GEORG-AUGUST-UNIVERSITAT
=\ GOTTINGEN & e

HPS

RUST Programming for HPC Application

7 July 2022 Yuvraj Singh

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 000000 000000 000

Table of contents

RUST Programming Language
Comparing RUST

HPC with RUST

HPC Applications with RUST

Conclusion

Yuvraj Singh 2/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
9000000000000 0

RUST History

B Invented by - Graydon Hoare
B Development Focus

» Network Services
» Command Line Applications
» WebAssembly (WASM)
» Embedded Devices
B 4 Epochs
» Personal years (2006 - 2010)
» The Graydon years (2010 - 2012)
» The Type-system years (2012 - 2014)
» The Release year (2015 - 2016)

B First Release - RUST 1.0
B Current Release - RUST 1.62.0 (30 June, 2022)

Yuvraj Singh 335

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
O@000000000000

RUST Features

B Systems Programming Language
B Statically Typed Language

B Memory Safety

B Thread Safety

B Efficient C Bindings

B 2 MODES

» Safe RUST (Default)
» Unsafe RUST

Yuvraj Singh 4/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
00@00000000000

RUST Development Tools

B Compiler
» rustc
B Package Manager
» cargo
B Editor Support Examples
» Vim, Emacs, Kate and gedit
B IDE Support Examples
» VScode and Eclipse
B Version Translator
» RustFix

Yuvraj Singh 5/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000

RUST "Hello, World!"

(base) yuvrajsingh@Yuvrajs-MBP ~ % cargo new hello
Created binary (application) ‘hello’ package
(base) yuvrajsingh@Yuvrajs-MBP ~ % cd hello
(base) yuvrajsingh@Yuvrajs-MBP hello % cargo build
Compiling hello v@.1.8 (/Users/yuvrajsingh/hello)
F d dev [unoptimized + debuginfo] target(s) in 3.77s
(base) yuvrajsingh@Yuvrajs-MBP hello % cargo run
Finished dev [unoptimized + debuginfo] target(s) in @.0@s
Running ‘target/debug/hello’
Hello, world!
(base) yuvrajsingh®Yuvrajs-MBP hello % [

Cargo.lock Cargo.toml target

Yuvraj Singh 6/35

RUST Programming Language Comparing RUST HPC with RUST
0000@000000000

HPC Applications with RUST

Conclusion

RUST "Hello, World!"

main.rs

ain() {
rintint(“He

Cargotoml

Yuvraj Singh

7/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
00000@00000000

Data-Types (1)

Integer Types Integer Literals

Length Signed Unsigned
8-bit i8

Number literals Example

Decimal 98_222
i16

Hex oxff
i32
) Octal 0077
i64

128-bit 128 IEDY ©b1111_0000

Byte (u8 only) DAY

arch isize

Yuvraj Singh 8/35

RUST Programming Language Comparing RUST
000000e0000000 0000

lications with RUST Conclusion

Data-Types (2)

B Float Type

» 32 and f64
B Boolean Type

» true and false
B String Type

» strand String
B Also supports

» Arrays
» Tuples
» Structs and Enums

Yuvraj Singh 9/35

RUST Programming Language
0000000000000

aring RUST

RUST Variables and Mutability

pplications with RUST
00

Conclusion

M Variables

» Declared using "let" keyword

» "mut" keqord makes variable mutable E.g.-> let mut i8
B Constants

» Declared using "const"
» Immutable

B Shadowing

Yuvraj Singh

10/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000

RUST’s Ownership Feature

B Responsible for memory-safety and high performance
B Prevents Bugs
B Manages Memory

B Rules

» each variable has owner
» one owner at a time
» value drops when out of scope

Yuvraj Singh 11/35

RUST Programming Language
000000000 e0000

plications with RUST
o

Conclusion

RUST'’s Borrowing Feature

B Shares variable’s past
» uses reference

B Temporary owner

B Cannot exceed scope of owner
B Immutable by default
» ONLY one mutation possible

Yuvraj Singh

12/35

RUST Programming Language Comparing RUST
0000000000800 0 0000

pplications with RUST Conclusion
(e]e] ole

RUST'’s Fearless Concurrency Feature

B Goal
» Handling concurrent programming safely and efficiently
B Based on

» Ownership
» Type System

Yuvraj Singh 13/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
00000000000 e00

Unsafe RUST

B "unsafe" keyword
B Unsafe Superpowers

» Calling unsafe functions

» Dereference a raw pointer

» Implement an unsafe trait

» Access or modify a mutable static variable
B Unsafe Disadvantage

» Memory Unsafety

Yuvraj Singh 14/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
000000000000 e0 0000 000000 000000 000

RUST’s Popularity

[3]1nterest in Rust programming language over time
(May 2012-May 2022, generated from google trends)

Yuvraj Singh 15/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 e

RUST’s Popularity

Loved vs. Dreaded

Want to continue

2022 Stack Overflow Developer Survey: The 20 most popular programming languages
(Image: Stack Overflow)

Yuvraj Singh 16/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 000000 000000 000

Outline

Comparing RUST

Yuvraj Singh 17/35

RUST Programming Language

Comparing RUST
(o] Jele}

HPC with RUST

HPC Applications with RUST

Conclusion

General Comparision

[1] Overview of different possible programming languages

Language Aspect Memory Systems | Bare-metal
management program.

Rust Zero-cost safety Automatic Yes Yes
(6] Currently in use Manual + Automatic Yes Yes
Ada Safety critical apps | Manual + Automatic Yes Yes
Python Interpreted Garbage Collected No No
Java JIT Compiler Garbage Collected No No

Go Modern language Garbage Collected Yes Not officially
Haskell Functional Garbage Collected No No

Yuvraj Singh

18/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 [e]e] o} 000000 000000 000

Performance Comparison

M Time taken by each language in milliseconds to complete 1M operations

2800
2100
1400

700

[+ RUST C++ Python Swift

Yuvraj Singh 19/35

RUST Programming Language

Comparing RUST
[e]e]e]]

HPC with RUST

HPC Applications with RUST Conclusion

Performance and Memory Usage Comparison

==

Bubble Sort Algorithm
Monte Carlo Pi Estimation Algorithm
Monte Carlo Pi Estimation SimpleRNG Algorithm

C

C++ Go Java Rust

Average CPU time benchmark results

Python

Yuvraj Singh

Bubble Sort Algorithm
Monte Carlo Pi Estimation Algorithm
Monte Carlo Pi Estimation SimpleRNG Algorithm

==
100 4

0,180.00

)

=

Average memory usage benchmark results

Go Java Python Rust

20/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 @®00000 000000 000

Outline

HPC with RUST

Yuvraj Singh 21/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 O@0000 000000 000

1. RUST-ArrayFire, a library for parallel computing

B Library for parallel computing with an API
B RUST-ArrayFire mechanism
» ArrayFire abstraction
» Memory manager
B Array, as generic container type
B Additional supported datatypes
» C32 -> complex single-precision
» C64 -> complex double-precision
» B8 -> 8-bit boolean values
» F16 -> 16-bit float number

B Setup

» Min. RUST version "1.31"
» DEPENDENCIES -> arrayfire = "*"

Yuvraj Singh 22/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
00@000

2. RUSTA-CUDA, an interface to NVIDIA CUDA Driver API

B RUST-CUDA design
» High-level

» Safe and fast + cZn\nDlA
B Setup CUDA

» CUDA Version 8.0 or newer
» CUDA Capable GPU
» DEPENDENCIES -> rustacuda = "*"

Yuvraj Singh 23/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
000e00

3. RUST-SmartCore, library for Machine learning

B Features

» Support most ML algorithms
» NO hard dependencies

B Include tools for
» Linear-algebra _
» Optimization
» Scientific-computing

B Setup

» DEPENDENCIES -> smartcore = "*"
» "ndarray" and "nalgebra"

Yuvraj Singh 24/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 0O000e0 000000 000

RUST-SmartCore, library for Machine learning

Model Evaluation Model Selection
> <
Clussification | Clustering Regression Dlmensmflallty
Reduction
> <
Linear Algebra Optimization
A S

[7] SmartCore's architecture represented as layers.

Yuvraj Singh 25/35

RUST Programmlng Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion

uuuuuuuuuuuuuu 0000 O0000e 000000 000

4. RUST-BIO, a library for bioinformatics

B RUST-BIO design
» Bioinformatic algorithms
» Bioinformatic data structures (e.g.
alphabets)
B Some tools for Bioinformatics
» Major pattern matching algorithms
» Convenient alphabet implementation
» Pairwise alignment
» g-gram index
B Setup

» Min. RUST version "1.53.0"
» DEPENDENCIES -> bio =" *"

B Performance equivalent to C++

Yuvraj Singh 26/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 000000 900000 000

Outline

HPC Applications with RUST

Yuvraj Singh 27/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST
O®0000

Conclusion

Transpiling Python to Rust

B Objective
» High performance implementations
B Advantages

» Semiautomatic procedure
» Retains readability
» Easy to switch

B Tools required

> pyrs
» MonkeyType
» Intelli)

Yuvraj Singh

28/35

aring RUST RUST HPC Applications with RUST Conclusion
) 00e000 [e]e]e)
Transpiling Python to Rust
Record Runtime Review
PYTHON Source Code Types (Optional) Runtime Types
Apply Syntax Rewrite &
Conversion Refactor y fail
pass
Validate ‘ RuUST Source Code
[4] Transpiling Python to Rust.
Yuvraj Singh 29/35

RUST HPC Applications with RUST

aring RUST
D 000e00

Conclusion

Transpiling Python to Rust for Black-Scholes Model

B Model for Dynamics of financial markets

B Results based on
» Time consumed
» Memory consumed
» Efforts consumed

B Result

[4] Execution profile of Black-Scholes on PC (allocations included)

Black—Scholes |Python (MKL) |Rust (native)

Execution time 27.29 s 11.70 s
Peak memory consumption|9.372 GB 3.456 GB

>

Yuvraj Singh

30/35

7Language Cqmparing RUST

PR

HPC Applications with RUST Conclusion
0000e0 000

RUST for astrophysics

B Advantages

» Fast
» Provides Safety
» More Accurate results

Bl Example - N-Body Dynamical simulator
» Compared with Fortran, C and Go

Yuvraj Singh 31/35

ing Language Comparing RUST

0000

HPC Applications with RUST Conclusion
O0000e 000

RUST for astrophysics Benchmarks

B Machine Used
» 1,6 GHz Intel Core i5

B Time taken to calculate positions for the two particles after 1 million years.
B Result

Best execution times of pure N-body simulations, for an integration time of 1 million
[5] years using a leap-frog integrator.

Rust | Fortran | C | Go
0m13.660s |Om14.6405 | 2m32.910s* |4m26.24()s

Yuvraj Singh 32/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
0000000000000 0 0000 000000 000000 @00

Outline

Conclusion

Yuvraj Singh 33/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
oeo

Conclusion

B RUST is a GOOD candidate to performance HPC.

B RUST is getting better (inc. HPC Libraries, ecosystem, etc.).
B RUST has variety of HPC Libraries.

B RUST is very well documented.

B RUST is safe a language.

Yuvraj Singh 34/35

RUST Programming Language Comparing RUST HPC with RUST HPC Applications with RUST Conclusion
ooe

Sources

Nico Borgsmlller, RUST for Embedded Software Development
Michal Sudwoj, RUST in HPC environment

William Bugden, RUST for Safety and Performance

Timo Hamalainen, Transpiling Python to RUST

Sergi Blanco-Cauresma, RUST for AstroPhysics ?

www.rust.org

N o A WN R

https://smartcorelib.org

Yuvraj Singh 35/35

	RUST Programming Language
	Comparing RUST
	HPC with RUST
	HPC Applications with RUST
	Conclusion

