command Line Applications
▶ WebAssembly (WASM)
▶ Embedded Devices

■ 4 Epochs

▶ Personal years (2006 - 2010)
▶ The Graydon years (2010 - 2012)
▶ The Type-system years (2012 - 2014)
▶ The Release year (2015 - 2016)

■ First Release - RUST 1.0

■ Current Release - RUST 1.62.0 (30 June, 2022)

Yuvraj Singh 3 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST Features

■ Systems Programming Language

■ Statically Typed Language

■ Memory Safety

■ Thread Safety

■ Efficient C Bindings

■ 2 MODES

▶ Safe RUST (Default)
▶ Unsafe RUST

Yuvraj Singh 4 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST Development Tools

■ Compiler

▶ rustc

■ Package Manager

▶ cargo

■ Editor Support Examples

▶ Vim, Emacs, Kate and gedit

■ IDE Support Examples

▶ VScode and Eclipse

■ Version Translator

▶ RustFix

Yuvraj Singh 5 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST "Hello, World!"

Yuvraj Singh 6 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST "Hello, World!"

Yuvraj Singh 7 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Data-Types (1)

Yuvraj Singh 8 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Data-Types (2)

■ Float Type

▶ f32 and f64

■ Boolean Type

▶ true and false

■ String Type

▶ str and String

■ Also supports

▶ Arrays
▶ Tuples
▶ Structs and Enums

Yuvraj Singh 9 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST Variables and Mutability

■ Variables

▶ Declared using "let" keyword
▶ "mut" keqord makes variable mutable E.g.-> let mut i8

■ Constants

▶ Declared using "const"
▶ Immutable

■ Shadowing

Yuvraj Singh 10 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST’s Ownership Feature

■ Responsible for memory-safety and high performance

■ Prevents Bugs

■ Manages Memory

■ Rules

▶ each variable has owner
▶ one owner at a time
▶ value drops when out of scope

Yuvraj Singh 11 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST’s Borrowing Feature

■ Shares variable’s past

▶ uses reference

■ Temporary owner

■ Cannot exceed scope of owner

■ Immutable by default

▶ ONLY one mutation possible

Yuvraj Singh 12 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST’s Fearless Concurrency Feature

■ Goal

▶ Handling concurrent programming safely and efficiently

■ Based on

▶ Ownership
▶ Type System

Yuvraj Singh 13 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Unsafe RUST

■ "unsafe" keyword

■ Unsafe Superpowers

▶ Calling unsafe functions
▶ Dereference a raw pointer
▶ Implement an unsafe trait
▶ Access or modify a mutable static variable

■ Unsafe Disadvantage

▶ Memory Unsafety

Yuvraj Singh 14 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST’s Popularity

Yuvraj Singh 15 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST’s Popularity

Yuvraj Singh 16 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Outline

1 RUST Programming Language

2 Comparing RUST

3 HPC with RUST

4 HPC Applications with RUST

5 Conclusion

Yuvraj Singh 17 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

General Comparision

Yuvraj Singh 18 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Performance Comparison

Yuvraj Singh 19 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Performance and Memory Usage Comparison

Yuvraj Singh 20 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Outline

1 RUST Programming Language

2 Comparing RUST

3 HPC with RUST

4 HPC Applications with RUST

5 Conclusion

Yuvraj Singh 21 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

1. RUST-ArrayFire, a library for parallel computing

■ Library for parallel computing with an API

■ RUST-ArrayFire mechanism

▶ ArrayFire abstraction
▶ Memory manager

■ Array, as generic container type

■ Additional supported datatypes

▶ C32 -> complex single-precision
▶ C64 -> complex double-precision
▶ B8 -> 8-bit boolean values
▶ F16 -> 16-bit float number

■ Setup

▶ Min. RUST version "1.31"
▶ DEPENDENCIES -> arrayfire = "*"

Yuvraj Singh 22 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

2. RUSTA-CUDA, an interface to NVIDIA CUDA Driver API

■ RUST-CUDA design

▶ High-level
▶ Safe and fast

■ Setup

▶ CUDA Version 8.0 or newer
▶ CUDA Capable GPU
▶ DEPENDENCIES -> rustacuda = "*"

Yuvraj Singh 23 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

3. RUST-SmartCore, library for Machine learning

■ Features

▶ Support most ML algorithms
▶ NO hard dependencies

■ Include tools for

▶ Linear-algebra
▶ Optimization
▶ Scientific-computing

■ Setup

▶ DEPENDENCIES -> smartcore = "*"
▶ "ndarray" and "nalgebra"

Yuvraj Singh 24 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST-SmartCore, library for Machine learning

Yuvraj Singh 25 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

4. RUST-BIO, a library for bioinformatics

■ RUST-BIO design

▶ Bioinformatic algorithms
▶ Bioinformatic data structures (e.g.

alphabets)

■ Some tools for Bioinformatics

▶ Major pattern matching algorithms
▶ Convenient alphabet implementation
▶ Pairwise alignment
▶ q-gram index

■ Setup

▶ Min. RUST version "1.53.0"
▶ DEPENDENCIES -> bio = " * "

■ Performance equivalent to C++

Yuvraj Singh 26 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Outline

1 RUST Programming Language

2 Comparing RUST

3 HPC with RUST

4 HPC Applications with RUST

5 Conclusion

Yuvraj Singh 27 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Transpiling Python to Rust

■ Objective

▶ High performance implementations

■ Advantages

▶ Semiautomatic procedure
▶ Retains readability
▶ Easy to switch

■ Tools required

▶ pyrs
▶ MonkeyType
▶ IntelliJ

Yuvraj Singh 28 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Transpiling Python to Rust

Yuvraj Singh 29 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Transpiling Python to Rust for Black-Scholes Model

■ Model for Dynamics of financial markets

■ Results based on

▶ Time consumed
▶ Memory consumed
▶ Efforts consumed

■ Result

▶

Yuvraj Singh 30 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST for astrophysics

■ Advantages

▶ Fast
▶ Provides Safety
▶ More Accurate results

■ Example - N-Body Dynamical simulator

▶ Compared with Fortran, C and Go

Yuvraj Singh 31 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

RUST for astrophysics Benchmarks

■ Machine Used

▶ 1,6 GHz Intel Core i5

■ Time taken to calculate positions for the two particles after 1 million years.

■ Result

▶

Yuvraj Singh 32 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Outline

1 RUST Programming Language

2 Comparing RUST

3 HPC with RUST

4 HPC Applications with RUST

5 Conclusion

Yuvraj Singh 33 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Conclusion

■ RUST is a GOOD candidate to performance HPC.

■ RUST is getting better (inc. HPC Libraries, ecosystem, etc.).

■ RUST has variety of HPC Libraries.

■ RUST is very well documented.

■ RUST is safe a language.

Yuvraj Singh 34 / 35



RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

Sources

1 Nico Borgsmüller, RUST for Embedded Software Development

2 Michal Sudwoj, RUST in HPC environment

3 William Bugden, RUST for Safety and Performance

4 Timo Hämäläinen, Transpiling Python to RUST

5 Sergi Blanco-Cauresma, RUST for AstroPhysics ?

6 www.rust.org

7 https://smartcorelib.org

Yuvraj Singh 35 / 35


	RUST Programming Language 
	Comparing RUST
	HPC with RUST
	HPC Applications with RUST
	Conclusion

